60 datasets found
  1. i

    INSPIRE Priority Data Set (Compliant) - Species range

    • inspire-geoportal.lt
    • inspire-geoportal.ec.europa.eu
    • +1more
    Updated Aug 26, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Construction Sector Development Agency (2020). INSPIRE Priority Data Set (Compliant) - Species range [Dataset]. https://www.inspire-geoportal.lt/geonetwork/srv/api/records/bfcc7a93-dd66-453b-b7f5-9fc4a868e69f
    Explore at:
    ogc:wms-1.3.0-http-get-map, www:link-1.0-http--link, www:download-1.0-http--downloadAvailable download formats
    Dataset updated
    Aug 26, 2020
    Dataset provided by
    Construction Sector Development Agency
    State Service for Protected Areas under the Ministry of Environment
    License

    http://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/noLimitationshttp://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/noLimitations

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    INSPIRE Priority Data Set (Compliant) - Species range

  2. s

    Native and alien species ranges

    • dataportal.senckenberg.de
    zip
    Updated Mar 10, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Seebens (2021). Native and alien species ranges [Dataset]. http://doi.org/10.12761/sgn.2016.01.024
    Explore at:
    zipAvailable download formats
    Dataset updated
    Mar 10, 2021
    Dataset provided by
    Senckenberg Biodiversitätsinformatik
    Authors
    Seebens
    Time period covered
    1500 - 2014
    Description

    The file contains native and alien ranges of 1380 species worldwide obtained from the Global Invasive Species Database (http://www.iucngisd.org/gisd/) and CABI Invasive Species Compendium (http://www.cabi.org/isc/). The data are used to produce the results shown in Seebens, Essl & Blasius: The intermediate distance hypothesis of biological invasions, which is accepted for publication in Ecology Letters. The file is in csv format containing six columns: Species name, life form, native range, alien range, distance (great circle distance between the centroids of the respective regions) and species weights. More details about the data and the analysis can be found in Seebens et al.

  3. d

    CoRE (Contractions or Range Expansions) Database: Global Database of Species...

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Jul 20, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). CoRE (Contractions or Range Expansions) Database: Global Database of Species Range Shifts from 1802-2019 [Dataset]. https://catalog.data.gov/dataset/core-contractions-or-range-expansions-database-global-database-of-species-range-shift-1802
    Explore at:
    Dataset updated
    Jul 20, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    The CoRE (Contractions or Range Expansions) database contains a library of published literature and data on species range shifts in response to climate change. Through a systematic review of publications returned from searches on Google Scholar, Web of Science, and Scopus, we selected primary research articles that documented or attempted to document species-level distribution shifts in animal or plant species in response to recent anthropogenic climate change. We extracted data in four broad categories: (i) basic study information (study duration, location, data quality and methodological factors); (ii) basic species information (scientific names and taxonomic groups); (iii) information on the observed range shifts (range dimension, occupancy or abundance shift, and range edge); and (iv) the description of the shift (range shift direction, magnitude of the shift, and whether it supported our hypotheses). We also took note of climate drivers mentioned and details on species vulnerability and adaptive capacity.

  4. u

    Data from: Range size, local abundance and effect inform species...

    • agdatacommons.nal.usda.gov
    • catalog.data.gov
    txt
    Updated Feb 13, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Erin K. Espeland; Zachary A. Sylvain (2024). Data from: Range size, local abundance and effect inform species descriptions at scales relevant for local conservation practice [Dataset]. http://doi.org/10.15482/USDA.ADC/1503833
    Explore at:
    txtAvailable download formats
    Dataset updated
    Feb 13, 2024
    Dataset provided by
    Ag Data Commons
    Authors
    Erin K. Espeland; Zachary A. Sylvain
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    Understanding species abundances and distributions, especially at local to landscape scales, is critical for land managers and conservationists to prioritize management decisions and informs the effort and expense that may be required. The metrics of range size and local abundance reflect aspects of the biology and ecology of a given species, and together with its per capita (or per unit area) effects on other members of the community comprise a well-accepted theoretical paradigm describing invasive species. Although these metrics are readily calculated from vegetation monitoring data, they have not generally (and effect in particular) been applied to native species. We describe how metrics defining invasions may be more broadly applied to both native and invasive species in vegetation management, supporting their relevance to local scales of species conservation and management. We then use a sample monitoring dataset to compare range size, local abundance and effect as well as summary calculations of landscape penetration (range size × local abundance) and impact (landscape penetration × effect) for native and invasive species in the mixed-grass plant community of western North Dakota, USA. This paper uses these summary statistics to quantify the impact for 13 of 56 commonly encountered species, with statistical support for effects of 6 of the 13 species. Our results agree with knowledge of invasion severity and natural history of native species in the region. We contend that when managers are using invasion metrics in monitoring, extending them to common native species is biologically and ecologically informative, with little additional investment. Resources in this dataset:Resource Title: Supporting Data (xlsx). File Name: Espeland-Sylvain-BiodivConserv-2019-raw-data.xlsxResource Description: Occurrence data per quadrangle, site, and transect. Species Codes and habitat identifiers are defined in a separate sheet.Resource Title: Data Dictionary. File Name: Espeland-Sylvain-BiodivConserv-2019-data-dictionary.csvResource Description: Details Species and Habitat codes for abundance data collected.Resource Title: Supporting Data (csv). File Name: Espeland-Sylvain-BiodivConserv-2019-raw-data.csvResource Description: Occurrence data per quadrangle, site, and transect.Resource Title: Supplementary Table S1.1. File Name: 10531_2019_1701_MOESM1_ESM.docxResource Description: Scientific name, common name, life history group, family, status (N= native, I= introduced), percent of plots present, and average cover when present of 56 vascular plant species recorded in 1196 undisturbed plots in federally-managed grasslands of western North Dakota. Life history groups: C3 = cool season perennial grass, C4 = warm season perennial grass, SE = sedge, SH = shrub, PF= perennial forb, BF = biennial forb, APF = annual, biennial, or perennial forb.

  5. Common Raven Range - CWHR B354 [ds1583]

    • data.cnra.ca.gov
    • data.ca.gov
    • +2more
    Updated Feb 15, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Fish and Wildlife (2020). Common Raven Range - CWHR B354 [ds1583] [Dataset]. https://data.cnra.ca.gov/dataset/common-raven-range-cwhr-b354-ds1583
    Explore at:
    csv, geojson, zip, kml, html, arcgis geoservices rest apiAvailable download formats
    Dataset updated
    Feb 15, 2020
    Dataset authored and provided by
    California Department of Fish and Wildlifehttps://wildlife.ca.gov/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Vector datasets of CWHR range maps are one component of California Wildlife Habitat Relationships (CWHR), a comprehensive information system and predictive model for Californias wildlife. The CWHR System was developed to support habitat conservation and management, land use planning, impact assessment, education, and research involving terrestrial vertebrates in California. CWHR contains information on life history, management status, geographic distribution, and habitat relationships for wildlife species known to occur regularly in California. Range maps represent the maximum, current geographic extent of each species within California. They were originally delineated at a scale of 1:5,000,000 by species-level experts and have gradually been revised at a scale of 1:1,000,000. For more information about CWHR, visit the CWHR webpage (https://www.wildlife.ca.gov/Data/CWHR). The webpage provides links to download CWHR data and user documents such as a look up table of available range maps including species code, species name, and range map revision history; a full set of CWHR GIS data; .pdf files of each range map or species life history accounts; and a User Guide.

  6. Data from: Species Ranges

    • data-idfggis.opendata.arcgis.com
    • hub.arcgis.com
    Updated Dec 18, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Idaho Department of Fish and Game - AGOL (2023). Species Ranges [Dataset]. https://data-idfggis.opendata.arcgis.com/maps/491b87d6f1374881aa6db08d6d9c8eb8
    Explore at:
    Dataset updated
    Dec 18, 2023
    Dataset provided by
    Idaho Department of Fish and Gamehttps://idfg.idaho.gov/
    Authors
    Idaho Department of Fish and Game - AGOL
    Area covered
    Description

    This dataset is a compilation of species ranges gathered from various sources. Many of these ranges were created by IDFG using methodologies similar to those employed in the NW ReGAP or the HUC5 observation effort. Species ranges provide a general representation of where a species might occur during its lifetime. It's important to distinguish these from species 'distribution models,' which pinpoint potential habitat within the range.These ranges were constructed using the best available data and can estimate potential occurrences. To use this data effectively, users can apply a definition query in ArcGIS to visualize specific species ranges. For the most straightforward download, viewing, or filtering of the dataset, it's recommended to bring the API REST service into ArcGIS Pro. Keep in mind that due to the dataset's size, the Open Data Site download might experience timeouts, particularly with a large number of ranges. If you opt to use the Open Data Site, follow the directions by clicking on this LINK.Species range models were compiled initially for use within an online map service to depict species range for species within the 'Idaho Species Catalog',https://idfg.idaho.gov/speciesIdaho species range models compiled and/or created by the Idaho Department of Fish and Game, Idaho Fish and Wildlife Information System. Data pulled 18 December 2023, edits are ongoing as needed.

  7. California Kangaroo Rat Range - CWHR M105 [ds1892]

    • data.cnra.ca.gov
    • data.ca.gov
    • +4more
    Updated Mar 12, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Fish and Wildlife (2020). California Kangaroo Rat Range - CWHR M105 [ds1892] [Dataset]. https://data.cnra.ca.gov/dataset/california-kangaroo-rat-range-cwhr-m105-ds1892
    Explore at:
    arcgis geoservices rest api, htmlAvailable download formats
    Dataset updated
    Mar 12, 2020
    Dataset authored and provided by
    California Department of Fish and Wildlifehttps://wildlife.ca.gov/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Vector datasets of CWHR range maps are one component of California Wildlife Habitat Relationships (CWHR), a comprehensive information system and predictive model for Californias wildlife. The CWHR System was developed to support habitat conservation and management, land use planning, impact assessment, education, and research involving terrestrial vertebrates in California. CWHR contains information on life history, management status, geographic distribution, and habitat relationships for wildlife species known to occur regularly in California. Range maps represent the maximum, current geographic extent of each species within California. They were originally delineated at a scale of 1:5,000,000 by species-level experts and have gradually been revised at a scale of 1:1,000,000. For more information about CWHR, visit the CWHR webpage (https://www.wildlife.ca.gov/Data/CWHR). The webpage provides links to download CWHR data and user documents such as a look up table of available range maps including species code, species name, and range map revision history; a full set of CWHR GIS data; .pdf files of each range map or species life history accounts; and a User Guide.

  8. i

    INSPIRE Priority Data Set (Compliant) - Habitat types range

    • inspire-geoportal.lt
    • inspire-geoportal.ec.europa.eu
    Updated Aug 26, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State Service for Protected Areas under the Ministry of Environment (2020). INSPIRE Priority Data Set (Compliant) - Habitat types range [Dataset]. https://www.inspire-geoportal.lt/geonetwork/srv/api/records/a5b67981-b740-4c17-8b44-fde0bd515029
    Explore at:
    www:link-1.0-http--link, ogc:wms-1.3.0-http-get-map, www:download-1.0-http--downloadAvailable download formats
    Dataset updated
    Aug 26, 2020
    Dataset provided by
    Construction Sector Development Agency
    State Service for Protected Areas under the Ministry of Environment
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    http://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/noLimitationshttp://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/noLimitations

    Area covered
    Description

    INSPIRE Priority Data Set (Compliant) - Habitat types range

  9. Z

    Film Circulation dataset

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jul 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Loist, Skadi (2024). Film Circulation dataset [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_7887671
    Explore at:
    Dataset updated
    Jul 12, 2024
    Dataset provided by
    Samoilova, Evgenia (Zhenya)
    Loist, Skadi
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Complete dataset of “Film Circulation on the International Film Festival Network and the Impact on Global Film Culture”

    A peer-reviewed data paper for this dataset is in review to be published in NECSUS_European Journal of Media Studies - an open access journal aiming at enhancing data transparency and reusability, and will be available from https://necsus-ejms.org/ and https://mediarep.org

    Please cite this when using the dataset.

    Detailed description of the dataset:

    1 Film Dataset: Festival Programs

    The Film Dataset consists a data scheme image file, a codebook and two dataset tables in csv format.

    The codebook (csv file “1_codebook_film-dataset_festival-program”) offers a detailed description of all variables within the Film Dataset. Along with the definition of variables it lists explanations for the units of measurement, data sources, coding and information on missing data.

    The csv file “1_film-dataset_festival-program_long” comprises a dataset of all films and the festivals, festival sections, and the year of the festival edition that they were sampled from. The dataset is structured in the long format, i.e. the same film can appear in several rows when it appeared in more than one sample festival. However, films are identifiable via their unique ID.

    The csv file “1_film-dataset_festival-program_wide” consists of the dataset listing only unique films (n=9,348). The dataset is in the wide format, i.e. each row corresponds to a unique film, identifiable via its unique ID. For easy analysis, and since the overlap is only six percent, in this dataset the variable sample festival (fest) corresponds to the first sample festival where the film appeared. For instance, if a film was first shown at Berlinale (in February) and then at Frameline (in June of the same year), the sample festival will list “Berlinale”. This file includes information on unique and IMDb IDs, the film title, production year, length, categorization in length, production countries, regional attribution, director names, genre attribution, the festival, festival section and festival edition the film was sampled from, and information whether there is festival run information available through the IMDb data.

    2 Survey Dataset

    The Survey Dataset consists of a data scheme image file, a codebook and two dataset tables in csv format.

    The codebook “2_codebook_survey-dataset” includes coding information for both survey datasets. It lists the definition of the variables or survey questions (corresponding to Samoilova/Loist 2019), units of measurement, data source, variable type, range and coding, and information on missing data.

    The csv file “2_survey-dataset_long-festivals_shared-consent” consists of a subset (n=161) of the original survey dataset (n=454), where respondents provided festival run data for films (n=206) and gave consent to share their data for research purposes. This dataset consists of the festival data in a long format, so that each row corresponds to the festival appearance of a film.

    The csv file “2_survey-dataset_wide-no-festivals_shared-consent” consists of a subset (n=372) of the original dataset (n=454) of survey responses corresponding to sample films. It includes data only for those films for which respondents provided consent to share their data for research purposes. This dataset is shown in wide format of the survey data, i.e. information for each response corresponding to a film is listed in one row. This includes data on film IDs, film title, survey questions regarding completeness and availability of provided information, information on number of festival screenings, screening fees, budgets, marketing costs, market screenings, and distribution. As the file name suggests, no data on festival screenings is included in the wide format dataset.

    3 IMDb & Scripts

    The IMDb dataset consists of a data scheme image file, one codebook and eight datasets, all in csv format. It also includes the R scripts that we used for scraping and matching.

    The codebook “3_codebook_imdb-dataset” includes information for all IMDb datasets. This includes ID information and their data source, coding and value ranges, and information on missing data.

    The csv file “3_imdb-dataset_aka-titles_long” contains film title data in different languages scraped from IMDb in a long format, i.e. each row corresponds to a title in a given language.

    The csv file “3_imdb-dataset_awards_long” contains film award data in a long format, i.e. each row corresponds to an award of a given film.

    The csv file “3_imdb-dataset_companies_long” contains data on production and distribution companies of films. The dataset is in a long format, so that each row corresponds to a particular company of a particular film.

    The csv file “3_imdb-dataset_crew_long” contains data on names and roles of crew members in a long format, i.e. each row corresponds to each crew member. The file also contains binary gender assigned to directors based on their first names using the GenderizeR application.

    The csv file “3_imdb-dataset_festival-runs_long” contains festival run data scraped from IMDb in a long format, i.e. each row corresponds to the festival appearance of a given film. The dataset does not include each film screening, but the first screening of a film at a festival within a given year. The data includes festival runs up to 2019.

    The csv file “3_imdb-dataset_general-info_wide” contains general information about films such as genre as defined by IMDb, languages in which a film was shown, ratings, and budget. The dataset is in wide format, so that each row corresponds to a unique film.

    The csv file “3_imdb-dataset_release-info_long” contains data about non-festival release (e.g., theatrical, digital, tv, dvd/blueray). The dataset is in a long format, so that each row corresponds to a particular release of a particular film.

    The csv file “3_imdb-dataset_websites_long” contains data on available websites (official websites, miscellaneous, photos, video clips). The dataset is in a long format, so that each row corresponds to a website of a particular film.

    The dataset includes 8 text files containing the script for webscraping. They were written using the R-3.6.3 version for Windows.

    The R script “r_1_unite_data” demonstrates the structure of the dataset, that we use in the following steps to identify, scrape, and match the film data.

    The R script “r_2_scrape_matches” reads in the dataset with the film characteristics described in the “r_1_unite_data” and uses various R packages to create a search URL for each film from the core dataset on the IMDb website. The script attempts to match each film from the core dataset to IMDb records by first conducting an advanced search based on the movie title and year, and then potentially using an alternative title and a basic search if no matches are found in the advanced search. The script scrapes the title, release year, directors, running time, genre, and IMDb film URL from the first page of the suggested records from the IMDb website. The script then defines a loop that matches (including matching scores) each film in the core dataset with suggested films on the IMDb search page. Matching was done using data on directors, production year (+/- one year), and title, a fuzzy matching approach with two methods: “cosine” and “osa.” where the cosine similarity is used to match titles with a high degree of similarity, and the OSA algorithm is used to match titles that may have typos or minor variations.

    The script “r_3_matching” creates a dataset with the matches for a manual check. Each pair of films (original film from the core dataset and the suggested match from the IMDb website was categorized in the following five categories: a) 100% match: perfect match on title, year, and director; b) likely good match; c) maybe match; d) unlikely match; and e) no match). The script also checks for possible doubles in the dataset and identifies them for a manual check.

    The script “r_4_scraping_functions” creates a function for scraping the data from the identified matches (based on the scripts described above and manually checked). These functions are used for scraping the data in the next script.

    The script “r_5a_extracting_info_sample” uses the function defined in the “r_4_scraping_functions”, in order to scrape the IMDb data for the identified matches. This script does that for the first 100 films, to check, if everything works. Scraping for the entire dataset took a few hours. Therefore, a test with a subsample of 100 films is advisable.

    The script “r_5b_extracting_info_all” extracts the data for the entire dataset of the identified matches.

    The script “r_5c_extracting_info_skipped” checks the films with missing data (where data was not scraped) and tried to extract data one more time to make sure that the errors were not caused by disruptions in the internet connection or other technical issues.

    The script “r_check_logs” is used for troubleshooting and tracking the progress of all of the R scripts used. It gives information on the amount of missing values and errors.

    4 Festival Library Dataset

    The Festival Library Dataset consists of a data scheme image file, one codebook and one dataset, all in csv format.

    The codebook (csv file “4_codebook_festival-library_dataset”) offers a detailed description of all variables within the Library Dataset. It lists the definition of variables, such as location and festival name, and festival categories, units of measurement, data sources and coding and missing data.

    The csv file “4_festival-library_dataset_imdb-and-survey” contains data on all unique festivals collected from both IMDb and survey sources. This dataset appears in wide format, all information for each festival is listed in one row. This

  10. American Crow Predicted Habitat - CWHR B353 [ds2249]

    • catalog.data.gov
    • data.ca.gov
    • +3more
    Updated Nov 27, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Fish and Wildlife (2024). American Crow Predicted Habitat - CWHR B353 [ds2249] [Dataset]. https://catalog.data.gov/dataset/american-crow-predicted-habitat-cwhr-b353-ds2249-dd4cc
    Explore at:
    Dataset updated
    Nov 27, 2024
    Dataset provided by
    California Department of Fish and Wildlifehttps://wildlife.ca.gov/
    Description

    The datasets used in the creation of the predicted Habitat Suitability models includes the CWHR range maps of Californias regularly-occurring vertebrates which were digitized as GIS layers to support the predictions of the CWHR System software. These vector datasets of CWHR range maps are one component of California Wildlife Habitat Relationships (CWHR), a comprehensive information system and predictive model for Californias wildlife. The CWHR System was developed to support habitat conservation and management, land use planning, impact assessment, education, and research involving terrestrial vertebrates in California. CWHR contains information on life history, management status, geographic distribution, and habitat relationships for wildlife species known to occur regularly in California. Range maps represent the maximum, current geographic extent of each species within California. They were originally delineated at a scale of 1:5,000,000 by species-level experts and have gradually been revised at a scale of 1:1,000,000. For more information about CWHR, visit the CWHR webpage (https://www.wildlife.ca.gov/Data/CWHR). The webpage provides links to download CWHR data and user documents such as a look up table of available range maps including species code, species name, and range map revision history; a full set of CWHR GIS data; .pdf files of each range map or species life history accounts; and a User Guide.The models also used the CALFIRE-FRAP compiled "best available" land cover data known as Fveg. This compilation dataset was created as a single data layer, to support the various analyses required for the Forest and Rangeland Assessment, a legislatively mandated function. These data are being updated to support on-going analyses and to prepare for the next FRAP assessment in 2015. An accurate depiction of the spatial distribution of habitat types within California is required for a variety of legislatively-mandated government functions. The California Department of Forestry and Fire Protections CALFIRE Fire and Resource Assessment Program (FRAP), in cooperation with California Department of Fish and Wildlife VegCamp program and extensive use of USDA Forest Service Region 5 Remote Sensing Laboratory (RSL) data, has compiled the "best available" land cover data available for California into a single comprehensive statewide data set. The data span a period from approximately 1990 to 2014. Typically the most current, detailed and consistent data were collected for various regions of the state. Decision rules were developed that controlled which layers were given priority in areas of overlap. Cross-walks were used to compile the various sources into the common classification scheme, the California Wildlife Habitat Relationships (CWHR) system.CWHR range data was used together with the FVEG vegetation maps and CWHR habitat suitability ranks to create Predicted Habitat Suitability maps for species. The Predicted Habitat Suitability maps show the mean habitat suitability score for the species, as defined in CWHR. CWHR defines habitat suitability as NO SUITABILITY (0), LOW (0.33), MEDIUM (0.66), or HIGH (1) for reproduction, cover, and feeding for each species in each habitat stage (habitat type, size, and density combination). The mean is the average of the reproduction, cover, and feeding scores, and can be interpreted as LOW (less than 0.34), MEDIUM (0.34-0.66), and HIGH (greater than 0.66) suitability. Note that habitat suitability ranks were developed based on habitat patch sizes >40 acres in size, and are best interpreted for habitat patches >200 acres in size. The CWHR Predicted Habitat Suitability rasters are named according to the 4 digit alpha-numeric species CWHR ID code. The CWHR Species Lookup Table contains a record for each species including its CWHR ID, scientific name, common name, and range map revision history (available for download at https://www.wildlife.ca.gov/Data/CWHR).

  11. d

    Reptile Richness in the Range of the Sage-grouse, Derived From Species Range...

    • catalog.data.gov
    • data.usgs.gov
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Reptile Richness in the Range of the Sage-grouse, Derived From Species Range Maps [Dataset]. https://catalog.data.gov/dataset/reptile-richness-in-the-range-of-the-sage-grouse-derived-from-species-range-maps
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    These data depict reptile species richness within the range of the Greater Sage-grouse. Species boundaries were defined as the total extent of a species geographic limits. This raster largely used species range data from "U.S. Geological Survey - Gap Analysis Project Species Range Maps CONUS_2001", however in order for a more complete picture of species richness, additional sources were used for species missing from the Gap Analysis program.

  12. Ferruginous Hawk Range - CWHR B124 [ds1449]

    • data.cnra.ca.gov
    • data.amerigeoss.org
    • +1more
    Updated Feb 14, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Fish and Wildlife (2020). Ferruginous Hawk Range - CWHR B124 [ds1449] [Dataset]. https://data.cnra.ca.gov/dataset/ferruginous-hawk-range-cwhr-b124-ds1449
    Explore at:
    arcgis geoservices rest api, csv, zip, kml, geojson, htmlAvailable download formats
    Dataset updated
    Feb 14, 2020
    Dataset authored and provided by
    California Department of Fish and Wildlifehttps://wildlife.ca.gov/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Vector datasets of CWHR range maps are one component of California Wildlife Habitat Relationships (CWHR), a comprehensive information system and predictive model for Californias wildlife. The CWHR System was developed to support habitat conservation and management, land use planning, impact assessment, education, and research involving terrestrial vertebrates in California. CWHR contains information on life history, management status, geographic distribution, and habitat relationships for wildlife species known to occur regularly in California. Range maps represent the maximum, current geographic extent of each species within California. They were originally delineated at a scale of 1:5,000,000 by species-level experts and have gradually been revised at a scale of 1:1,000,000. For more information about CWHR, visit the CWHR webpage (https://www.wildlife.ca.gov/Data/CWHR). The webpage provides links to download CWHR data and user documents such as a look up table of available range maps including species code, species name, and range map revision history; a full set of CWHR GIS data; .pdf files of each range map or species life history accounts; and a User Guide.

  13. d

    CRB global species occurrences

    • catalog.data.gov
    • data.usgs.gov
    Updated Jul 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). CRB global species occurrences [Dataset]. https://catalog.data.gov/dataset/crb-global-species-occurrences
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    This dataset represents global occurrences for CRB and consists of a table of coordinates, associated mean annual temperatures and precipitation values, and occurrence type used to create bioclim habitat suitability models for CRB. These global occurrences are classified into 4 types: 1) all available global data (excluding Hawaii); 2) only occurrences within CRB's native range; 3) only occurrences in the species non-native range (excluding Hawaii); 4) only occurrences in the species insular non-native range (excluding Hawaii).

  14. California Condor Range - CWHR B109 [ds916]

    • data.ca.gov
    • data.cnra.ca.gov
    • +4more
    Updated Feb 27, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Fish and Wildlife (2020). California Condor Range - CWHR B109 [ds916] [Dataset]. https://data.ca.gov/dataset/california-condor-range-cwhr-b109-ds916
    Explore at:
    arcgis geoservices rest api, csv, zip, kml, geojson, htmlAvailable download formats
    Dataset updated
    Feb 27, 2020
    Dataset authored and provided by
    California Department of Fish and Wildlifehttps://wildlife.ca.gov/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    California
    Description

    Vector datasets of CWHR range maps are one component of California Wildlife Habitat Relationships (CWHR), a comprehensive information system and predictive model for Californias wildlife. The CWHR System was developed to support habitat conservation and management, land use planning, impact assessment, education, and research involving terrestrial vertebrates in California. CWHR contains information on life history, management status, geographic distribution, and habitat relationships for wildlife species known to occur regularly in California. Range maps represent the maximum, current geographic extent of each species within California. They were originally delineated at a scale of 1:5,000,000 by species-level experts and have gradually been revised at a scale of 1:1,000,000. For more information about CWHR, visit the CWHR webpage (https://www.wildlife.ca.gov/Data/CWHR). The webpage provides links to download CWHR data and user documents such as a look up table of available range maps including species code, species name, and range map revision history; a full set of CWHR GIS data; .pdf files of each range map or species life history accounts; and a User Guide.

  15. Customer Shopping Trends Dataset

    • kaggle.com
    Updated Oct 5, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sourav Banerjee (2023). Customer Shopping Trends Dataset [Dataset]. https://www.kaggle.com/datasets/iamsouravbanerjee/customer-shopping-trends-dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Oct 5, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Sourav Banerjee
    Description

    Context

    The Customer Shopping Preferences Dataset offers valuable insights into consumer behavior and purchasing patterns. Understanding customer preferences and trends is critical for businesses to tailor their products, marketing strategies, and overall customer experience. This dataset captures a wide range of customer attributes including age, gender, purchase history, preferred payment methods, frequency of purchases, and more. Analyzing this data can help businesses make informed decisions, optimize product offerings, and enhance customer satisfaction. The dataset stands as a valuable resource for businesses aiming to align their strategies with customer needs and preferences. It's important to note that this dataset is a Synthetic Dataset Created for Beginners to learn more about Data Analysis and Machine Learning.

    Content

    This dataset encompasses various features related to customer shopping preferences, gathering essential information for businesses seeking to enhance their understanding of their customer base. The features include customer age, gender, purchase amount, preferred payment methods, frequency of purchases, and feedback ratings. Additionally, data on the type of items purchased, shopping frequency, preferred shopping seasons, and interactions with promotional offers is included. With a collection of 3900 records, this dataset serves as a foundation for businesses looking to apply data-driven insights for better decision-making and customer-centric strategies.

    Dataset Glossary (Column-wise)

    • Customer ID - Unique identifier for each customer
    • Age - Age of the customer
    • Gender - Gender of the customer (Male/Female)
    • Item Purchased - The item purchased by the customer
    • Category - Category of the item purchased
    • Purchase Amount (USD) - The amount of the purchase in USD
    • Location - Location where the purchase was made
    • Size - Size of the purchased item
    • Color - Color of the purchased item
    • Season - Season during which the purchase was made
    • Review Rating - Rating given by the customer for the purchased item
    • Subscription Status - Indicates if the customer has a subscription (Yes/No)
    • Shipping Type - Type of shipping chosen by the customer
    • Discount Applied - Indicates if a discount was applied to the purchase (Yes/No)
    • Promo Code Used - Indicates if a promo code was used for the purchase (Yes/No)
    • Previous Purchases - The total count of transactions concluded by the customer at the store, excluding the ongoing transaction
    • Payment Method - Customer's most preferred payment method
    • Frequency of Purchases - Frequency at which the customer makes purchases (e.g., Weekly, Fortnightly, Monthly)

    Structure of the Dataset

    https://i.imgur.com/6UEqejq.png" alt="">

    Acknowledgement

    This dataset is a synthetic creation generated using ChatGPT to simulate a realistic customer shopping experience. Its purpose is to provide a platform for beginners and data enthusiasts, allowing them to create, enjoy, practice, and learn from a dataset that mirrors real-world customer shopping behavior. The aim is to foster learning and experimentation in a simulated environment, encouraging a deeper understanding of data analysis and interpretation in the context of consumer preferences and retail scenarios.

    Cover Photo by: Freepik

    Thumbnail by: Clothing icons created by Flat Icons - Flaticon

  16. d

    NZ Roads: Address Range Road Type - Dataset - data.govt.nz - discover and...

    • catalogue.data.govt.nz
    Updated Apr 13, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2016). NZ Roads: Address Range Road Type - Dataset - data.govt.nz - discover and use data [Dataset]. https://catalogue.data.govt.nz/dataset/nz-roads-address-range-road-type
    Explore at:
    Dataset updated
    Apr 13, 2016
    Area covered
    New Zealand
    Description

    Please read: This is the look-up table for Address Range Road Type and is part of the set of NZ Roads tables. The Address Range Road Type look-up table is used by the following tables; NZ Roads: Address Range Road. The NZ Roads dataset includes eight data tables and eleven lookup tables. The dataset has been sourced from LINZ’s NZ Roads database, a database for the management of national roads, including those managed for addressing purposes. This set of normalised tables replaces the Landonline: Road Centre Line layer and the Landonline: Road Name and Landonline: Road Name Association tables currently published on LDS. These centrelines are required to indicate the presence of an authoritative road name. Named centrelines are not intended to represent the exact location of a road formation. Named centrelines do not indicate the presence of legal access. For a simplified version of the data contained within these tables see NZ Roads (Addressing), which aggregates geometries based on road name, and NZ Roads Subsections (Addressing), which holds the individual geometries. Please refer to the NZ Roads Data Dictionary for detailed metadata and information about this layer.

  17. Fused Image dataset for convolutional neural Network-based crack Detection...

    • zenodo.org
    • explore.openaire.eu
    • +1more
    zip
    Updated Apr 20, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shanglian Zhou; Shanglian Zhou; Carlos Canchila; Carlos Canchila; Wei Song; Wei Song (2023). Fused Image dataset for convolutional neural Network-based crack Detection (FIND) [Dataset]. http://doi.org/10.5281/zenodo.6383044
    Explore at:
    zipAvailable download formats
    Dataset updated
    Apr 20, 2023
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Shanglian Zhou; Shanglian Zhou; Carlos Canchila; Carlos Canchila; Wei Song; Wei Song
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The “Fused Image dataset for convolutional neural Network-based crack Detection” (FIND) is a large-scale image dataset with pixel-level ground truth crack data for deep learning-based crack segmentation analysis. It features four types of image data including raw intensity image, raw range (i.e., elevation) image, filtered range image, and fused raw image. The FIND dataset consists of 2500 image patches (dimension: 256x256 pixels) and their ground truth crack maps for each of the four data types.

    The images contained in this dataset were collected from multiple bridge decks and roadways under real-world conditions. A laser scanning device was adopted for data acquisition such that the captured raw intensity and raw range images have pixel-to-pixel location correspondence (i.e., spatial co-registration feature). The filtered range data were generated by applying frequency domain filtering to eliminate image disturbances (e.g., surface variations, and grooved patterns) from the raw range data [1]. The fused image data were obtained by combining the raw range and raw intensity data to achieve cross-domain feature correlation [2,3]. Please refer to [4] for a comprehensive benchmark study performed using the FIND dataset to investigate the impact from different types of image data on deep convolutional neural network (DCNN) performance.

    If you share or use this dataset, please cite [4] and [5] in any relevant documentation.

    In addition, an image dataset for crack classification has also been published at [6].

    References:

    [1] Shanglian Zhou, & Wei Song. (2020). Robust Image-Based Surface Crack Detection Using Range Data. Journal of Computing in Civil Engineering, 34(2), 04019054. https://doi.org/10.1061/(asce)cp.1943-5487.0000873

    [2] Shanglian Zhou, & Wei Song. (2021). Crack segmentation through deep convolutional neural networks and heterogeneous image fusion. Automation in Construction, 125. https://doi.org/10.1016/j.autcon.2021.103605

    [3] Shanglian Zhou, & Wei Song. (2020). Deep learning–based roadway crack classification with heterogeneous image data fusion. Structural Health Monitoring, 20(3), 1274-1293. https://doi.org/10.1177/1475921720948434

    [4] Shanglian Zhou, Carlos Canchila, & Wei Song. (2023). Deep learning-based crack segmentation for civil infrastructure: data types, architectures, and benchmarked performance. Automation in Construction, 146. https://doi.org/10.1016/j.autcon.2022.104678

    [5] (This dataset) Shanglian Zhou, Carlos Canchila, & Wei Song. (2022). Fused Image dataset for convolutional neural Network-based crack Detection (FIND) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.6383044

    [6] Wei Song, & Shanglian Zhou. (2020). Laser-scanned roadway range image dataset (LRRD). Laser-scanned Range Image Dataset from Asphalt and Concrete Roadways for DCNN-based Crack Classification, DesignSafe-CI. https://doi.org/10.17603/ds2-bzv3-nc78

  18. Aqua-Maps : Predicted range maps for Aquatic species

    • americansamoa-data.nocache.eightyoptions.com.au
    • pacificdata.org
    • +14more
    pdf
    Updated Apr 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Secretariat of the Pacific Regional Environment Programme (2025). Aqua-Maps : Predicted range maps for Aquatic species [Dataset]. https://americansamoa-data.nocache.eightyoptions.com.au/dataset/aqua-maps-predicted-range-maps-aquatic-species
    Explore at:
    pdf(575203)Available download formats
    Dataset updated
    Apr 2, 2025
    Dataset provided by
    Pacific Regional Environment Programmehttps://www.sprep.org/
    License

    Public Domain Mark 1.0https://creativecommons.org/publicdomain/mark/1.0/
    License information was derived automatically

    Area covered
    POLYGON ((-412.734375 -78.93096240775, -13.359375 -78.93096240775)), -412.734375 84.392215363519, -13.359375 84.392215363519, Worldwide
    Description

    Dataset with direct internet link and resources pertaining to AquaMaps. It is an online tool for generating model based, large scale predictions of natural occurrences of species. For marine species, the model uses estimates of environmental preferences with respect to depth, water temperature, salinity, primary productivity, and association with sea ice or coastal areas.

  19. Wirestock's AI/ML Image Training Data, 4.5M Files with Metadata

    • datarade.ai
    .csv
    Updated Jul 18, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    WIRESTOCK (2023). Wirestock's AI/ML Image Training Data, 4.5M Files with Metadata [Dataset]. https://datarade.ai/data-products/wirestock-s-ai-ml-image-training-data-4-5m-files-with-metadata-wirestock
    Explore at:
    .csvAvailable download formats
    Dataset updated
    Jul 18, 2023
    Dataset provided by
    Wirestock
    Authors
    WIRESTOCK
    Area covered
    Peru, Sudan, Chile, New Caledonia, Jersey, Swaziland, Georgia, Belarus, Estonia, Pakistan
    Description

    Wirestock's AI/ML Image Training Data, 4.5M Files with Metadata: This data product is a unique offering in the realm of AI/ML training data. What sets it apart is the sheer volume and diversity of the dataset, which includes 4.5 million files spanning across 20 different categories. These categories range from Animals/Wildlife and The Arts to Technology and Transportation, providing a rich and varied dataset for AI/ML applications.

    The data is sourced from Wirestock's platform, where creators upload and sell their photos, videos, and AI art online. This means that the data is not only vast but also constantly updated, ensuring a fresh and relevant dataset for your AI/ML needs. The data is collected in a GDPR-compliant manner, ensuring the privacy and rights of the creators are respected.

    The primary use-cases for this data product are numerous. It is ideal for training machine learning models for image recognition, improving computer vision algorithms, and enhancing AI applications in various industries such as retail, healthcare, and transportation. The diversity of the dataset also means it can be used for more niche applications, such as training AI to recognize specific objects or scenes.

    This data product fits into Wirestock's broader data offering as a key resource for AI/ML training. Wirestock is a platform for creators to sell their work, and this dataset is a collection of that work. It represents the breadth and depth of content available on Wirestock, making it a valuable resource for any company working with AI/ML.

    The core benefits of this dataset are its volume, diversity, and quality. With 4.5 million files, it provides a vast resource for AI training. The diversity of the dataset, spanning 20 categories, ensures a wide range of images for training purposes. The quality of the images is also high, as they are sourced from creators selling their work on Wirestock.

    In terms of how the data is collected, creators upload their work to Wirestock, where it is then sold on various marketplaces. This means the data is sourced directly from creators, ensuring a diverse and unique dataset. The data includes both the images themselves and associated metadata, providing additional context for each image.

    The different image categories included in this dataset are Animals/Wildlife, The Arts, Backgrounds/Textures, Beauty/Fashion, Buildings/Landmarks, Business/Finance, Celebrities, Education, Emotions, Food Drinks, Holidays, Industrial, Interiors, Nature Parks/Outdoor, People, Religion, Science, Signs/Symbols, Sports/Recreation, Technology, Transportation, Vintage, Healthcare/Medical, Objects, and Miscellaneous. This wide range of categories ensures a diverse dataset that can cater to a variety of AI/ML applications.

  20. n

    Range map dataset for terrestrial vertebrates across Taiwan

    • narcis.nl
    • data.mendeley.com
    Updated Nov 19, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Chang, A (via Mendeley Data) (2021). Range map dataset for terrestrial vertebrates across Taiwan [Dataset]. http://doi.org/10.17632/4g2xfsbmnr.1
    Explore at:
    Dataset updated
    Nov 19, 2021
    Dataset provided by
    Data Archiving and Networked Services (DANS)
    Authors
    Chang, A (via Mendeley Data)
    Area covered
    Taiwan
    Description

    This dataset provides up-to-date, high-precision species distribution maps for 379 terrestrial vertebrates in Taiwan. We used species distribution modeling as the base and then aggregated multiple open datasets describing species occurrence and environmental factors as data sources. Thereafter, we estimated the primary broad-scale and high spatial resolution species range maps using the MaxEnt modeling algorithm, and then consulted experts on each taxa to refine these maps.There are three files in this dataset:model_metadata.csv - metadata of models and information of species, including species taxonomic information, and model arguments.range_maps.shp - species range maps in the shapefile format, each species has its own polygon.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Construction Sector Development Agency (2020). INSPIRE Priority Data Set (Compliant) - Species range [Dataset]. https://www.inspire-geoportal.lt/geonetwork/srv/api/records/bfcc7a93-dd66-453b-b7f5-9fc4a868e69f

INSPIRE Priority Data Set (Compliant) - Species range

Explore at:
ogc:wms-1.3.0-http-get-map, www:link-1.0-http--link, www:download-1.0-http--downloadAvailable download formats
Dataset updated
Aug 26, 2020
Dataset provided by
Construction Sector Development Agency
State Service for Protected Areas under the Ministry of Environment
License

http://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/noLimitationshttp://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/noLimitations

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Area covered
Description

INSPIRE Priority Data Set (Compliant) - Species range

Search
Clear search
Close search
Google apps
Main menu