Important Note: This item is in mature support as of July 2021. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version.This map is designed to be used as a general reference map for informational and educational purposes as well as a basemap by GIS professionals and other users for creating web maps and web mapping applications.The map was developed by National Geographic and Esri and reflects the distinctive National Geographic cartographic style in a multi-scale reference map of the world. The map was authored using data from a variety of leading data providers, including Garmin, HERE, UNEP-WCMC, NASA, ESA, USGS, and others.This reference map includes administrative boundaries, cities, protected areas, highways, roads, railways, water features, buildings and landmarks, overlaid on shaded relief and land cover imagery for added context. The map includes global coverage down to ~1:144k scale and more detailed coverage for North America down to ~1:9k scale.Map Note: Although small-scale boundaries, place names and map notes were provided and edited by National Geographic, boundaries and names shown do not necessarily reflect the map policy of the National Geographic Society, particularly at larger scales where content has not been thoroughly reviewed or edited by National Geographic.Data Notes: The credits below include a list of data providers used to develop the map. Below are a few additional notes:Reference Data: National Geographic, Esri, Garmin, HERE, iPC, NRCAN, METILand Cover Imagery: NASA Blue Marble, ESA GlobCover 2009 (Copyright notice: © ESA 2010 and UCLouvain)Protected Areas: IUCN and UNEP-WCMC (2011), The World Database on Protected Areas (WDPA) Annual Release. Cambridge, UK: UNEP-WCMC. Available at:www.protectedplanet.net.Ocean Data: GEBCO, NOAA
PLEASE NOTE: This data product is not available in Shapefile format or KML at https://naturalengland-defra.opendata.arcgis.com/datasets/Defra::living-england-habitat-map-phase-4/about, as the data exceeds the limits of these formats. Please select an alternative download format.This data product is also available for download in multiple formats via the Defra Data Services Platform at https://environment.data.gov.uk/explore/4aa716ce-f6af-454c-8ba2-833ebc1bde96?download=true.The Living England project, led by Natural England, is a multi-year programme delivering a satellite-derived national habitat layer in support of the Environmental Land Management (ELM) System and the Natural Capital and Ecosystem Assessment (NCEA) Pilot. The project uses a machine learning approach to image classification, developed under the Defra Living Maps project (SD1705 – Kilcoyne et al., 2017). The method first clusters homogeneous areas of habitat into segments, then assigns each segment to a defined list of habitat classes using Random Forest (a machine learning algorithm). The habitat probability map displays modelled likely broad habitat classifications, trained on field surveys and earth observation data from 2021 as well as historic data layers. This map is an output from Phase IV of the Living England project, with future work in Phase V (2022-23) intending to standardise the methodology and Phase VI (2023-24) to implement the agreed standardised methods.The Living England habitat probability map will provide high-accuracy, spatially consistent data for a range of Defra policy delivery needs (e.g. 25YEP indicators and Environment Bill target reporting Natural capital accounting, Nature Strategy, ELM) as well as external users. As a probability map, it allows the extrapolation of data to areas that we do not have data. These data will also support better local and national decision making, policy development and evaluation, especially in areas where other forms of evidence are unavailable. Process Description: A number of data layers are used to inform the model to provide a habitat probability map of England. The main sources layers are Sentinel-2 and Sentinel-1 satellite data from the ESA Copericus programme. Additional datasets were incorporated into the model (as detailed below) to aid the segmentation and classification of specific habitat classes. Datasets used:Agri-Environment Higher Level Stewardship (HLS) Monitoring, British Geological Survey Bedrock Mapping 1:50k, Coastal Dune Geomatics Mapping Ground Truthing, Crop Map of England (RPA), Dark Peak Bog State Survey, Desktop Validation and Manual Points, EA Integrated Height Model 10m, EA Saltmarsh Zonation and Extent, Field Unit NEFU, Living England Collector App NEFU/EES, Long Term Monitoring Network (LTMN), Lowland Heathland Survey, National Forest Inventory (NFI), National Grassland Survey, National Plant Monitoring Scheme, NEFU Surveys, Northumberland Border Mires, OS Vector Map District , Priority Habitats Inventory (PHI) B Button, European Space Agency (ESA) Sentinel-1 and Sentinel-2 , Space2 Eye Lens: Ainsdale NNR, Space2 Eye Lens: State of the Bog Bowland Survey, Space2 Eye Lens: State of the Bog Dark Peak Condition Survey, Space2 Eye Lens: State of the Bog (MMU) Mountain Hare Habitat Survey Dark Peak, Uplands Inventory, West Pennines Designation NVC Survey, Wetland Inventories, WorldClim - Global Climate DataFull metadata can be viewed on data.gov.uk.
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
This is a collection of simple maps in PDF format that are designed to be printed off and used in the classroom. The include maps of Great Britain that show the location of major rivers, cities and mountains as well as maps of continents and the World. There is very little information on the maps to allow teachers to download them and add their own content to fit with their lesson plans. Customise one print out then photocopy them for your lesson. data not available yet, holding data set (7th August). Other. This dataset was first accessioned in the EDINA ShareGeo Open repository on 2012-08-07 and migrated to Edinburgh DataShare on 2017-02-22.
[From The Landmap Project: Introduction, "http://www.landmap.ac.uk/background/intro.html"]
A joint project to provide orthorectified satellite image mosaics of Landsat,
SPOT and ERS radar data and a high resolution Digital Elevation Model for the
whole of the UK. These data will be in a form which can easily be merged with
other data, such as road networks, so that any user can quickly produce a
precise map of their area of interest.
Predominately aimed at the UK academic and educational sectors these data and
software are held online at the Manchester University super computer facility
where users can either process the data remotely or download it to their local
network.
Please follow the links to the left for more information about the project or
how to obtain data or access to the radar processing system at MIMAS. Please
also refer to the MIMAS spatial-side website,
"http://www.mimas.ac.uk/spatial/", for related remote sensing materials.
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
DescriptionThe Highway key is a label from OpenStreetMap which aims to map and document any kind of road, street or path. More information on the tag here. LimitationsBear in mind that OpenStreetMap (OSM) is a digital map database of the world built through crowdsourced volunteered geographic information (VGI). Therefore, there is no systematic quality check performed on the data, and the detail, precision and accuracy varies across space. AttributesOBJECTID: Assigned by WWF. Unique identifierhighway: Type of road facility (motorway, trunk, primary, secondary, tertiary)name: Name of the road facilitysource: Source of the Feature (Landsat, Bing, GPS, Yahoo)surface: Type of surface (paved, unpaved, asphalt, ground) oneway: Direction of flow in only one direction (N: No, Y: Yes).maxspeed: Maximum speed allowed (km/h)lanes: Number of traffic lanes for general purpose traffic, also for buses and other specific classes of vehicleservice: Other type of facilities in the road (alley, driveway, parking_aisle)source: Source of the feature (Landsat, Bing)
SafeGraph Places provides baseline information for every record in the SafeGraph product suite via the Places schema and polygon information when applicable via the Geometry schema. The current scope of a place is defined as any location humans can visit with the exception of single-family homes. This definition encompasses a diverse set of places ranging from restaurants, grocery stores, and malls; to parks, hospitals, museums, offices, and industrial parks. Premium sets of Places include apartment buildings, Parking Lots, and Point POIs (such as ATMs or transit stations).
SafeGraph Places is a point of interest (POI) data offering with varying coverage depending on the country. Note that address conventions and formatting vary across countries. SafeGraph has coalesced these fields into the Places schema.
SafeGraph provides clean and accurate geospatial datasets on 51M+ physical places/points of interest (POI) globally. Hundreds of industry leaders like Mapbox, Verizon, Clear Channel, and Esri already rely on SafeGraph POI data to unlock business insights and drive innovation. Easily ingest this data to power your map products today.
This global accessibility map enumerates land-based travel time to the nearest densely-populated area for all areas between 85 degrees north and 60 degrees south for a nominal year 2015. Densely-populated areas are defined as contiguous areas with 1,500 or more inhabitants per square kilometre or a majority of built-up land cover types coincident with a population centre of at least 50,000 inhabitants. This map was produced through a collaboration between MAP (University of Oxford), Google, the European Union Joint Research Centre (JRC), and the University of Twente, Netherlands.The underlying datasets used to produce the map include roads (comprising the first ever global-scale use of Open Street Map and Google roads datasets), railways, rivers, lakes, oceans, topographic conditions (slope and elevation), landcover types, and national borders. These datasets were each allocated a speed or speeds of travel in terms of time to cross each pixel of that type. The datasets were then combined to produce a "friction surface"; a map where every pixel is allocated a nominal overall speed of travel based on the types occurring within that pixel. Least-cost-path algorithms (running in Google Earth Engine and, for high-latitude areas, in R) were used in conjunction with this friction surface to calculate the time of travel from all locations to the nearest (in time) city. The cities dataset used is the high-density-cover product created by the Global Human Settlement Project. Each pixel in the resultant accessibility map thus represents the modelled shortest time from that location to a city. Authors: D.J. Weiss, A. Nelson, H.S. Gibson, W. Temperley, S. Peedell, A. Lieber, M. Hancher, E. Poyart, S. Belchior, N. Fullman, B. Mappin, U. Dalrymple, J. Rozier, T.C.D. Lucas, R.E. Howes, L.S. Tusting, S.Y. Kang, E. Cameron, D. Bisanzio, K.E. Battle, S. Bhatt, and P.W. Gething. A global map of travel time to cities to assess inequalities in accessibility in 2015. (2018). Nature. doi:10.1038/nature25181
Processing notes: Data were processed from numerous sources including OpenStreetMap, Google Maps, Land Cover mapping, and others, to generate a global friction surface of average land-based travel speed. This accessibility surface was then derived from that friction surface via a least-cost-path algorithm finding at each location the closest point from global databases of population centres and densely-populated areas. Please see the associated publication for full details of the processing.
Source: https://map.ox.ac.uk/research-project/accessibility_to_cities/
This data results from the NRSC's ongoing 1:25000 UK Aerial Photography Programme; a project designed to maintain an up to date aerial coverage of the United Kingdom, covering the complete area at least every 5 years.
The Orthoview product has been generated from vertical aerial photographs. The photographs have been orthorectified (to correct for distortion towards their edges) then mosaiced to provide a seamless dataset for the UK at a 0.5 metre resolution. This allows imagery for any area of interest to be generated without issues associated with scenes falling across multiple photographs.
In addition to its prime application in photogrammetric mapping (from updating and contouring existing maps to preparing large scale engineering plans), the data is used for environmental studies, general planning, land use and land capability, soils, pollution, forestry, mining and quarrying, housing and leisure development, agriculture, geology, water, transport and civil engineering, boundary disputes, public enquiries, etc.
The data is stored in digital form and can be supplied on either Exabyte, CD-ROM or CCT. Various hard copy forms can also be generated, including posters and photographic positives/negatives. Price lists and further information are available from the National Remote Sensing Centre (NRSC).
Note: All photography is flown to RICS Specification for Aerial Photography Issue III, see references.
Digital Map Market Size 2025-2029
The digital map market size is forecast to increase by USD 31.95 billion at a CAGR of 31.3% between 2024 and 2029.
The market is driven by the increasing adoption of intelligent Personal Digital Assistants (PDAs) and the availability of location-based services. PDAs, such as smartphones and smartwatches, are becoming increasingly integrated with digital map technologies, enabling users to navigate and access real-time information on-the-go. The integration of Internet of Things (IoT) enables remote monitoring of cars and theft recovery. Location-based services, including mapping and navigation apps, are a crucial component of this trend, offering users personalized and convenient solutions for travel and exploration. However, the market also faces significant challenges.
Ensuring the protection of sensitive user information is essential for companies operating in this market, as trust and data security are key factors in driving user adoption and retention. Additionally, the competition in the market is intense, with numerous players vying for market share. Companies must differentiate themselves through innovative features, user experience, and strong branding to stand out in this competitive landscape. Security and privacy concerns continue to be a major obstacle, as the collection and use of location data raises valid concerns among consumers.
What will be the Size of the Digital Map Market during the forecast period?
Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
Request Free Sample
In the market, cartographic generalization and thematic mapping techniques are utilized to convey complex spatial information, transforming raw data into insightful visualizations. Choropleth maps and dot density maps illustrate distribution patterns of environmental data, economic data, and demographic data, while spatial interpolation and predictive modeling enable the estimation of hydrographic data and terrain data in areas with limited information. Urban planning and land use planning benefit from these tools, facilitating network modeling and location intelligence for public safety and emergency management.
Spatial regression and spatial autocorrelation analyses provide valuable insights into urban development trends and patterns. Network analysis and shortest path algorithms optimize transportation planning and logistics management, enhancing marketing analytics and sales territory optimization. Decision support systems and fleet management incorporate 3D building models and real-time data from street view imagery, enabling effective resource management and disaster response. The market in the US is experiencing robust growth, driven by the integration of Geographic Information Systems (GIS), Global Positioning Systems (GPS), and advanced computer technology into various industries.
How is this Digital Map Industry segmented?
The digital map industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.
Application
Navigation
Geocoders
Others
Type
Outdoor
Indoor
Solution
Software
Services
Deployment
On-premises
Cloud
Geography
North America
US
Canada
Europe
France
Germany
UK
APAC
China
India
Indonesia
Japan
South Korea
Rest of World (ROW)
By Application Insights
The navigation segment is estimated to witness significant growth during the forecast period. Digital maps play a pivotal role in various industries, particularly in automotive applications for driver assistance systems. These maps encompass raster data, aerial photography, government data, and commercial data, among others. Open-source data and proprietary data are integrated to ensure map accuracy and up-to-date information. Map production involves the use of GPS technology, map projections, and GIS software, while map maintenance and quality control ensure map accuracy. Location-based services (LBS) and route optimization are integral parts of digital maps, enabling real-time navigation and traffic data.
Data validation and map tiles ensure data security. Cloud computing facilitates map distribution and map customization, allowing users to access maps on various devices, including mobile mapping and indoor mapping. Map design, map printing, and reverse geocoding further enhance the user experience. Spatial analysis and data modeling are essential for data warehousing and real-time navigation. The automotive industry's increasing adoption of connected cars and long-term evolution (LTE) technologies have fueled the demand for digital maps. These maps enable driver assistance app
This dataset comprises 2 collections of maps. The facsmile collection contains all the marginalia information from the original map as well as the map itself, while the georectified collection contains just the map with an associated index for locating them. Each collection comprises approximately 101 000 monochrome images at 6-inch (1:10560) scale. Each image is supplied in .tiff format with appropriate ArcView and MapInfo world files, and shows the topography for all areas of England, Wales and Scotland as either quarter or, in some cases, full sheets. The images will cover the approximate epochs 1880's, 1900's, 1910's, 1920's and 1930's, but note that coverage is not countrywide for each epoch. The data was purchased by BGS from Sitescope, who obtained it from three sources - Royal Geographical Society, Trinity College Dublin and the Ordnance Survey. The data is for internal use by BGS staff on projects, and is available via a customised application created for the network GDI enabling users to search for and load the maps of their choice. The dataset will have many uses across all the geoscientific disciplines across which BGS operates, and should be viewed as a valuable addition to the BGS archive. There has been a considerable amount of work done during 2005, 2006 and 2007 to improve the accuracy of the OS Historic Map Collection. All maps should now be located to +- 50m or better. This is the best that can be achieved cost effectively. There are a number of reasons why the maps are inaccurate. Firstly, the original maps are paper and many are over 100 years old. They have not been stored in perfect condition. The paper has become distorted to varying degrees over time. The maps were therefore not accurate before scanning. Secondly, different generations of maps will have used different surveying methods and different spatial referencing systems. The same geographical object will not necessarily be in the same spatial location on subsequent editions. Thirdly, we are discussing maps, not plans. There will be cartographic generalisations which will affect the spatial representation and location of geographic objects. Finally, the georectification was not done in BGS but by the company from whom we purchased the maps. The company no longer exists. We do not know the methodology used for georectification.
British Virgin Islands World-Wide Human Geography Data (WWHGD) Hurricane Irma data
In the century between Napoleon's defeat and the outbreak of the First World War (known as the "Pax Britannica"), the British Empire grew to become the largest and most powerful empire in the world. At its peak in the 1910s and 1920s, it encompassed almost one quarter of both the world's population and its land surface, and was known as "the empire on which the sun never sets". The empire's influence could be felt across the globe, as Britain could use its position to affect trade and economies in all areas of the world, including many regions that were not part of the formal empire (for example, Britain was able to affect trading policy in China for over a century, due to its control of Hong Kong and the neighboring colonies of India and Burma). Some historians argue that because of its economic, military, political and cultural influence, nineteenth century Britain was the closest thing to a hegemonic superpower that the world ever had, and possibly ever will have. "Rule Britannia" Due to the technological and logistical restrictions of the past, we will never know the exact borders of the British Empire each year, nor the full extent of its power. However, by using historical sources in conjunction with modern political borders, we can gain new perspectives and insights on just how large and influential the British Empire actually was. If we transpose a map of all former British colonies, dominions, mandates, protectorates and territories, as well as secure territories of the East India Trading Company (EIC) (who acted as the precursor to the British Empire) onto a current map of the world, we can see that Britain had a significant presence in at least 94 present-day countries (approximately 48 percent). This included large territories such as Australia, the Indian subcontinent, most of North America and roughly one third of the African continent, as well as a strategic network of small enclaves (such as Gibraltar and Hong Kong) and islands around the globe that helped Britain to maintain and protect its trade routes. The sun sets... Although the data in this graph does not show the annual population or size of the British Empire, it does give some context to how Britain has impacted and controlled the development of the world over the past four centuries. From 1600 until 1920, Britain's Empire expanded from a small colony in Newfoundland, a failing conquest in Ireland, and early ventures by the EIC in India, to Britain having some level of formal control in almost half of all present-day countries. The English language is an official language in all inhabited continents, its political and bureaucratic systems are used all over the globe, and empirical expansion helped Christianity to become the most practiced major religion worldwide. In the second half of the twentieth century, imperial and colonial empires were eventually replaced by global enterprises. The United States and Soviet Union emerged from the Second World War as the new global superpowers, and the independence movements in longstanding colonies, particularly Britain, France and Portugal, gradually succeeded. The British Empire finally ended in 1997 when it seceded control of Hong Kong to China, after more than 150 years in charge. Today, the United Kingdom consists of four constituent countries, and it is responsible for three crown dependencies and fourteen overseas territories, although the legacy of the British Empire can still be seen, and it's impact will be felt for centuries to come.
Public Domain Mark 1.0https://creativecommons.org/publicdomain/mark/1.0/
License information was derived automatically
This dataset shows the global distribution of coral reefs in tropical and subtropical regions. It is the most comprehensive global dataset of warm-water coral reefs to date, acting as a foundation baseline map for future, more detailed, work. This dataset was compiled from a number of sources by UNEP World Conservation Monitoring Centre (UNEP-WCMC) and the WorldFish Centre, in collaboration with WRI (World Resources Institute) and TNC (The Nature Conservancy). Data sources include the Millennium Coral Reef Mapping Project (IMaRS-USF and IRD 2005, IMaRS-USF 2005) and the World Atlas of Coral Reefs (Spalding et al. 2001).
Citation: UNEP-WCMC, WorldFish Centre, WRI, TNC (2018). Global distribution of warm-water coral reefs, compiled from multiple sources including the Millennium Coral Reef Mapping Project. Version 4.0. Includes contributions from IMaRS-USF and IRD (2005), IMaRS-USF (2005) and Spalding et al. (2001). Cambridge (UK): UN Environment World Conservation Monitoring Centre. URL: http://data.unep-wcmc.org/datasets/1
Citations for the separate entities: IMaRS-USF (Institute for Marine Remote Sensing-University of South Florida) (2005). Millennium Coral Reef Mapping Project. Unvalidated maps. These maps are unendorsed by IRD, but were further interpreted by UNEP World Conservation Monitoring Centre. Cambridge (UK): UNEP World Conservation Monitoring Centre
IMaRS-USF, IRD (Institut de Recherche pour le Developpement) (2005). Millennium Coral Reef Mapping Project. Validated maps. Cambridge (UK): UNEP World Conservation Monitoring Centre
Spalding MD, Ravilious C, Green EP (2001). World Atlas of Coral Reefs. Berkeley (California, USA): The University of California Press. 436 pp.
This version of The Digital Chart of the World (DCW) is an Environmental Systems Research Institute, Inc. (ESRI) product originally developed for the US Defense Mapping Agency (DMA) using DMA data. This data was downloaded from the Penn State web site and then converted to Shapefile format using ArcMap.
This dataset is derived from the Vector Map (VMap) Level 0 database; the third edition of the Digital Chart of the World. The second edition was a limited release item published 1995 09. The product is dual named to show its lineage to the original DCW, published in 1992, while positioning the revised product within a broader emerging-family of VMap products.
VMap Level 0 is a comprehensive 1:1,000,000 scale vector basemap of the world. It consists of cartographic, attribute, and textual data stored on compact disc read only memory (CD-ROM). The primary source for the database is the National Imagery and Mapping Agency's (NIMA) Operational Navigation Chart (ONC) series. This is the largest scale unclassified map series in existence that provides consistent, continuous global coverage of essential basemap features. The database contains more than 1,900 megabytes of vector data and is organized into 10 thematic layers. The data includes major road and rail networks, major hydrological drainage systems, major utility networks (cross-country pipelines and communication lines), all major airports, elevation contours (1000 foot (ft), with 500ft and 250ft supplemental contours), coastlines, international boundaries and populated places.
Unlock precise, high-quality Map data covering 164M+ verified locations across 220+ countries. With 50+ enriched attributes including coordinates, building structures, and spatial geometry our dataset provides the granularity and accuracy needed for in-depth spatial analysis. Powered by AI-driven enrichment and deduplication, and backed by 30+ years of expertise, our GIS solutions support industries ranging from mapping and navigation to urban planning and market analysis, helping businesses and organizations make smarter, data-driven decisions.
Key use cases of GIS Data helping our customers :
Data from the British Geological Survey's GeoIndex Map products theme are made available for viewing here. GeoIndex is a website that allows users to search for information about BGS data collections covering the UK and other areas world wide. Access is free, the interface is easy to use, and it has been developed to enable users to check coverage of different types of data and find out some background information about the data. More detailed information can be obtained by further enquiry via the web site: www.bgs.ac.uk/geoindex.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
(:unav)...........................................
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The 1885 UK parliamentary constituencies for Ireland were re-created in 2017 as part of a conference paper delivered at the Southern Irish Loyalism in Context conference at Maynooth University. The intial map only included the territory of the Irish Free State and was created by Martin Charlton and Jack Kavanagh. The remaining six counties of Ulster were completed by Eoin McLaughlin in 2018-19, the combined result is a GIS map of all the parliamentary constituecies across the island of Ireland for the period 1885-1918. The map is available in both ESRI Shapefile format and as a GeoPackage (GPKG). The methodology for creating the constituencies is outlined in detail below.
A map showing the outlines of the 1855 – 1918 Constituency boundaries can be found on page 401 of Parliamentary Elections in Ireland, 1801-1922 (Dublin, 1978) by Brian Walker. This forms the basis for the creation of a set of digital boundaries which can then be used in a GIS. The general workflow involves allocating an 1885 Constituency identifier to each of the 309 Electoral Divisions present in the boundaries made available for the 2011 Census of Population data release by CSO. The ED boundaries are available in ‘shapefile’ format (a de facto standard for spatial data transfer). Once a Constituency identifier has been given to each ED, the GIS operation known as ‘dissolve’ is used to remove the boundaries between EDs in the same Constituency. To begin with Walker’s map was scanned at 1200 dots per inch in JPEG form. A scanned map cannot be linked to other spatial data without undergoing a process known as georeferencing. The CSO boundaries are available with spatial coordinates in the Irish National Grid system. The goal of georeferencing is to produce a rectified version of the map together with a world file. Rectification refers to the process of recomputing the pixel positions in the scanned map so that they are oriented with the ING coordinate system; the world file contains the extent in both the east-west and north-south directions of each pixel (in metres) and the coordinates of the most north-westerly pixel in the rectified image.
Georeferencing involves the identification of Ground Control Points – these are locations on the scanned map for which the spatial coordinates in ING are known. The Georeferencing option in ArcGIS 10.4 makes this a reasonably pain free task. For this map 36 GCPs were required for a local spline transformation. The Redistribution of Seats Act 1885 provides the legal basis for the constituencies to be used for future elections in England, Wales, Scotland and Ireland. Part III of the Seventh Schedule of the Act defines the Constituencies in terms of Baronies, Parishes (and part Parishes) and Townlands for Ireland. Part III of the Sixth Schedule provides definitions for the Boroughs of Belfast and Dublin.
The CSO boundary collection also includes a shapefile of Barony boundaries. This makes it possible code a barony in two ways: (i) allocated completely to a Division or (ii) split between two Divisions. For the first type, the code is just the division name, and for the second the code includes both (or more) division names. Allocation of these names to the data in the ED shapefile is accomplished by a spatial join operation. Recoding the areas in the split Baronies is done interactively using the GIS software’s editing option. EDs or groups of EDs can be selected on the screen, and the correct Division code updated in the attribute table. There are a handful of cases where an ED is split between divisions, so a simple ‘majority’ rule was used for the allocation. As the maps are to be used at mainly for displaying data at the national level, a misallocation is unlikely to be noticed. The final set of boundaries was created using the dissolve operation mentioned earlier. There were a dozen ED that had initially escaped being allocated a code, but these were quickly updated. Similarly, a few of the EDs in the split divisions had been overlooked; again updating was painless. This meant that the dissolve had to be run a few more times before all the errors have been corrected.
For the Northern Ireland districts, a slightly different methodology was deployed which involved linking parishes and townlands along side baronies, using open data sources from the OSM Townlands.ie project and OpenData NI.
QUEST projects both used and produced an immense variety of global data sets that needed to be shared efficiently between the project teams. These global synthesis data sets are also a key part of QUEST's legacy, providing a powerful way of communicating the results of QUEST among and beyond the UK Earth System research community. This dataset contains a map of a ecosystem. This map depicts the 825 terrestrial ecoregions of the globe. Ecoregions are relatively large units of land contain ing distinct assemblages of natural communities and species, with boundaries that approximate the original extent of natural communities prior to major land-use change. This comprehensive, global map provides a useful framework for conducting biogeographical or macroecological research, for identifying areas of outstanding biodiversity and conse rvation priority, for assessing the representation and gaps in conservation efforts worldwide, and for communicating the global distribution of natural communities on earth.
Data from the British Geological Survey's GeoIndex Map products theme are made available for viewing here. GeoIndex is a website that allows users to search for information about BGS data collections covering the UK and other areas world wide. Access is free, the interface is easy to use, and it has been developed to enable users to check coverage of different types of data and find out some background information about the data. More detailed information can be obtained by further enquiry via the web site: www.bgs.ac.uk/geoindex.
Important Note: This item is in mature support as of July 2021. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version.This map is designed to be used as a general reference map for informational and educational purposes as well as a basemap by GIS professionals and other users for creating web maps and web mapping applications.The map was developed by National Geographic and Esri and reflects the distinctive National Geographic cartographic style in a multi-scale reference map of the world. The map was authored using data from a variety of leading data providers, including Garmin, HERE, UNEP-WCMC, NASA, ESA, USGS, and others.This reference map includes administrative boundaries, cities, protected areas, highways, roads, railways, water features, buildings and landmarks, overlaid on shaded relief and land cover imagery for added context. The map includes global coverage down to ~1:144k scale and more detailed coverage for North America down to ~1:9k scale.Map Note: Although small-scale boundaries, place names and map notes were provided and edited by National Geographic, boundaries and names shown do not necessarily reflect the map policy of the National Geographic Society, particularly at larger scales where content has not been thoroughly reviewed or edited by National Geographic.Data Notes: The credits below include a list of data providers used to develop the map. Below are a few additional notes:Reference Data: National Geographic, Esri, Garmin, HERE, iPC, NRCAN, METILand Cover Imagery: NASA Blue Marble, ESA GlobCover 2009 (Copyright notice: © ESA 2010 and UCLouvain)Protected Areas: IUCN and UNEP-WCMC (2011), The World Database on Protected Areas (WDPA) Annual Release. Cambridge, UK: UNEP-WCMC. Available at:www.protectedplanet.net.Ocean Data: GEBCO, NOAA