100+ datasets found
  1. Geodatabase for the Baltimore Ecosystem Study Spatial Data

    • search.dataone.org
    • portal.edirepository.org
    Updated Apr 1, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Spatial Analysis Lab; Jarlath O'Neal-Dunne; Morgan Grove (2020). Geodatabase for the Baltimore Ecosystem Study Spatial Data [Dataset]. https://search.dataone.org/view/https%3A%2F%2Fpasta.lternet.edu%2Fpackage%2Fmetadata%2Feml%2Fknb-lter-bes%2F3120%2F150
    Explore at:
    Dataset updated
    Apr 1, 2020
    Dataset provided by
    Long Term Ecological Research Networkhttp://www.lternet.edu/
    Authors
    Spatial Analysis Lab; Jarlath O'Neal-Dunne; Morgan Grove
    Time period covered
    Jan 1, 1999 - Jun 1, 2014
    Area covered
    Description

    The establishment of a BES Multi-User Geodatabase (BES-MUG) allows for the storage, management, and distribution of geospatial data associated with the Baltimore Ecosystem Study. At present, BES data is distributed over the internet via the BES website. While having geospatial data available for download is a vast improvement over having the data housed at individual research institutions, it still suffers from some limitations. BES-MUG overcomes these limitations; improving the quality of the geospatial data available to BES researches, thereby leading to more informed decision-making. BES-MUG builds on Environmental Systems Research Institute's (ESRI) ArcGIS and ArcSDE technology. ESRI was selected because its geospatial software offers robust capabilities. ArcGIS is implemented agency-wide within the USDA and is the predominant geospatial software package used by collaborating institutions. Commercially available enterprise database packages (DB2, Oracle, SQL) provide an efficient means to store, manage, and share large datasets. However, standard database capabilities are limited with respect to geographic datasets because they lack the ability to deal with complex spatial relationships. By using ESRI's ArcSDE (Spatial Database Engine) in conjunction with database software, geospatial data can be handled much more effectively through the implementation of the Geodatabase model. Through ArcSDE and the Geodatabase model the database's capabilities are expanded, allowing for multiuser editing, intelligent feature types, and the establishment of rules and relationships. ArcSDE also allows users to connect to the database using ArcGIS software without being burdened by the intricacies of the database itself. For an example of how BES-MUG will help improve the quality and timeless of BES geospatial data consider a census block group layer that is in need of updating. Rather than the researcher downloading the dataset, editing it, and resubmitting to through ORS, access rules will allow the authorized user to edit the dataset over the network. Established rules will ensure that the attribute and topological integrity is maintained, so that key fields are not left blank and that the block group boundaries stay within tract boundaries. Metadata will automatically be updated showing who edited the dataset and when they did in the event any questions arise. Currently, a functioning prototype Multi-User Database has been developed for BES at the University of Vermont Spatial Analysis Lab, using Arc SDE and IBM's DB2 Enterprise Database as a back end architecture. This database, which is currently only accessible to those on the UVM campus network, will shortly be migrated to a Linux server where it will be accessible for database connections over the Internet. Passwords can then be handed out to all interested researchers on the project, who will be able to make a database connection through the Geographic Information Systems software interface on their desktop computer. This database will include a very large number of thematic layers. Those layers are currently divided into biophysical, socio-economic and imagery categories. Biophysical includes data on topography, soils, forest cover, habitat areas, hydrology and toxics. Socio-economics includes political and administrative boundaries, transportation and infrastructure networks, property data, census data, household survey data, parks, protected areas, land use/land cover, zoning, public health and historic land use change. Imagery includes a variety of aerial and satellite imagery. See the readme: http://96.56.36.108/geodatabase_SAL/readme.txt See the file listing: http://96.56.36.108/geodatabase_SAL/diroutput.txt

  2. d

    Data from: Data and Results for GIS-Based Identification of Areas that have...

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Data and Results for GIS-Based Identification of Areas that have Resource Potential for Lode Gold in Alaska [Dataset]. https://catalog.data.gov/dataset/data-and-results-for-gis-based-identification-of-areas-that-have-resource-potential-for-lo
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    U.S. Geological Survey
    Description

    This data release contains the analytical results and evaluated source data files of geospatial analyses for identifying areas in Alaska that may be prospective for different types of lode gold deposits, including orogenic, reduced-intrusion-related, epithermal, and gold-bearing porphyry. The spatial analysis is based on queries of statewide source datasets of aeromagnetic surveys, Alaska Geochemical Database (AGDB3), Alaska Resource Data File (ARDF), and Alaska Geologic Map (SIM3340) within areas defined by 12-digit HUCs (subwatersheds) from the National Watershed Boundary dataset. The packages of files available for download are: 1. LodeGold_Results_gdb.zip - The analytical results in geodatabase polygon feature classes which contain the scores for each source dataset layer query, the accumulative score, and a designation for high, medium, or low potential and high, medium, or low certainty for a deposit type within the HUC. The data is described by FGDC metadata. An mxd file, and cartographic feature classes are provided for display of the results in ArcMap. An included README file describes the complete contents of the zip file. 2. LodeGold_Results_shape.zip - Copies of the results from the geodatabase are also provided in shapefile and CSV formats. The included README file describes the complete contents of the zip file. 3. LodeGold_SourceData_gdb.zip - The source datasets in geodatabase and geotiff format. Data layers include aeromagnetic surveys, AGDB3, ARDF, lithology from SIM3340, and HUC subwatersheds. The data is described by FGDC metadata. An mxd file and cartographic feature classes are provided for display of the source data in ArcMap. Also included are the python scripts used to perform the analyses. Users may modify the scripts to design their own analyses. The included README files describe the complete contents of the zip file and explain the usage of the scripts. 4. LodeGold_SourceData_shape.zip - Copies of the geodatabase source dataset derivatives from ARDF and lithology from SIM3340 created for this analysis are also provided in shapefile and CSV formats. The included README file describes the complete contents of the zip file.

  3. e

    GIS Shapefile - Crime Risk Database, MSA

    • portal.edirepository.org
    zip
    Updated Dec 31, 2009
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jarlath O'Neil-Dunne (2009). GIS Shapefile - Crime Risk Database, MSA [Dataset]. http://doi.org/10.6073/pasta/46369b3e4f41b0a4ef2c8ef9a116e531
    Explore at:
    zip(3235 kilobyte)Available download formats
    Dataset updated
    Dec 31, 2009
    Dataset provided by
    EDI
    Authors
    Jarlath O'Neil-Dunne
    Time period covered
    Jan 1, 2004 - Nov 17, 2011
    Area covered
    Description

    Crime data assembled by census block group for the MSA from the Applied Geographic Solutions' (AGS) 1999 and 2005 'CrimeRisk' databases distributed by the Tetrad Computer Applications Inc. CrimeRisk is the result of an extensive analysis of FBI crime statistics. Based on detailed modeling of the relationships between crime and demographics, CrimeRisk provides an accurate view of the relative risk of specific crime types at the block group level. Data from 1990 - 1996,1999, and 2004-2005 were used to compute the attributes, please refer to the 'Supplemental Information' section of the metadata for more details. Attributes are available for two categories of crimes, personal crimes and property crimes, along with total and personal crime indices. Attributes for personal crimes include murder, rape, robbery, and assault. Attributes for property crimes include burglary, larceny, and mother vehicle theft. 12 block groups have no attribute information. CrimeRisk is a block group and higher level geographic database consisting of a series of standardized indexes for a range of serious crimes against both persons and property. It is derived from an extensive analysis of several years of crime reports from the vast majority of law enforcement jurisdictions nationwide. The crimes included in the database are the "Part I" crimes and include murder, rape, robbery, assault, burglary, theft, and motor vehicle theft. These categories are the primary reporting categories used by the FBI in its Uniform Crime Report (UCR), with the exception of Arson, for which data is very inconsistently reported at the jurisdictional level. Part II crimes are not reported in the detail databases and are generally available only for selected areas or at high levels of geography. In accordance with the reporting procedures using in the UCR reports, aggregate indexes have been prepared for personal and property crimes separately, as well as a total index. While this provides a useful measure of the relative "overall" crime rate in an area, it must be recognized that these are unweighted indexes, in that a murder is weighted no more heavily than a purse snatching in the computation. For this reason, caution is advised when using any of the aggregate index values. The block group boundaries used in the dataset come from TeleAtlas's (formerly GDT) Dynamap data, and are consistent with all other block group boundaries in the BES geodatabase.

       This is part of a collection of 221 Baltimore Ecosystem Study metadata records that point to a geodatabase.
    
    
       The geodatabase is available online and is considerably large. Upon request, and under certain arrangements, it can be shipped on media, such as a usb hard drive.
    
    
       The geodatabase is roughly 51.4 Gb in size, consisting of 4,914 files in 160 folders.
    
    
       Although this metadata record and the others like it are not rich with attributes, it is nonetheless made available because the data that it represents could be indeed useful.
    
    
       This is part of a collection of 221 Baltimore Ecosystem Study metadata records that point to a geodatabase.
    
    
       The geodatabase is available online and is considerably large. Upon request, and under certain arrangements, it can be shipped on media, such as a usb hard drive.
    
    
       The geodatabase is roughly 51.4 Gb in size, consisting of 4,914 files in 160 folders.
    
    
       Although this metadata record and the others like it are not rich with attributes, it is nonetheless made available because the data that it represents could be indeed useful.
    
  4. f

    Data from: A hybrid data model for dynamic GIS : application to marine...

    • figshare.com
    application/x-rar
    Updated Sep 24, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Younes Hamdani; Rémy thibaud; Christophe Claramunt (2020). A hybrid data model for dynamic GIS : application to marine geomorphological dynamics [Dataset]. http://doi.org/10.6084/m9.figshare.12121386.v1
    Explore at:
    application/x-rarAvailable download formats
    Dataset updated
    Sep 24, 2020
    Dataset provided by
    figshare
    Authors
    Younes Hamdani; Rémy thibaud; Christophe Claramunt
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Abstract : The search for the most appropriate GIS data model to integrate, manipulate and analyse spatio-temporal data raises several research questions about the conceptualisation of geographic spaces. Although there is now a general consensus that many environmental phenomena require field and object conceptualisations to provide a comprehensive GIS representation, there is still a need for better integration of these dual representations of space within a formal spatio-temporal database. The research presented in this paper introduces a hybrid and formal dual data model for the representation of spatio-temporal data. The whole approach has been fully implemented in PostgreSQL and its spatial extension PostGIS, where the SQL language is extended by a series of data type constructions and manipulation functions to support hybrid queries. The potential of the approach is illustrated by an application to underwater geomorphological dynamics oriented towards the monitoring of the evolution of seabed changes. A series of performance and scalability experiments are also reported to demonstrate the computational performance of the model.Data Description : The data set used in our research is a set of bathymetric surveys recorded over three years from 2009 to 2011 as Digital Terrain Models (DTM) with 2m grid spacing. The first survey was carried out in February 2009 by the French hydrographic office, the second one was recorded on August-September 2010 and the third in July 2011, both by the “Institut Universitaire Européen de la Mer”.

  5. Shoreline Types - R7 - CDFW [ds3115]

    • data.ca.gov
    • data.cnra.ca.gov
    • +5more
    Updated Jan 8, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Fish and Wildlife (2024). Shoreline Types - R7 - CDFW [ds3115] [Dataset]. https://data.ca.gov/dataset/shoreline-types-r7-cdfw-ds3115
    Explore at:
    html, geojson, arcgis geoservices rest api, zip, kml, csvAvailable download formats
    Dataset updated
    Jan 8, 2024
    Dataset authored and provided by
    California Department of Fish and Wildlifehttps://wildlife.ca.gov/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This feature contains vector lines representing the shoreline and coastal habitats of California. Line segments are classified according to the Environmental Sensitivity Index (ESI) classification system and are a compilation of the ESI data from the most recent ESI atlas publications. The ESI data includes information for three main components: shoreline habitats, sensitive biological resources, and human-use resources. This California dataset contains only the ESI shoreline data layer and is a merged set of individual ESI data sets to cover the entire California coast. For many parts of the California shoreline, the NOAA-ESI database lists several shoreline types present at a given location, described from landward to seaward. A simplified singular classification [Map_Class] was created to generalize the most dominant features of the multiple shore type attributes present in the raw data. More information can be found at the source citation at ESI Guidelines | response.restoration.noaa.gov Attributes: Line: Type of geographic feature (H: Hydrography, P: Pier, S: Shoreline) Most_sensitive: If multiple shoreline types appear in ESI classification, this field represents the highest value (most sensitive type); otherwise it is the same value as the ESI field. Shore_code: The ESI shoreline type. In many cases shorelines are ranked with multiple codes, such as "6B/3A" (listed landward to seaward). Source: Original year of ESI data. Esi_description: Concatenation of shore type descriptions (listed landward to seaward) Shoretype_1: Numeric classification for the first (most landward) ESI type. Shoretype_1_name: Physical description for the first ESI type. Shoretype_2: Numeric classification for the second ESI type. Shoretype_2_name: Physical description for the second ESI type Shoretype_3: Numeric classification for the third (most seaward) ESI type. Shoretype_3_name: Physical description for the third ESI type. Map_class: Generalized ESI shoreline type for simplified sym

  6. m

    Supplementary Datasets

    • data.mendeley.com
    Updated Mar 17, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Natalia Novoselova (2020). Supplementary Datasets [Dataset]. http://doi.org/10.17632/8s3fps4vvb.2
    Explore at:
    Dataset updated
    Mar 17, 2020
    Authors
    Natalia Novoselova
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    The shared archived combined in Supplementary Datasets represent the actual databases used in the investigation considered in two papers:

    Meteorological conditions affecting black vulture (Coragyps atratus) soaring behavior in the southeast of Brazil: Implications for bird strike abatement (in submission)

    Remote sensing applications for abating the aircraft-bird strike risks in the southeast of Brazil (Human-Wildlife Interactions Journal, in print)

    The papers were based on my Master’s thesis defended in 2016 in the Institute of Biology of the University of Campinas (UNICAMP) in partial fulfilment of the requirements for the degree of Master in Ecology. Our investigation was devoted to reducing the risk of aircraft collision with Black vultures. It had two parts considered in these two papers. In the first one we studied the relationship between soaring activity of Black vultures and meteorological characteristics. In the second one we explored the dependence of soaring activity of vultures on superficial and anthropogenic characteristics. The study was implemented within surroundings of two airports in the southeast of Brazil taken as case studies. We developed the methodological approaches combining application of GIS and remote sensing technologies for data processing, which were used as the main research instrument. By dint of them we joined in the georeferenced databases (shapefiles) the data of bird's observation and three types of environmental factors: (i) meteorological characteristics collected together with the bird’s observation, (ii) superficial parameters (relief and surface temperature) obtained from the products of ASTER imagery; (iii) parameters of surface covering and anthropogenic pressure obtained from the satellite images of high resolution. Based on the analyses of the georeferenced databases, the relationship between soaring activity of vultures and environmental factors was studied; the behavioral patterns of vultures in soaring flight were revealed; the landscape types highly attractive for this species and forming the increased concentration of birds over them were detected; the maps giving a numerical estimation of hazard of bird strike events over the airport vicinities were constructed; the practical recommendations devoted to decrease the risk of collisions with vultures and other bird species were formulated.

    This archive contains all materials elaborated and used for the study, including the GIS database for two papers, remote sensing data, and Microsoft Excel datasets. You can find the description of supplementary files in the Description of Supplementary Dataset.docx. The links on supplementary files and their attribution to the text of papers are considered in the Attribution to the text of papers.docx. The supplementary files are in the folders Datasets, GIS_others, GIS_Raster, GIS_Shape.

    For any question please write me on this email: natalieenov@gmail.com

    Natalia Novoselova

  7. d

    Vegetation classification crosswalk database for use in GIS to synchronize...

    • catalog.data.gov
    • data.usgs.gov
    • +2more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Vegetation classification crosswalk database for use in GIS to synchronize vegetation map layers of the NPS Great Lakes Network to the U.S. National Vegetation Classification [Dataset]. https://catalog.data.gov/dataset/vegetation-classification-crosswalk-database-for-use-in-gis-to-synchronize-vegetation-map-
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    The Great Lakes, United States
    Description

    The geodatabase contains 13 relate tables that together provide updated and synchronized classifications to an existing vegetation map layer for each of the nine park units in the Great Lakes Network (GLKN) of the National Park Service (NPS) Natural Resource Inventory and Monitoring Program. The classifications include 1) vegetation types at every hierarchical level in the 2015 version of the U.S. National Vegetation Classification (USNVC) and 2) map classes that represent vegetation and land cover in the vegetation map layers. Furthermore, the tables provide a crosswalk between the two classifications (vegetation and map). Each park unit in GLKN has received, at different times over several years, vegetation data products from the NPS Vegetation Mapping Inventory (VMI) Program. However, the vegetation and map classifications were at different stages of development over these years. With this geodatabase product, having a series of already linked relate tables, the original vegetation map layer for each park unit can be linked to the updated and synchronized classification information for both vegetation types and map classes.

  8. d

    Digital data for the Salinas Valley Geological Framework, California

    • catalog.data.gov
    • data.usgs.gov
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Digital data for the Salinas Valley Geological Framework, California [Dataset]. https://catalog.data.gov/dataset/digital-data-for-the-salinas-valley-geological-framework-california
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Salinas Valley, Salinas, California
    Description

    This digital dataset was created as part of a U.S. Geological Survey study, done in cooperation with the Monterey County Water Resource Agency, to conduct a hydrologic resource assessment and develop an integrated numerical hydrologic model of the hydrologic system of Salinas Valley, CA. As part of this larger study, the USGS developed this digital dataset of geologic data and three-dimensional hydrogeologic framework models, referred to here as the Salinas Valley Geological Framework (SVGF), that define the elevation, thickness, extent, and lithology-based texture variations of nine hydrogeologic units in Salinas Valley, CA. The digital dataset includes a geospatial database that contains two main elements as GIS feature datasets: (1) input data to the 3D framework and textural models, within a feature dataset called “ModelInput”; and (2) interpolated elevation, thicknesses, and textural variability of the hydrogeologic units stored as arrays of polygonal cells, within a feature dataset called “ModelGrids”. The model input data in this data release include stratigraphic and lithologic information from water, monitoring, and oil and gas wells, as well as data from selected published cross sections, point data derived from geologic maps and geophysical data, and data sampled from parts of previous framework models. Input surface and subsurface data have been reduced to points that define the elevation of the top of each hydrogeologic units at x,y locations; these point data, stored in a GIS feature class named “ModelInputData”, serve as digital input to the framework models. The location of wells used a sources of subsurface stratigraphic and lithologic information are stored within the GIS feature class “ModelInputData”, but are also provided as separate point feature classes in the geospatial database. Faults that offset hydrogeologic units are provided as a separate line feature class. Borehole data are also released as a set of tables, each of which may be joined or related to well location through a unique well identifier present in each table. Tables are in Excel and ascii comma-separated value (CSV) format and include separate but related tables for well location, stratigraphic information of the depths to top and base of hydrogeologic units intercepted downhole, downhole lithologic information reported at 10-foot intervals, and information on how lithologic descriptors were classed as sediment texture. Two types of geologic frameworks were constructed and released within a GIS feature dataset called “ModelGrids”: a hydrostratigraphic framework where the elevation, thickness, and spatial extent of the nine hydrogeologic units were defined based on interpolation of the input data, and (2) a textural model for each hydrogeologic unit based on interpolation of classed downhole lithologic data. Each framework is stored as an array of polygonal cells: essentially a “flattened”, two-dimensional representation of a digital 3D geologic framework. The elevation and thickness of the hydrogeologic units are contained within a single polygon feature class SVGF_3DHFM, which contains a mesh of polygons that represent model cells that have multiple attributes including XY location, elevation and thickness of each hydrogeologic unit. Textural information for each hydrogeologic unit are stored in a second array of polygonal cells called SVGF_TextureModel. The spatial data are accompanied by non-spatial tables that describe the sources of geologic information, a glossary of terms, a description of model units that describes the nine hydrogeologic units modeled in this study. A data dictionary defines the structure of the dataset, defines all fields in all spatial data attributer tables and all columns in all nonspatial tables, and duplicates the Entity and Attribute information contained in the metadata file. Spatial data are also presented as shapefiles. Downhole data from boreholes are released as a set of tables related by a unique well identifier, tables are in Excel and ascii comma-separated value (CSV) format.

  9. D

    Household Types and Populations - Seattle Neighborhoods

    • data.seattle.gov
    • data-seattlecitygis.opendata.arcgis.com
    • +1more
    application/rdfxml +5
    Updated Oct 22, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Household Types and Populations - Seattle Neighborhoods [Dataset]. https://data.seattle.gov/dataset/Household-Types-and-Populations-Seattle-Neighborho/8nez-wmwv
    Explore at:
    xml, csv, tsv, json, application/rssxml, application/rdfxmlAvailable download formats
    Dataset updated
    Oct 22, 2024
    Area covered
    Seattle
    Description

    Table from the American Community Survey (ACS) 5-year series on household types and population related topics for City of Seattle Council Districts, Comprehensive Plan Growth Areas and Community Reporting Areas. Table includes B11003 Family Type by Presence and Age of Own Children under 18 Years, B11005 Households by Presence of People Under 18 Years by Household Type, B11007 Households by Presence of People 65 Years and Over by Household Type, B11001 Household Type (Including Living Alone), B11002 Household Type by Relatives and Nonrelatives for Population in Households, B25003 Tenure, B25008 Total Population in Occupied Housing Units by Tenure, B09019 Household Type (Including Living Alone) by Relationship. Data is pulled from block group tables for the most recent ACS vintage and summarized to the neighborhoods based on block group assignment.


    Table created for and used in the Neighborhood Profiles application.

    Vintages: 2023


    The United States Census Bureau's American Community Survey (ACS):
    This ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.

    Data Note from the Census:
    Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.

    Data Processing Notes:
    • Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb(year)a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2020 500k <a href='https://www.census.gov/geographies/mapping-files/time-series/geo/cartographic-boundary.html' style='color:rgb(0, 121, 193); text-decoration-line:none; font-family:inherit; margin:0px;

  10. m

    Data from: Street Centerlines

    • gis.data.mass.gov
    • hub.arcgis.com
    Updated May 11, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Cambridge (2020). Street Centerlines [Dataset]. https://gis.data.mass.gov/maps/CambridgeGIS::street-centerlines
    Explore at:
    Dataset updated
    May 11, 2020
    Dataset authored and provided by
    City of Cambridge
    License

    ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
    License information was derived automatically

    Area covered
    Description

    This line layer contains centerlines of all paved and unpaved roads, ramps, and bridges in the City of Cambridge. Each centerline segment contains attributes including street name, street type, address ranges, and one-way designations.Explore all our data on the Cambridge GIS Data Dictionary.Attributes NameType DetailsDescription ID type: Stringwidth: 40precision: 0 Unique identifier for each street segment

    ROADWAYS type: Stringwidth: 1precision: 0 Divided street designation

    ValueDescription TDivided FNot divided

    Street type: Stringwidth: 40precision: 0 Full street name with street type

    Street_Name type: Stringwidth: 30precision: 0 Street name only

    Street_Type type: Stringwidth: 10precision: 0 Street type

    Street_ID type: Doublewidth: 8precision: 38 Street ID number from master address database

    Alias type: Stringwidth: 50precision: 0 Alternate street name

    L_From type: Integerwidth: 4precision: 10 Left side address range 'from'

    L_To type: Integerwidth: 4precision: 10 Left side address range 'to'

    R_From type: Integerwidth: 4precision: 10 Right side address range 'from'

    R_To type: Integerwidth: 4precision: 10 Right side address range 'to

    FromNode type: Doublewidth: 8precision: 38 New 'from node' number

    ToNode type: Doublewidth: 8precision: 38 New 'to node' number

    Direction type: Stringwidth: 5precision: 0 One-way designation

    ValueDescription 0Two-way street segment 1One-way street in same direction as street segment -1One-way street in opposite direction of street segment

    Restriction type: Stringwidth: 1precision: 0 Truck restriction designation

    Label type: Stringwidth: 50precision: 0 Street name field for labels when mapping

    MajorRoad type: SmallIntegerwidth: 2precision: 5 Major road designation

    ZIP_Left type: Stringwidth: 8precision: 0 Left side zip code

    ZIP_Right type: Stringwidth: 8precision: 0 Right side zip code

    EditDate type: Stringwidth: 4precision: 0 Date of last edit

    Potential_L_From type: Integerwidth: 4precision: 10 Potential left side address range 'from'

    Potential_L_To type: Integerwidth: 4precision: 10 Potential left side address range 'to'

    Potential_R_From type: Integerwidth: 4precision: 10 Potential right side address range 'from'

    Potential_R_To type: Integerwidth: 4precision: 10 Potential right side address range 'to'

    Potentail_Range_Done type: SmallIntegerwidth: 2precision: 5 Potential range researched and populated

    created_date type: Datewidth: 8precision: 0

    last_edited_date type: Datewidth: 8precision: 0

  11. GIS Shapefile - GIS Shapefile, Computer Assisted Mass Appraisal (CAMA)...

    • search.dataone.org
    • portal.edirepository.org
    Updated Apr 11, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cary Institute Of Ecosystem Studies; Jarlath O'Neil-Dunne; Morgan Grove (2019). GIS Shapefile - GIS Shapefile, Computer Assisted Mass Appraisal (CAMA) Database, MD Property View 2004, Baltmore County [Dataset]. https://search.dataone.org/view/https%3A%2F%2Fpasta.lternet.edu%2Fpackage%2Fmetadata%2Feml%2Fknb-lter-bes%2F366%2F610
    Explore at:
    Dataset updated
    Apr 11, 2019
    Dataset provided by
    Long Term Ecological Research Networkhttp://www.lternet.edu/
    Authors
    Cary Institute Of Ecosystem Studies; Jarlath O'Neil-Dunne; Morgan Grove
    Time period covered
    Jan 1, 2004 - Jan 1, 2005
    Area covered
    Description

    CAMA_2004_BACO File Geodatabase Feature Class Thumbnail Not Available Tags Socio-economic resources, Information, Social Institutions, Hierarchy, Territory, BES, Parcel, Property, Property View, CAMA, Database, Structure, Appraisal Summary Detailed structural information for parcels. Description The CAMA (Computer Assisted Mass Appraisal) Database is created on a yearly basis using data obtained from the State Department of Assessments and Taxation (SDAT). Each yearly download contains additional residential housing characteristics as available for parcels included in the CAMA Database and the CAMA supplementary databases for each jurisdiction.. Documentation for CAMA, including thorough definitions for all attributes is enclosed. Complete Property View documentation can be found at http://www.mdp.state.md.us/data/index.htm under the "Technical Background" tab. It should be noted that the CAMA Database consists of points and not parcel boundaries. For those areas where parcel polygon data exists the CAMA Database can be joined using the ACCTID or a concatenation of the BLOCK and LOT fields, whichever is appropriate. (Spaces may have to be excluded when concatenating the BLOCK and LOT fields). A cursory review of the 2004 version of the CAMA Database indicates that it has more accurate data when compared with the 2003 version, particularly with respect to dwelling types. However, for a given record it is not uncommon for numerous fields to be missing attributes. Based on previous version of the CAMA Database it is also not unlikely that some of the information is inaccurate. This layer was edited to remove points that did not have a valid location because they failed to geocode. There were 3999 such points. A listing of the deleted points is in the table with the suffix "DeletedRecords." Credits Maryland Department of Planning Use limitations BES use only. Extent West -76.897802 East -76.335219 North 39.726520 South 39.192836 Scale Range There is no scale range for this item.

  12. e

    Habitat mapping

    • data.europa.eu
    wms
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Habitat mapping [Dataset]. https://data.europa.eu/data/datasets/3856d4c6-a7b4-4283-9764-c0f0be5b5be2
    Explore at:
    wmsAvailable download formats
    Description

    GIS theme (divided into surface and point theme) with spatial objects from the Nature Database associated with the programme of activities of the same name, Mapping of habitats. This group of activity types in the Nature Database concerning the mapping of habitats for a number of species, which is the basis for the designation of bird protection and habitat areas. A survey is based solely on a number of parameters that say something about the quality of the area as a habitat. A registered area cannot therefore be used as an indication of whether a species has been found on the site in question or not. For each GIS object, the following attributes are displayed from each entry in the Nature Database: - Activity: The type of activity (entry form) to which the registration belongs. - Responsible institution: the authority or consulting firm that is the data controller. - Place name: Name or code used by the responsible institution for the specific location. - Field date: Date when the registration was made in the field. - ActID: Unique identification number of the activity in the Nature Database. AktID is included in the URL for displaying the complete registration form for each registration. - LINK: Link to display the complete registration form for each registration.

  13. n

    MedOBIS (EUROBIS)

    • cmr.earthdata.nasa.gov
    Updated Apr 20, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2017). MedOBIS (EUROBIS) [Dataset]. https://cmr.earthdata.nasa.gov/search/concepts/C1214586056-SCIOPS.html
    Explore at:
    Dataset updated
    Apr 20, 2017
    Time period covered
    Jan 1, 1937 - Dec 31, 2000
    Area covered
    Description

    An attempt to collect, format, analyse and disseminate surveyed marine biological data deriving from the Eastern Mediterranean and Black Sea region is currently under development at the Hellenic Center for Marine Research (HCMR, Greece). The effort has been supported by the MedOBIS project (Mediterranean Ocean Biogeographic Information System) and has been carried out in cooperation with the Aristotelian University of Thessaloniki (Greece), the National Institute of Oceanography (Israel) and the Institute of Biology of the Southern Seas (Ukraine).

        The aim is to develop a taxon-based biogeography database and online data server with a link to survey and provide satellite environmental data. Currently, the primary features of the MedOBIS application are its offline GIS data formatting capabilities and its online Java and JavaScript enabling data server with taxon-based search, mapping and data downloading capabilities. In its completion, the MedOBIS online marine biological data system (http://www.iobis.org/OBISWEB/ObisDynPage1.jsp?content=meta/42.html) will be a single source of biological and environmental data (raw and analysed) as well as an online GIS tool for access of historical and current data by marine researchers. It will function as the Eastern Mediterranean and Black Sea node of EurOBIS (the European node of the International OBIS initiative, part of the Census of Marine Life).
    
        INTRODUCTION
    
        The international and interdisciplinary nature of the biological degradation issue as well as the technological advances of the Internet capabilities allowed the development of a considerable number of interrelated online databases. The free dissemination of valuable historical and current biological, environmental and genetic information has contributed to the establishment of an interdisciplinary platform targeted towards information integration at regional and also at global scales and to the development of information-based management schemes about our common interest.
    
        The spatial component of these data has led to the integration of the information by means of the Geographic Information System (GIS) technology. The latter is widely used as the natural framework for spatial data handling (Wright & Bartlett 1999, Valavanis 2002). GIS serves as the basic technological infrastructure for several online marine biodiversity databases available on the Internet today. Developments like OBIS (Ocean Biogeographic Information System, "http://www.iobis.org/"), OBIS-SEAMAP (Spatial Ecological Analysis of Megavertebrate Populations, "http://seamap.env.duke.edu/") and FIGIS (FAO Fisheries Global Information System, http://www.fao.org/fishery/figis) facilitate the study of anthropogenic impacts on threatened species, enhance our ability to test biogeographic and biodiversity models, support modelling efforts to predict distribution changes in response to environmental change and develop a strong potential for the public outreach component. In addition, such online database systems provide a broader view of marine biodiversity problems and allow the development of management practices that are based on synthetic analysis of interdisciplinary data (Schalk 1998, Decker & O'Dor 2002, Tsontos & Kiefer 2002).
    
        Towards this end, a development of a new online marine biological information system is presented here in its initial phase. MedOBIS (Mediterranean Ocean Biogeographic Information System) intends to assemble, formulate and disseminate marine biological data for the Eastern Mediterranean and Black Sea regions focusing on the assurance and longevity of historical surveyed data, the assembly of current and new information and the dissemination of raw and integrated biological and environmental data and future products through the Internet.
    
        MedOBIS DESCRIPTION
    
        MedOBIS current development consists of four main phases (Fig. 1). The data assembly phase is based on the free contribution of biological data from various national and international scientific surveys in the region. The data formatting phase is based on a GIS (ESRI, 1994), under which the geographic location of data stations is used to convert station data and their attributes to GIS shapefiles. The data analysis phase is based on data integration through GIS and spatial analyses (e.g. species distribution maps, species-environment relations, etc). Finally, the dissemination phase is based on ALOV Map, a free portable Java application for publication of vector and raster maps to the Internet and interactive viewing on web browsers. It supports navigation and search capabilities and allows working with multiple layers, thematic maps, hyperlinked features and attributed data.
    
        During the on-going data assembly phase, a total number of 776 stations with surveyed benthic biological data was employed. These data include mainly benthic species abundance (for nearly 3000 benthic organisms), benthic substrate types and several environmental parameters. Currently, 100 stations have been assembled for the Ionian Sea, 570 stations for the Aegean Sea and 106 stations for the Black Sea. The temporal resolution of these data extends for the period 1937-2000 while most data cover the period 1986-1996. Additionally, monthly satellite images of sea surface temperature (SST) and chlorophyll (Chl-a) were assembled for the period 1998-2003. Satellite data were obtained from the Advanced Very High Resolution Radiometer (AVHRR SST) and the Sea-viewing Wide Field-of-view Sensor (SeaWiFS Chl-a). 
    
        During the data formatting phase, all assembled surveyed stations were converted to a GIS shapefile (Fig. 2). This GIS information layer includes the geographic coordinates of the stations as well as stations' identification number. Station data attributes were organised in an MS Access Database while satellite data were embedded in a GIS database as GIS regular grids. The MedOBIS data analysis phase is still at the initial stage. Several off line analytical published efforts (e.g. Arvanitidis et al. 2002, Valavanis et al. 2004a,b,c) will be included in the MedOBIS development, which mainly focus on species distribution maps, mapping of productive oceanic processes and species-environment interactions. 
    
        The MedOBIS dissemination phase ("http://www.medobis.org/") is based on ALOV Map ("http://www.alov.org/"), a joint project of ALOV Software and the Archaeological Computing Laboratory, University of Sydney, Australia. ALOV Map is a Java-based application for publication of GIS data on the Internet and interactive viewing on web browsers. ALOV Map is designed to display geographical information stored in shapefiles or in any SQL database or even in an XML (Extensible Markup Language) document serving as a database. MedOBIS uses ALOV Map's full capabilities and runs in a client-server mode (Fig. 3). ALOV Map is connected to an MS Access database via a servlet container. This architecture was needed to connect the biological data with the spatial data and facilitate search options, such as, which species are found at which stations. Additionally, a JavaScript code is invoked, which searches the data, pops up a window with the results and then shows the relevant stations on the map.
    
        To provide a taxon-based search capability to the MedOBIS development, the sampling data as well as the relevant spatial data are stored in the database, so taxonomic data can be linked with the geographical data by SQL (Structured Query Language) queries. To reference each species to its location on the map, the database queries are stored and added to the applet as individual layers. A search function written in JavaScript searches the attribute data of that layer, displays the results in a separate window and marks the matching stations on the map (Fig. 4). Finally, selecting several stations by drawing a zooming rectangle on the map provides a list with predefined themes from which the user may select more information (Fig. 5). 
    
        CURRENT LIMITATIONS AND FUTURE PLANS
    
        A disadvantage of embedding information from the database as a layer is the relatively long download time due to the current MedOBIS-ALOV Map client-server architecture. An appropriate solution would be a direct search on the server side, which will allow partial data downloading to the client side. This work will be embedded in the MedOBIS application in the future (client-side architecture), when the size of assembled data becomes relatively 'heavy' for the current client-server architecture. This is an on-going process, since the MedOBIS initiative has been endorsed by the "Excellence of the Institute of Marine Biology of Crete (IMBC) in Marine Biodiversity", a Hellenic National Project that has been evaluated and approved by European experts. As more data will be assembled in time-series databases, an additional future work will include the development of MedOBIS data analysis phase, which is planned to include GIS modelling/mapping of species-environment interactions.
    
        Size reference: 2953 species; 776 stations
    
        [Source: The information provided in the summary was extracted from the MarBEF Data System at "http://www.marbef.org/data/eurobisproviders.php"]
    
  14. d

    Spatiotemporal historical datasets on micro-level for geocoded individuals...

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hedefalk, Finn; Patrick Svensson; Lars Harrie (2023). Spatiotemporal historical datasets on micro-level for geocoded individuals in five Swedish parishes, 1813-1914 [Dataset]. http://doi.org/10.7910/DVN/Z0AHAL
    Explore at:
    Dataset updated
    Nov 21, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Hedefalk, Finn; Patrick Svensson; Lars Harrie
    Time period covered
    Jan 1, 1800 - Jan 1, 1914
    Description

    The datasets presented here enable historical longitudinal studies of micro-level geographic factors in a rural setting. These types of datasets are new, as historical demography studies have generally failed to properly include the micro-level geographic factors. Our datasets describe the geography over five Swedish rural parishes and a geocoded population (at the property unit level) for this area for the time period 1813-1914. The population is a subset of the Scanian Economic Demographic Database (SEDD). The geographic information includes the following feature types: property units, wetlands, buildings, roads and railroads. The property units and wetlands are stored in object-lifeline time representations (information about creation, changes and ends of objects are recorded in time), whereas the other feature types are stored as snapshots in time. Thus, the datasets present one of the first opportunities to study historical spatio-temporal patterns at the micro-level.

  15. Statewide Crop Mapping

    • data.cnra.ca.gov
    • data.ca.gov
    • +3more
    data, gdb, html +3
    Updated Mar 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Water Resources (2025). Statewide Crop Mapping [Dataset]. https://data.cnra.ca.gov/dataset/statewide-crop-mapping
    Explore at:
    rest service, zip(140021333), shp(126828193), zip(159870566), gdb(86886429), shp(126548912), shp(107610538), gdb(86655350), gdb(85891531), zip(144060723), data, html, zip(169400976), zip(189880202), zip(98690638), zip(179113742), zip(94630663), zip(88308707), gdb(76631083)Available download formats
    Dataset updated
    Mar 3, 2025
    Dataset authored and provided by
    California Department of Water Resourceshttp://www.water.ca.gov/
    Description

    NOTICE TO PROVISIONAL 2023 LAND USE DATA USERS: Please note that on December 6, 2024 the Department of Water Resources (DWR) published the Provisional 2023 Statewide Crop Mapping dataset. The link for the shapefile format of the data mistakenly linked to the wrong dataset. The link was updated with the appropriate data on January 27, 2025. If you downloaded the Provisional 2023 Statewide Crop Mapping dataset in shapefile format between December 6, 2024 and January 27, we encourage you to redownload the data. The Map Service and Geodatabase formats were correct as posted on December 06, 2024.

    Thank you for your interest in DWR land use datasets.

    The California Department of Water Resources (DWR) has been collecting land use data throughout the state and using it to develop agricultural water use estimates for statewide and regional planning purposes, including water use projections, water use efficiency evaluations, groundwater model developments, climate change mitigation and adaptations, and water transfers. These data are essential for regional analysis and decision making, which has become increasingly important as DWR and other state agencies seek to address resource management issues, regulatory compliances, environmental impacts, ecosystem services, urban and economic development, and other issues. Increased availability of digital satellite imagery, aerial photography, and new analytical tools make remote sensing-based land use surveys possible at a field scale that is comparable to that of DWR’s historical on the ground field surveys. Current technologies allow accurate large-scale crop and land use identifications to be performed at desired time increments and make possible more frequent and comprehensive statewide land use information. Responding to this need, DWR sought expertise and support for identifying crop types and other land uses and quantifying crop acreages statewide using remotely sensed imagery and associated analytical techniques. Currently, Statewide Crop Maps are available for the Water Years 2014, 2016, 2018- 2022 and PROVISIONALLY for 2023.

    Historic County Land Use Surveys spanning 1986 - 2015 may also be accessed using the CADWR Land Use Data Viewer: https://gis.water.ca.gov/app/CADWRLandUseViewer.

    For Regional Land Use Surveys follow: https://data.cnra.ca.gov/dataset/region-land-use-surveys.

    For County Land Use Surveys follow: https://data.cnra.ca.gov/dataset/county-land-use-surveys.

    For a collection of ArcGIS Web Applications that provide information on the DWR Land Use Program and our data products in various formats, visit the DWR Land Use Gallery: https://storymaps.arcgis.com/collections/dd14ceff7d754e85ab9c7ec84fb8790a.

    Recommended citation for DWR land use data: California Department of Water Resources. (Water Year for the data). Statewide Crop Mapping—California Natural Resources Agency Open Data. Retrieved “Month Day, YEAR,” from https://data.cnra.ca.gov/dataset/statewide-crop-mapping.

  16. a

    Data from: Bedrock Geology of Rhode Island

    • esri-boston-office.hub.arcgis.com
    Updated Jan 1, 1994
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Environmental Data Center (1994). Bedrock Geology of Rhode Island [Dataset]. https://esri-boston-office.hub.arcgis.com/maps/3b8b3d061d1a4e33947a759a2532f147
    Explore at:
    Dataset updated
    Jan 1, 1994
    Dataset authored and provided by
    Environmental Data Center
    Area covered
    Description

    Much new geologic data has been accumulated since A. Quinn published the Rhode Island Geologic Map in 1971. This dataset incorporates recent data. It is presented in digital format at a scale of 1:100,000. The 1994 published Geologic Map of Rhode Island was made from the digital data contained here. The compiled digital database provides users with complete GIS capabilities. The coding of the topology is designed to permit easy use and manipulation of geologic information in the database by the user.

  17. BOEM BSEE Marine Cadastre Layers National Scale - OCS Oil & Gas Pipelines

    • koordinates.com
    csv, dwg, geodatabase +6
    Updated Nov 16, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    US Bureau of Ocean Energy Management (BOEM) (2016). BOEM BSEE Marine Cadastre Layers National Scale - OCS Oil & Gas Pipelines [Dataset]. https://koordinates.com/layer/15435-boem-bsee-marine-cadastre-layers-national-scale-ocs-oil-gas-pipelines/
    Explore at:
    dwg, kml, mapinfo tab, geopackage / sqlite, mapinfo mif, geodatabase, shapefile, csv, pdfAvailable download formats
    Dataset updated
    Nov 16, 2016
    Dataset provided by
    Bureau of Ocean Energy Managementhttp://www.boem.gov/
    Federal government of the United Stateshttp://www.usa.gov/
    Authors
    US Bureau of Ocean Energy Management (BOEM)
    Area covered
    Description

    This dataset is a compilation of available oil and gas pipeline data and is maintained by BSEE. Pipelines are used to transport and monitor oil and/or gas from wells within the outer continental shelf (OCS) to resource collection locations. Currently, pipelines managed by BSEE are found in Gulf of Mexico and southern California waters.

    © MarineCadastre.gov This layer is a component of BOEMRE Layers.

    This Map Service contains many of the primary data types created by both the Bureau of Ocean Energy Management (BOEM) and the Bureau of Safety and Environmental Enforcement (BSEE) within the Department of Interior (DOI) for the purpose of managing offshore federal real estate leases for oil, gas, minerals, renewable energy, sand and gravel. These data layers are being made available as REST mapping services for the purpose of web viewing and map overlay viewing in GIS systems. Due to re-projection issues which occur when converting multiple UTM zone data to a single national or regional projected space, and line type changes that occur when converting from UTM to geographic projections, these data layers should not be used for official or legal purposes. Only the original data found within BOEM/BSEE’s official internal database, federal register notices or official paper or pdf map products may be considered as the official information or mapping products used by BOEM or BSEE. A variety of data layers are represented within this REST service are described further below. These and other cadastre information the BOEM and BSEE produces are generated in accordance with 30 Code of Federal Regulations (CFR) 256.8 to support Federal land ownership and mineral resource management.

    For more information – Contact: Branch Chief, Mapping and Boundary Branch, BOEM, 381 Elden Street, Herndon, VA 20170. Telephone (703) 787-1312; Email: mapping.boundary.branch@boem.gov

    The REST services for National Level Data can be found here: http://gis.boemre.gov/arcgis/rest/services/BOEM_BSEE/MMC_Layers/MapServer

    REST services for regional level data can be found by clicking on the region of interest from the following URL: http://gis.boemre.gov/arcgis/rest/services/BOEM_BSEE

    Individual Regional Data or in depth metadata for download can be obtained in ESRI Shape file format by clicking on the region of interest from the following URL: http://www.boem.gov/Oil-and-Gas-Energy-Program/Mapping-and-Data/Index.aspx

    Currently the following layers are available from this REST location:

    OCS Drilling Platforms -Locations of structures at and beneath the water surface used for the purpose of exploration and resource extraction. Only platforms in federal Outer Continental Shelf (OCS) waters are included. A database of platforms and rigs is maintained by BSEE.

    OCS Oil and Natural Gas Wells -Existing wells drilled for exploration or extraction of oil and/or gas products. Additional information includes the lease number, well name, spud date, the well class, surface area/block number, and statistics on well status summary. Only wells found in federal Outer Continental Shelf (OCS) waters are included. Wells information is updated daily. Additional files are available on well completions and well tests. A database of wells is maintained by BSEE.

    OCS Oil & Gas Pipelines -This dataset is a compilation of available oil and gas pipeline data and is maintained by BSEE. Pipelines are used to transport and monitor oil and/or gas from wells within the outer continental shelf (OCS) to resource collection locations. Currently, pipelines managed by BSEE are found in Gulf of Mexico and southern California waters.

    Unofficial State Lateral Boundaries - The approximate location of the boundary between two states seaward of the coastline and terminating at the Submerged Lands Act Boundary. Because most State boundary locations have not been officially described beyond the coast, are disputed between states or in some cases the coastal land boundary description is not available, these lines serve as an approximation that was used to determine a starting point for creation of BOEM’s OCS Administrative Boundaries. GIS files are not available for this layer due to its unofficial status.

    BOEM OCS Administrative Boundaries - Outer Continental Shelf (OCS) Administrative Boundaries Extending from the Submerged Lands Act Boundary seaward to the Limit of the United States OCS (The U.S. 200 nautical mile Limit, or other marine boundary)For additional details please see the January 3, 2006 Federal Register Notice.

    BOEM Limit of OCSLA ‘8(g)’ zone - The Outer Continental Shelf Lands Act '8(g) Zone' lies between the Submerged Lands Act (SLA) boundary line and a line projected 3 nautical miles seaward of the SLA boundary line. Within this zone, oil and gas revenues are shared with the coastal state(s). The official version of the ‘8(g)’ Boundaries can only be found on the BOEM Official Protraction Diagrams (OPDs) or Supplemental Official Protraction described below.

    Submerged Lands Act Boundary - The SLA boundary defines the seaward limit of a state's submerged lands and the landward boundary of federally managed OCS lands. The official version of the SLA Boundaries can only be found on the BOEM Official Protraction Diagrams (OPDs) or Supplemental Official Protraction Diagrams described below.

    Atlantic Wildlife Survey Tracklines(2005-2012) - These data depict tracklines of wildlife surveys conducted in the Mid-Atlantic region since 2005. The tracklines are comprised of aerial and shipboard surveys. These data are intended to be used as a working compendium to inform the diverse number of groups that conduct surveys in the Mid-Atlantic region.The tracklines as depicted in this dataset have been derived from source tracklines and transects. The tracklines have been simplified (modified from their original form) due to the large size of the Mid-Atlantic region and the limited ability to map all areas simultaneously.The tracklines are to be used as a general reference and should not be considered definitive or authoritative. This data can be downloaded from http://www.boem.gov/uploadedFiles/BOEM/Renewable_Energy_Program/Mapping_and_Data/ATL_WILDLIFE_SURVEYS.zip

    BOEM OCS Protraction Diagrams & Leasing Maps - This data set contains a national scale spatial footprint of the outer boundaries of the Bureau of Ocean Energy Management’s (BOEM’s) Official Protraction Diagrams (OPDs) and Leasing Maps (LMs). It is updated as needed. OPDs and LMs are mapping products produced and used by the BOEM to delimit areas available for potential offshore mineral leases, determine the State/Federal offshore boundaries, and determine the limits of revenue sharing and other boundaries to be considered for leasing offshore waters. This dataset shows only the outline of the maps that are available from BOEM.Only the most recently published paper or pdf versions of the OPDs or LMs should be used for official or legal purposes. The pdf maps can be found by going to the following link and selecting the appropriate region of interest. http://www.boem.gov/Oil-and-Gas-Energy-Program/Mapping-and-Data/Index.aspx Both OPDs and LMs are further subdivided into individual Outer Continental Shelf(OCS) blocks which are available as a separate layer. Some OCS blocks that also contain other boundary information are known as Supplemental Official Block Diagrams (SOBDs.) Further information on the historic development of OPD's can be found in OCS Report MMS 99-0006: Boundary Development on the Outer Continental Shelf: http://www.boemre.gov/itd/pubs/1999/99-0006.PDF Also see the metadata for each of the individual GIS data layers available for download. The Official Protraction Diagrams (OPDs) and Supplemental Official Block Diagrams (SOBDs), serve as the legal definition for BOEM offshore boundary coordinates and area descriptions.

    BOEM OCS Lease Blocks - Outer Continental Shelf (OCS) lease blocks serve as the legal definition for BOEM offshore boundary coordinates used to define small geographic areas within an Official Protraction Diagram (OPD) for leasing and administrative purposes. OCS blocks relate back to individual Official Protraction Diagrams and are not uniquely numbered. Only the most recently published paper or pdf

  18. m

    Geospatial Datasets for Assessing Vulnerability of Bangladesh to Climate...

    • data.mendeley.com
    • narcis.nl
    Updated Jan 12, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MD GOLAM AZAM (2021). Geospatial Datasets for Assessing Vulnerability of Bangladesh to Climate Change and Extremes [Dataset]. http://doi.org/10.17632/cv6cyfgmcd.3
    Explore at:
    Dataset updated
    Jan 12, 2021
    Authors
    MD GOLAM AZAM
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Bangladesh
    Description

    The present dataset provides necessary indicators of the climate change vulnerability of Bangladesh in raster form. Geospatial databases have been created in Geographic Information System (GIS) environment mainly from two types of raw data; socioeconomic data from the Bangladesh Bureau of Statistics (BBS) and biophysical maps from various government and non-government agencies. Socioeconomic data have been transformed into a raster database through the Inverse Distance Weighted (IDW) interpolation method in GIS. On the other hand, biophysical maps have been directly recreated as GIS feature classes and eventually, the biophysical raster database has been produced. 30 socioeconomic indicators have been considered, which has been obtained from the Bangladesh Bureau of Statistics. All socioeconomic data were incorporated into the GIS database to generate maps. However, the units of some variables have been adopted directly from BBS, some have been normalized based on population, and some have been adopted as percentages. 12 biophysical system indicators have also been classified based on the collected information from different sources and literature. Biophysical maps are mainly classified in relative scales according to the intensity. These geospatial datasets have been analyzed to assess the spatial vulnerability of Bangladesh to climate change and extremes. The analysis has resulted in a climate change vulnerability map of Bangladesh with recognized hotspots, significant vulnerability factors, and adaptation measures to reduce the level of vulnerability.

  19. GIS Shapefile - GIS Shapefile, Assessments and Taxation Database, MD...

    • search.dataone.org
    • portal.edirepository.org
    Updated Apr 5, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cary Institute Of Ecosystem Studies; Jarlath O'Neil-Dunne; Morgan Grove (2019). GIS Shapefile - GIS Shapefile, Assessments and Taxation Database, MD Property View 2004, Baltimore County [Dataset]. https://search.dataone.org/view/https%3A%2F%2Fpasta.lternet.edu%2Fpackage%2Fmetadata%2Feml%2Fknb-lter-bes%2F352%2F610
    Explore at:
    Dataset updated
    Apr 5, 2019
    Dataset provided by
    Long Term Ecological Research Networkhttp://www.lternet.edu/
    Authors
    Cary Institute Of Ecosystem Studies; Jarlath O'Neil-Dunne; Morgan Grove
    Time period covered
    Jan 1, 2004 - Jan 1, 2005
    Area covered
    Description

    AT_2004_BACO File Geodatabase Feature Class Thumbnail Not Available Tags Socio-economic resources, Information, Social Institutions, Hierarchy, Territory, BES, Parcel, Property, Property View, A&T, Database, Assessors, Taxation Summary Serves as a basis for performing various analyses based on parcel data. Description Assessments & Taxation (A&T) Database from MD Property View 2004 for Baltimore County. The A&T Database contains parcel data from the State Department of Assessments and Taxation; it incorporates parcel ownership and address information, parcel valuation information and basic information about the land and structure(s) associated with a given parcel. These data form the basis for the 2004 Database, which also includes selected Computer Assisted Mass Appraisal (CAMA) characteristics, text descriptions to make parcel code field data more readily accessible and logical True/False fields which identify parcels with certain characteristics. Documentation for A&T, including a thorough definition for all attributes is enclosed. Complete Property View documentation can be found at http://www.mdp.state.md.us/data/index.htm under the "Technical Background" tab. It should be noted that the A&T Database consists of points and not parcel boundaries. For those areas where parcel polygon data exists the A&T Database can be joined using the ACCTID or a concatenation of the BLOCK and LOT fields, whichever is appropriate. (Spaces may have to be excluded when concatenating the BLOCK and LOT fields). A cursory review of the 2004 version of the A&T Database indicates that it has more accurate data when compared with the 2003 version, particularly with respect to dwelling types. However, for a given record it is not uncommon for numerous fields to be missing attributes. Based on previous version of the A&T Database it is also not unlikely that some of the information is inaccurate. This layer was edited to remove points that did not have a valid location because they failed to geocode. There were 5870 such points. A listing of the deleted points is in the table with the suffix "DeletedRecords." Credits Maryland Department of Planning Use limitations BES use only. Extent West -76.897802 East -76.335214 North 39.726520 South 39.192552 Scale Range There is no scale range for this item.

  20. GIS Shapefile - GIS Shapefile, Computer Assisted Mass Appraisal (CAMA)...

    • search.dataone.org
    • portal.edirepository.org
    Updated Apr 5, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cary Institute Of Ecosystem Studies; Jarlath O'Neil-Dunne; Morgan Grove (2019). GIS Shapefile - GIS Shapefile, Computer Assisted Mass Appraisal (CAMA) Database, MD Property View 2004, Harford County [Dataset]. https://search.dataone.org/view/https%3A%2F%2Fpasta.lternet.edu%2Fpackage%2Fmetadata%2Feml%2Fknb-lter-bes%2F368%2F620
    Explore at:
    Dataset updated
    Apr 5, 2019
    Dataset provided by
    Long Term Ecological Research Networkhttp://www.lternet.edu/
    Authors
    Cary Institute Of Ecosystem Studies; Jarlath O'Neil-Dunne; Morgan Grove
    Time period covered
    Jan 1, 2004 - Jan 1, 2005
    Area covered
    Description

    CAMA_2004_HARF File Geodatabase Feature Class Thumbnail Not Available Tags Socio-economic resources, Information, Social Institutions, Hierarchy, Territory, BES, Parcel, Property, Property View, CAMA, Database, Structure, Appraisal Summary Detailed structural information for parcels. Description The CAMA (Computer Assisted Mass Appraisal) Database is created on a yearly basis using data obtained from the State Department of Assessments and Taxation (SDAT). Each yearly download contains additional residential housing characteristics as available for parcels included in the CAMA Database and the CAMA supplementary databases for each jurisdiction.. Documentation for CAMA, including thorough definitions for all attributes is enclosed. Complete Property View documentation can be found at http://www.mdp.state.md.us/data/index.htm under the "Technical Background" tab. It should be noted that the CAMA Database consists of points and not parcel boundaries. For those areas where parcel polygon data exists the CAMA Database can be joined using the ACCTID or a concatenation of the BLOCK and LOT fields, whichever is appropriate. (Spaces may have to be excluded when concatenating the BLOCK and LOT fields). A cursory review of the 2004 version of the CAMA Database indicates that it has more accurate data when compared with the 2003 version, particularly with respect to dwelling types. However, for a given record it is not uncommon for numerous fields to be missing attributes. Based on previous version of the CAMA Database it is also not unlikely that some of the information is inaccurate. This layer was edited to remove points that did not have a valid location because they failed to geocode. There were 194 such points. A listing of the deleted points is in the table with the suffix "DeletedRecords." Credits Maryland Department of Planning Use limitations BES use only. Extent West -76.568860 East -76.081594 North 39.726323 South 39.392952 Scale Range There is no scale range for this item.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Spatial Analysis Lab; Jarlath O'Neal-Dunne; Morgan Grove (2020). Geodatabase for the Baltimore Ecosystem Study Spatial Data [Dataset]. https://search.dataone.org/view/https%3A%2F%2Fpasta.lternet.edu%2Fpackage%2Fmetadata%2Feml%2Fknb-lter-bes%2F3120%2F150
Organization logo

Geodatabase for the Baltimore Ecosystem Study Spatial Data

Explore at:
Dataset updated
Apr 1, 2020
Dataset provided by
Long Term Ecological Research Networkhttp://www.lternet.edu/
Authors
Spatial Analysis Lab; Jarlath O'Neal-Dunne; Morgan Grove
Time period covered
Jan 1, 1999 - Jun 1, 2014
Area covered
Description

The establishment of a BES Multi-User Geodatabase (BES-MUG) allows for the storage, management, and distribution of geospatial data associated with the Baltimore Ecosystem Study. At present, BES data is distributed over the internet via the BES website. While having geospatial data available for download is a vast improvement over having the data housed at individual research institutions, it still suffers from some limitations. BES-MUG overcomes these limitations; improving the quality of the geospatial data available to BES researches, thereby leading to more informed decision-making. BES-MUG builds on Environmental Systems Research Institute's (ESRI) ArcGIS and ArcSDE technology. ESRI was selected because its geospatial software offers robust capabilities. ArcGIS is implemented agency-wide within the USDA and is the predominant geospatial software package used by collaborating institutions. Commercially available enterprise database packages (DB2, Oracle, SQL) provide an efficient means to store, manage, and share large datasets. However, standard database capabilities are limited with respect to geographic datasets because they lack the ability to deal with complex spatial relationships. By using ESRI's ArcSDE (Spatial Database Engine) in conjunction with database software, geospatial data can be handled much more effectively through the implementation of the Geodatabase model. Through ArcSDE and the Geodatabase model the database's capabilities are expanded, allowing for multiuser editing, intelligent feature types, and the establishment of rules and relationships. ArcSDE also allows users to connect to the database using ArcGIS software without being burdened by the intricacies of the database itself. For an example of how BES-MUG will help improve the quality and timeless of BES geospatial data consider a census block group layer that is in need of updating. Rather than the researcher downloading the dataset, editing it, and resubmitting to through ORS, access rules will allow the authorized user to edit the dataset over the network. Established rules will ensure that the attribute and topological integrity is maintained, so that key fields are not left blank and that the block group boundaries stay within tract boundaries. Metadata will automatically be updated showing who edited the dataset and when they did in the event any questions arise. Currently, a functioning prototype Multi-User Database has been developed for BES at the University of Vermont Spatial Analysis Lab, using Arc SDE and IBM's DB2 Enterprise Database as a back end architecture. This database, which is currently only accessible to those on the UVM campus network, will shortly be migrated to a Linux server where it will be accessible for database connections over the Internet. Passwords can then be handed out to all interested researchers on the project, who will be able to make a database connection through the Geographic Information Systems software interface on their desktop computer. This database will include a very large number of thematic layers. Those layers are currently divided into biophysical, socio-economic and imagery categories. Biophysical includes data on topography, soils, forest cover, habitat areas, hydrology and toxics. Socio-economics includes political and administrative boundaries, transportation and infrastructure networks, property data, census data, household survey data, parks, protected areas, land use/land cover, zoning, public health and historic land use change. Imagery includes a variety of aerial and satellite imagery. See the readme: http://96.56.36.108/geodatabase_SAL/readme.txt See the file listing: http://96.56.36.108/geodatabase_SAL/diroutput.txt

Search
Clear search
Close search
Google apps
Main menu