The Consumer Expenditure Survey (CE) program provides a continuous and comprehensive flow of data on the buying habits of American consumers, including data on their expenditures, income, and consumer unit (families and single consumers) characteristics. These data are used widely in economic research and analysis, and in support of revisions of the Consumer Price Index. The Consumer Expenditure Survey (CE) program consists of two surveys, the Quarterly Interview Survey and the Diary Survey, that provide information on the buying habits of America's consumers, including data on their expenditures, income, and consumer unit (families and single consumers) characteristics. The survey data are collected for the Bureau of Labor Statistics by the U.S. Census Bureau. The CE is important because it is the only Federal survey to provide information on the complete range of consumers' expenditures and incomes, as well as the characteristics of those consumers. It is used by economic policymakers examining the impact of policy changes on economic groups, by the Census Bureau as the source of thresholds for the Supplemental Poverty Measure, by businesses and academic researchers studying consumers' spending habits and trends, by other Federal agencies, and, perhaps most importantly, to regularly revise the Consumer Price Index market basket of goods and services and their relative importance.
National
Consumer Units
Eligible population includes all civilian non-institutional persons.
Sample survey data [ssd]
Samples for the CE are national probability samples of households designed to be representative of the total U.S. civilian population. Eligible population includes all civilian non-institutional persons. The first step in sampling is the selection of primary sampling units (PSUs), which consist of counties (or parts thereof) or groups of counties. The set of sample PSUs used for the 2012 and 2013 samples is composed of 91 areas. The design classifies the PSUs into four categories:
? 21 "A" certainty PSUs are Metropolitan Statistical Areas (MSA's) with a population greater than 1.5 million. ? 38 "X" PSUs, are medium-sized MSA's. ? 16 "Y" PSUs are nonmetropolitan areas that are included in the CPI. ? 16 "Z" PSUs are nonmetropolitan areas where only the urban population data will be included in the CPI.
The sampling frame (that is, the list from which housing units were chosen) for the 2012 survey is generated from the 2000 Census of Population 100-percent-detail file. The sampling frame is augmented by new construction permits and by techniques used to eliminate recognized deficiencies in census coverage. All Enumeration Districts (EDs) from the Census that fail to meet the criterion for good addresses for new construction, and all EDs in nonpermit-issuing areas are grouped into the area segment frame. Interviewers are then assigned to list these areas before a sample is drawn. To the extent possible, an unclustered sample of units is selected within each PSU. This lack of clustering is desirable because the sample size of the Diary Survey is small relative to other surveys, while the intraclass correlations for expenditure characteristics are relatively large. This suggests that any clustering of the sample units could result in an unacceptable increase in the within-PSU variance and, as a result, the total variance. The Interview Survey is a panel rotation survey. Each panel is interviewed for five consecutive quarters and then dropped from the survey. As one panel leaves the survey, a new panel is introduced. Approximately 20 percent of the addresses are new to the survey each month.
Computer Assisted Personal Interview [capi]
The CE program is comprised of two separate components, each with its own questionnaire and independent sample: (1) the quarterly Interview Survey, and (2) the Diary Survey.
The U.S. Census Bureau, in collaboration with five federal agencies, launched the Household Pulse Survey to produce data on the social and economic impacts of Covid-19 on American households. The Household Pulse Survey was designed to gauge the impact of the pandemic on employment status, consumer spending, food security, housing, education disruptions, and dimensions of physical and mental wellness. The survey was designed to meet the goal of accurate and timely weekly estimates. It was conducted by an internet questionnaire, with invitations to participate sent by email and text message. The sample frame is the Census Bureau Master Address File Data. Housing units linked to one or more email addresses or cell phone numbers were randomly selected to participate, and one respondent from each housing unit was selected to respond for him or herself. Estimates are weighted to adjust for nonresponse and to match Census Bureau estimates of the population by age, sex, race and ethnicity, and educational attainment. All estimates shown meet the NCHS Data Presentation Standards for Proportions.
analyze the current population survey (cps) annual social and economic supplement (asec) with r the annual march cps-asec has been supplying the statistics for the census bureau's report on income, poverty, and health insurance coverage since 1948. wow. the us census bureau and the bureau of labor statistics ( bls) tag-team on this one. until the american community survey (acs) hit the scene in the early aughts (2000s), the current population survey had the largest sample size of all the annual general demographic data sets outside of the decennial census - about two hundred thousand respondents. this provides enough sample to conduct state- and a few large metro area-level analyses. your sample size will vanish if you start investigating subgroups b y state - consider pooling multiple years. county-level is a no-no. despite the american community survey's larger size, the cps-asec contains many more variables related to employment, sources of income, and insurance - and can be trended back to harry truman's presidency. aside from questions specifically asked about an annual experience (like income), many of the questions in this march data set should be t reated as point-in-time statistics. cps-asec generalizes to the united states non-institutional, non-active duty military population. the national bureau of economic research (nber) provides sas, spss, and stata importation scripts to create a rectangular file (rectangular data means only person-level records; household- and family-level information gets attached to each person). to import these files into r, the parse.SAScii function uses nber's sas code to determine how to import the fixed-width file, then RSQLite to put everything into a schnazzy database. you can try reading through the nber march 2012 sas importation code yourself, but it's a bit of a proc freak show. this new github repository contains three scripts: 2005-2012 asec - download all microdata.R down load the fixed-width file containing household, family, and person records import by separating this file into three tables, then merge 'em together at the person-level download the fixed-width file containing the person-level replicate weights merge the rectangular person-level file with the replicate weights, then store it in a sql database create a new variable - one - in the data table 2012 asec - analysis examples.R connect to the sql database created by the 'download all microdata' progr am create the complex sample survey object, using the replicate weights perform a boatload of analysis examples replicate census estimates - 2011.R connect to the sql database created by the 'download all microdata' program create the complex sample survey object, using the replicate weights match the sas output shown in the png file below 2011 asec replicate weight sas output.png statistic and standard error generated from the replicate-weighted example sas script contained in this census-provided person replicate weights usage instructions document. click here to view these three scripts for more detail about the current population survey - annual social and economic supplement (cps-asec), visit: the census bureau's current population survey page the bureau of labor statistics' current population survey page the current population survey's wikipedia article notes: interviews are conducted in march about experiences during the previous year. the file labeled 2012 includes information (income, work experience, health insurance) pertaining to 2011. when you use the current populat ion survey to talk about america, subract a year from the data file name. as of the 2010 file (the interview focusing on america during 2009), the cps-asec contains exciting new medical out-of-pocket spending variables most useful for supplemental (medical spending-adjusted) poverty research. confidential to sas, spss, stata, sudaan users: why are you still rubbing two sticks together after we've invented the butane lighter? time to transition to r. :D
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units and the group quarters population for states and counties..Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2023 American Community Survey 1-Year Estimates.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year..Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..The "Contact Attempts Halted" category of non-interviews was added in 2023, replacing "Maximum Contact Attempts Reached". All types of non-interviews that previously were included in the "Maximum Contact Attempts Reached" category are now included in "Contact Attempts Halted", along with similar types of non-interviews added in 2023. The category was renamed to reflect the broader set of reasons for non-interviews included. For more information, see https://www.census.gov/programs-surveys/acs/methodology/sample-size-and-data-quality/response-rates-definitions.html..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution. For a 5-year median estimate, the margin of error associated with a median was larger than the median itself.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate because the corresponding estimate is controlled to an independent population or housing estimate. Effectively, the corresponding estimate has no sampling error and the margin of error may be treated as zero.
The National Health Interview Survey (NHIS) has monitored the health of the nation since 1957. NHIS data on a broad range of health topics are collected through personal household interviews. For over 50 years, the U.S. Census Bureau has been the data collection agent for the National Health Interview Survey. Survey results have been instrumental in providing data to track health status, health care access, and progress toward achieving national health objectives.
https://www.icpsr.umich.edu/web/ICPSR/studies/36170/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/36170/terms
The Consumer Expenditure Survey (CE) program consists of two surveys: the quarterly Interview survey and the annual Diary survey. Combined, these two surveys provide information on the buying habits of American consumers, including data on their expenditures, income, and consumer unit (families and single consumers) characteristics. The survey data are collected for the U.S. Bureau of Labor Statistics (BLS) by the U.S. Census Bureau. The CE collects all on all spending components including food, housing, apparel and services, transportation, entertainment, and out-of-pocket health care costs. The CE tables are an easy-to-use tool for obtaining arts-related spending estimates. They feature several arts-related spending categories, including the following items: Spending on Admissions Plays, theater, opera, and concerts Movies, parks, and museums Spending on Reading Newspapers and magazines Books Digital book readers Spending on Other Arts-Related Items Musical instruments Photographic equipment Audio-visual equipment Toys, games, arts and crafts The CE is important because it is the only Federal survey to provide information on the complete range of consumers' expenditures and incomes, as well as the characteristics of those consumers. It is used by economic policymakers examining the impact of policy changes on economic groups, by the Census Bureau as the source of thresholds for the Supplemental Poverty Measure, by businesses and academic researchers studying consumers' spending habits and trends, by other Federal agencies, and, perhaps most importantly, to regularly revise the Consumer Price Index market basket of goods and services and their relative importance. The most recent data tables are for 2023 and include: 1) Detailed tables with the most granular level of expenditure data available, along with variances and percent reporting for each expenditure item, for all consumer units (listed as "Other" in the Download menu); and 2) Tables with calendar year aggregate shares by demographic characteristics that provide annual aggregate expenditures and shares across demographic groups (listed as "Excel" in the Download menu). Also, see Featured CE Tables and Economic News Releases sections on the CE home page for current data tables and news release. The 1980 through 2023 CE public-use microdata, including Interview Survey data, Diary Survey data, and paradata (information about the data collection process), are available on the CE website.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units and the group quarters population for states and counties..Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2023 American Community Survey 1-Year Estimates.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year..Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..Synthetic interviews were part of an effort to improve American Community Survey estimates of the group quarters population for substate areas. Synthetic interviews were created by imputing the characteristics of interviewed group quarters persons into group quarters facilities that were not in sample that year or period. Final actual interviews are the interviews obtained from sampled group quarters residents. For more information, read the ACS Group Quarters Small Area Estimation user note..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution. For a 5-year median estimate, the margin of error associated with a median was larger than the median itself.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate because the corresponding estimate is controlled to an independent population or housing estimate. Effectively, the corresponding estimate has no sampling error and the margin of error may be treated as zero.
The American Time Use Survey (ATUS) is the Nation’s first federally administered, continuous survey on time use in the United States. The goal of the survey is to measure how people divide their time among life’s activities.
In ATUS, individuals are randomly selected from a subset of households that have completed their eighth and final month of interviews for the Current Population Survey (CPS). ATUS respondents are interviewed only one time about how they spent their time on the previous day, where they were, and whom they were with. The survey is sponsored by the Bureau of Labor Statistics and is conducted by the U.S. Census Bureau.
The major purpose of ATUS is to develop nationally representative estimates of how people spend their time. Many ATUS users are interested in the amount of time Americans spend doing unpaid, nonmarket work, which could include unpaid childcare, eldercare, housework, and volunteering. The survey also provides information on the amount of time people spend in many other activities, such as religious activities, socializing, exercising, and relaxing. In addition to collecting data about what people did on the day before the interview, ATUS collects information about where and with whom each activity occurred, and whether the activities were done for one’s job or business. Demographic information—including sex, race, age, educational attainment, occupation, income, marital status, and the presence of children in the household—also is available for each respondent. Although some of these variables are updated during the ATUS interview, most of this information comes from earlier CPS interviews, as the ATUS sample is drawn from a subset of households that have completed month 8 of the CPS.
The user guide can be found here.
There are 8 datasets containing microdata from 2003-2015:
Respondent file: The Respondent file contains information about ATUS respondents, including their labor force status and earnings.
Roster file: The Roster file contains information about household members and nonhousehold children (under 18) of ATUS respondents. It includes information such as age and sex.
Activity file: The Activity file contains information about how ATUS respondents spent their diary day. It includes information such as activity codes, activity start and stop times, and locations. Because Activity codes have changed somewhat between 2003 and 2015, this file uses activity codes that appear in the 2003-2015 ATUS Coding Lexicon (PDF).
Activity summary file: The Activity summary file contains information about the total time each ATUS respondent spent doing each activity on the diary day. Because Activity codes have changed somewhat between 2003 and 2015, this file uses activity codes that appear in the 2003-2015 ATUS Coding Lexicon (PDF).
Who file: The Who file includes codes that indicate who was present during each activity.
CPS 2003-2015 file: The ATUS-CPS file contains information about each household member of all individuals selected to participate in ATUS. The information on the ATUS-CPS file was collected 2 to 5 months before the ATUS interview.
Eldercare Roster file: The ATUS Eldercare Roster file contains information about people for whom the respondent provided care. Eldercare data have been collected since 2011.
Replicate weights file: The Replicate weights file contains miscellaneous ATUS weights.
The ATUS interview data dictionary can be found here.
The ATUS Current Population Survey (CPS) data dictionary can be found here.
The ATUS occupation and industry codes can be found here.
The ATUS activity lexicon can be found here.
The original datasets can be found here.
How do daily activities differ by:
labor force status
income
household composition
geographical region
disability status
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, for 2020, the 2020 Census provides the official counts of the population and housing units for the nation, states, counties, cities, and towns. For 2016 to 2019, the Population Estimates Program provides estimates of the population for the nation, states, counties, cities, and towns and intercensal housing unit estimates for the nation, states, and counties..Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Technical Documentation section.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2016-2020 American Community Survey 5-Year Estimates.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..The Class of Worker status "unpaid family workers" may have earnings. Earnings reflect any earnings from all jobs held during the 12 months prior to the ACS interview. The Class of Worker status reflects the job or business held the week prior to the ACS interview, or the last job held by the respondent..Industry titles and their 4-digit codes are based on the North American Industry Classification System (NAICS). The Census industry codes for 2018 and later years are based on the 2017 revision of the NAICS. To allow for the creation of multiyear tables, industry data in the multiyear files (prior to data year 2018) were recoded to the 2017 Census industry codes. We recommend using caution when comparing data coded using 2017 Census industry codes with data coded using Census industry codes prior to data year 2018. For more information on the Census industry code changes, please visit our website at https://www.census.gov/topics/employment/industry-occupation/guidance/code-lists.html..When information is missing or inconsistent, the Census Bureau logically assigns an acceptable value using the response to a related question or questions. If a logical assignment is not possible, data are filled using a statistical process called allocation, which uses a similar individual or household to provide a donor value. The "Allocated" section is the number of respondents who received an allocated value for a particular subject..Occupation titles and their 4-digit codes are based on the Standard Occupational Classification (SOC). The Census occupation codes for 2018 and later years are based on the 2018 revision of the SOC. To allow for the creation of the multiyear tables, occupation data in the multiyear files (prior to data year 2018) were recoded to the 2018 Census occupation codes. We recommend using caution when comparing data coded using 2018 Census occupation codes with data coded using Census occupation codes prior to data year 2018. For more information on the Census occupation code changes, please visit our website at https://www.census.gov/topics/employment /industry-occupation/guidance/code-lists.html..In 2019, methodological changes were made to the class of worker question. These changes involved modifications to the question wording, the category wording, and the visual format of the categories on the questionnaire. The format for the class of worker categories are now listed under the headings "Private Sector Employee," "Government Employee," and "Self-Employed or Other." Additionally, the category of Active Duty was added as one of the response categories under the "Government Employee" section for the mail questionnaire. For more detailed information about the 2019 changes, see the 2016 American Community Survey Content Test Report for Class of Worker located at http://www.census.gov/library/working-papers/2017/acs/2017_Martinez_01.html..Beginning in data year 2019, respondents to the Weeks Worked question provided an integer value for the number of weeks worked. For data years 2008 through 2018, respondents selected a category corresponding to the number of weeks worked..The 2016-2020 American Community Survey (ACS) data generally reflect the September 2018 Office of Management and Budget (OMB) delineations of metropolitan and micropolitan statistical ...
This is a longitudinal survey designed to provide detailed information on the economic situation of households and persons in the United States. These data examine the distribution of income, wealth, and poverty in American society and gauge the effects of federal and state programs on the well-being of families and individuals. There are three basic elements contained in the survey. The first is a control card that records basic social and demographic characteristics for each person in a household, as well as changes in such characteristics over the course of the interviewing period. The second element is the core portion of the questionnaire, with questions repeated at each interview on labor force activity, types and amounts of income, participation in various cash and noncash benefit programs, attendance in postsecondary schools, private health insurance coverage, public or subsidized rental housing, low-income energy assistance, and school breakfast and lunch participation. The third element consists of topical modules, which are a series of supplemental questions asked during selected household visits. Topical modules include some core data to help link individuals to the core files. Topical module data for the 1992 Panel cover the following topics: Topical Module 1 -- welfare and other aid recipiency and employment, Topical Module 2 -- work disability, education and training, marital status, migration, and fertility histories, Topical Module 3 -- extended measures of well-being, including consumer durables, living conditions, and basic needs, Topical Module 4 -- assets and liabilities, retirement expectations and pension plan coverage, real estate, property, and vehicles, Topical Module 5 -- school enrollment and financing, Topical Module 6 -- work schedules, child care, support for nonhousehold members, functional limitations and disabilities, utilization of health care services, and home-based self-employment and size of firm, Topical Module 7 -- selected financial assets, medical expenses and work disability, real estate, shelter costs, dependent care, and vehicles, Topical Module 8 -- school enrollment and financing, Topical Module 9 -- work schedule, child care, child support agreements, child support, support for nonhousehold members, functional limitations and disability, utilization of health care, functional limitations and disability of children, health status and utilization of health care services, and utilization of health care services for children. Parts 26 and 27 are the Wave 5 and Wave 8 Topical Module Microdata Research Files obtained from the Census Bureau. These two topical module files include data on annual income, retirement accounts and taxes, and school enrollment and financing. These topical module files have not been edited nor imputed, although they have been topcoded or bottomcoded and recoded if necessary by the Census Bureau to avoid disclosure of individual respondents' identities. (Source: downloaded from ICPSR 7/13/10)
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, for 2020, the 2020 Census provides the official counts of the population and housing units for the nation, states, counties, cities, and towns. For 2016 to 2019, the Population Estimates Program provides estimates of the population for the nation, states, counties, cities, and towns and intercensal housing unit estimates for the nation, states, and counties..Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Technical Documentation section.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2016-2020 American Community Survey 5-Year Estimates.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..Synthetic interviews were part of an effort to improve American Community Survey estimates of the group quarters population for substate areas. Synthetic interviews were created by imputing the characteristics of interviewed group quarters persons into group quarters facilities that were not in sample that year or period. Final actual interviews are the interviews obtained from sampled group quarters residents. For more information, read the ACS Group Quarters Small Area Estimation user note..The 2016-2020 American Community Survey (ACS) data generally reflect the September 2018 Office of Management and Budget (OMB) delineations of metropolitan and micropolitan statistical areas. In certain instances, the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB delineation lists due to differences in the effective dates of the geographic entities..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on Census 2010 data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate because the corresponding estimate is controlled to an independent population or housing estimate. Effectively, the corresponding estimate has no sampling error and the margin of error may be treated as zero.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, it is the Census Bureau's Population Estimates Program that produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units for states and counties..Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Technical Documentation section.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2017-2021 American Community Survey 5-Year Estimates.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..The Class of Worker status "unpaid family workers" may have earnings. Earnings reflect any earnings from all jobs held during the 12 months prior to the ACS interview. The Class of Worker status reflects the job or business held the week prior to the ACS interview, or the last job held by the respondent..Industry titles and their 4-digit codes are based on the North American Industry Classification System (NAICS). The Census industry codes for 2018 and later years are based on the 2017 revision of the NAICS. To allow for the creation of multiyear tables, industry data in the multiyear files (prior to data year 2018) were recoded to the 2017 Census industry codes. We recommend using caution when comparing data coded using 2017 Census industry codes with data coded using Census industry codes prior to data year 2018. For more information on the Census industry code changes, please visit our website at https://www.census.gov/topics/employment/industry-occupation/guidance/code-lists.html..When information is missing or inconsistent, the Census Bureau logically assigns an acceptable value using the response to a related question or questions. If a logical assignment is not possible, data are filled using a statistical process called allocation, which uses a similar individual or household to provide a donor value. The "Allocated" section is the number of respondents who received an allocated value for a particular subject..Occupation titles and their 4-digit codes are based on the Standard Occupational Classification (SOC). The Census occupation codes for 2018 and later years are based on the 2018 revision of the SOC. To allow for the creation of the multiyear tables, occupation data in the multiyear files (prior to data year 2018) were recoded to the 2018 Census occupation codes. We recommend using caution when comparing data coded using 2018 Census occupation codes with data coded using Census occupation codes prior to data year 2018. For more information on the Census occupation code changes, please visit our website at https://www.census.gov/topics/employment /industry-occupation/guidance/code-lists.html..In 2019, methodological changes were made to the class of worker question. These changes involved modifications to the question wording, the category wording, and the visual format of the categories on the questionnaire. The format for the class of worker categories are now listed under the headings "Private Sector Employee," "Government Employee," and "Self-Employed or Other." Additionally, the category of Active Duty was added as one of the response categories under the "Government Employee" section for the mail questionnaire. For more detailed information about the 2019 changes, see the 2016 American Community Survey Content Test Report for Class of Worker located at http://www.census.gov/library/working-papers/2017/acs/2017_Martinez_01.html..Beginning in data year 2019, respondents to the Weeks Worked question provided an integer value for the number of weeks worked. For data years 2008 through 2018, respondents selected a category corresponding to the number of weeks worked..The 2017-2021 American Community Survey (ACS) data generally reflect the March 2020 Office of Management and Budget (OMB) delineations of metropolitan and micropolitan statistical areas. In certain instances, the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB ...
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units for states and counties..Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2022 American Community Survey 1-Year Estimates.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..Synthetic interviews were part of an effort to improve American Community Survey estimates of the group quarters population for substate areas. Synthetic interviews were created by imputing the characteristics of interviewed group quarters persons into group quarters facilities that were not in sample that year or period. Final actual interviews are the interviews obtained from sampled group quarters residents. For more information, read the ACS Group Quarters Small Area Estimation user note..The 2022 American Community Survey (ACS) data generally reflect the March 2020 Office of Management and Budget (OMB) delineations of metropolitan and micropolitan statistical areas. In certain instances the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB delineations due to differences in the effective dates of the geographic entities..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution. For a 5-year median estimate, the margin of error associated with a median was larger than the median itself.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate because the corresponding estimate is controlled to an independent population or housing estimate. Effectively, the corresponding estimate has no sampling error and the margin of error may be treated as zero.
The U.S. Census Bureau, in collaboration with five federal agencies, launched the Household Pulse Survey to produce data on the social and economic impacts of Covid-19 on American households. The Household Pulse Survey was designed to gauge the impact of the pandemic on employment status, consumer spending, food security, housing, education disruptions, and dimensions of physical and mental wellness.
The survey was designed to meet the goal of accurate and timely weekly estimates. It was conducted by an internet questionnaire, with invitations to participate sent by email and text message. The sample frame is the Census Bureau Master Address File Data. Housing units linked to one or more email addresses or cell phone numbers were randomly selected to participate, and one respondent from each housing unit was selected to respond for him or herself. Estimates are weighted to adjust for nonresponse and to match Census Bureau estimates of the population by age, gender, race and ethnicity, and educational attainment. All estimates shown meet the NCHS Data Presentation Standards for Proportions.
Splitgraph serves as an HTTP API that lets you run SQL queries directly on this data to power Web applications. For example:
See the Splitgraph documentation for more information.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
analyze the survey of income and program participation (sipp) with r if the census bureau's budget was gutted and only one complex sample survey survived, pray it's the survey of income and program participation (sipp). it's giant. it's rich with variables. it's monthly. it follows households over three, four, now five year panels. the congressional budget office uses it for their health insurance simulation . analysts read that sipp has person-month files, get scurred, and retreat to inferior options. the american community survey may be the mount everest of survey data, but sipp is most certainly the amazon. questions swing wild and free through the jungle canopy i mean core data dictionary. legend has it that there are still species of topical module variables that scientists like you have yet to analyze. ponce de león would've loved it here. ponce. what a name. what a guy. the sipp 2008 panel data started from a sample of 105,663 individuals in 42,030 households. once the sample gets drawn, the census bureau surveys one-fourth of the respondents every four months, over f our or five years (panel durations vary). you absolutely must read and understand pdf pages 3, 4, and 5 of this document before starting any analysis (start at the header 'waves and rotation groups'). if you don't comprehend what's going on, try their survey design tutorial. since sipp collects information from respondents regarding every month over the duration of the panel, you'll need to be hyper-aware of whether you want your results to be point-in-time, annualized, or specific to some other period. the analysis scripts below provide examples of each. at every four-month interview point, every respondent answers every core question for the previous four months. after that, wave-specific addenda (called topical modules) get asked, but generally only regarding a single prior month. to repeat: core wave files contain four records per person, topical modules contain one. if you stacked every core wave, you would have one record per person per month for the duration o f the panel. mmmassive. ~100,000 respondents x 12 months x ~4 years. have an analysis plan before you start writing code so you extract exactly what you need, nothing more. better yet, modify something of mine. cool? this new github repository contains eight, you read me, eight scripts: 1996 panel - download and create database.R 2001 panel - download and create database.R 2004 panel - download and create database.R 2008 panel - download and create database.R since some variables are character strings in one file and integers in anoth er, initiate an r function to harmonize variable class inconsistencies in the sas importation scripts properly handle the parentheses seen in a few of the sas importation scripts, because the SAScii package currently does not create an rsqlite database, initiate a variant of the read.SAScii
function that imports ascii data directly into a sql database (.db) download each microdata file - weights, topical modules, everything - then read 'em into sql 2008 panel - full year analysis examples.R< br /> define which waves and specific variables to pull into ram, based on the year chosen loop through each of twelve months, constructing a single-year temporary table inside the database read that twelve-month file into working memory, then save it for faster loading later if you like read the main and replicate weights columns into working memory too, merge everything construct a few annualized and demographic columns using all twelve months' worth of information construct a replicate-weighted complex sample design with a fay's adjustment factor of one-half, again save it for faster loading later, only if you're so inclined reproduce census-publish ed statistics, not precisely (due to topcoding described here on pdf page 19) 2008 panel - point-in-time analysis examples.R define which wave(s) and specific variables to pull into ram, based on the calendar month chosen read that interview point (srefmon)- or calendar month (rhcalmn)-based file into working memory read the topical module and replicate weights files into working memory too, merge it like you mean it construct a few new, exciting variables using both core and topical module questions construct a replicate-weighted complex sample design with a fay's adjustment factor of one-half reproduce census-published statistics, not exactly cuz the authors of this brief used the generalized variance formula (gvf) to calculate the margin of error - see pdf page 4 for more detail - the friendly statisticians at census recommend using the replicate weights whenever possible. oh hayy, now it is. 2008 panel - median value of household assets.R define which wave(s) and spe cific variables to pull into ram, based on the topical module chosen read the topical module and replicate weights files into working memory too, merge once again construct a replicate-weighted complex sample design with a...
The Current Population Survey Tobacco Use Supplement data collection from January 2015 is comprised of responses from two sets of survey questionnaires, the basic Current Population Survey (CPS) and a Tobacco Use Supplement (TUS) survey. The TUS 2014-2015 Wave consists of three collections: July 2014, January 2015, and May 2015. The CPS, administered monthly, is the source of the official government statistics on employment and unemployment. From time to time, additional questions are included on health, education, and previous work experience. The Tobacco Use Supplement to the CPS is a National Cancer Institute sponsored survey of tobacco use that has been administered as part of the US Census Bureau's CPS approximately every 3-4 years since 1992-1993. Similar to other CPS supplements, the Tobacco Use Supplement was designed for both proxy and self-respondents. All CPS household members age 18 and older who completed CPS core items in January 2015 were eligible for the supplement items. A new feature for the 2014-2015 cycle included random selection of self-interviewed respondents in larger households to reduce respondent burden. If the household had only 1 supplement eligible member then that person was selected for self-interview. If the household had only 2 supplement eligible members, then both of them were selected for self-interview. If the household had 3 or 4 supplement eligible members, then 2 of them were randomly selected for self-interview and the remaining were interviewed by proxy. If the household had more than 4 supplement eligible members, then 3 of them were randomly selected for self-interview and the rest of the eligible respondents were interviewed by proxy. Those selected for self-interview were eligible for the entire supplement, whereas proxy respondents were only eligible for an abbreviated interview. Occasionally, those persons to be interviewed by proxy, if available for self- interview, were interviewed directly but asked the abbreviated proxy path questions. Both proxy and self-respondents were asked about their smoking status and the use of other tobacco products. For self-respondents only, different questions were asked depending on their tobacco use status: for former/current smokers, questions were asked about type of cigarettes smoked, measures of addiction, attempts to quit smoking, methods and treatments used to quit smoking, and if they were planning to quit in the future. All self-respondents were asked about smoking policy at their work place and their attitudes towards smoking in different locations. Demographic information within this collection includes age, sex, race, Hispanic origin, marital status, veteran status, immigration status, educational background, employment status, occupation, and income.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Users can download reports and the data set on a range of health topics in the United States. Examples of topics include: vaccinations, insurance coverage, mortality, nutrition and tobacco. Background The National Health Interview Survey (NHIS) is a part of the National Center for Health Statistics at the Centers for Disease Control and Prevention. NHIS data is on a wide range of health topics and is collected by the U.S. Census Bureau. The NHIS is used to monitor trends in illness and track progress related to the country's health objectives.The questionnaires contain questions that do not change from year to year, along with supplement questions that vary depending on national interests. Examples of data collected include: alcohol consumption, usual place to get medical care, receipt of vaccinations, psychological distress. User Functionality Static reports on health statistics are available, and users can export portions of the dataset directly into SAS, SPSS or Stata. Users can also view and download information regarding the methods, including the survey questionnaires. Data is available on the national level and because multiple years are available, users can ascertain health trends. Data Notes The survey is designed to cover the civilian, non institutionalized population in the United States and oversamples Black, Hispanic and Asian people. The survey is conducted continuously, and data is typically released a year after collection. The most recent data is from 2009.
The Consumer Expenditure Surveys (CE) program provides data on expenditures, income, and demographic characteristics of consumers in the United States. The CE program provides these data in tables, LABSTAT database, news releases, reports, and public use microdata files. CE data are collected by the Census Bureau for BLS in two surveys, the Interview Survey for major and/or recurring items and the Diary Survey for more minor or frequently purchased items. CE data are primarily used to revise the relative importance of goods and services in the market basket of the Consumer Price Index. The CE is the only Federal household survey to provide information on the complete range of consumers' expenditures and incomes. For more information and data, visit: https://www.bls.gov/cex/
https://www.icpsr.umich.edu/web/ICPSR/studies/36170/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/36170/terms
The Consumer Expenditure Survey (CE) program consists of two surveys: the quarterly Interview survey and the annual Diary survey. Combined, these two surveys provide information on the buying habits of American consumers, including data on their expenditures, income, and consumer unit (families and single consumers) characteristics. The survey data are collected for the U.S. Bureau of Labor Statistics (BLS) by the U.S. Census Bureau. The CE collects all on all spending components including food, housing, apparel and services, transportation, entertainment, and out-of-pocket health care costs. The CE features several arts-related spending categories, including the following items: Spending on Admissions Plays, theater, opera, and concerts Movies, parks, and museums Spending on Reading Newspapers and magazines Books Digital book readers Spending on Other Arts-Related Items Musical instruments Photographic equipment Audio-visual equipment Toys, games, arts and crafts The CE is important because it is the only Federal survey to provide information on the complete range of consumers' expenditures and incomes, as well as the characteristics of those consumers. It is used by economic policymakers examining the impact of policy changes on economic groups, by the Census Bureau as the source of thresholds for the Supplemental Poverty Measure, by businesses and academic researchers studying consumers' spending habits and trends, by other Federal agencies, and, perhaps most importantly, to regularly revise the Consumer Price Index market basket of goods and services and their relative importance. The most recent data tables are for 2016, and were made available on August 29, 2017. The unpublished integrated CE data tables produced by the BLS are available to download through NADAC (click on "Other" in the Dataset(s) section). Also, see Featured CE Tables and Economic News Releases sections on the CE home page for current data tables and news release. The 2016 public-use microdata is the most recent and was released on August 29, 2017.
https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de448608https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de448608
Abstract (en): This data collection is comprised of responses from two sets of survey questionnaires, the basic Current Population Survey (CPS) and a survey on the topic of voting and registration in the United States, which was administered as a supplement to the November 2008 CPS questionnaire. The Housing and Household Economic Statistics Division of the Census Bureau sponsored the supplemental questions for November.The CPS, administered monthly, is a labor force survey providing current estimates of the economic status and activities of the population of the United States. Specifically, the CPS provides estimates of total employment (both farm and nonfarm), nonfarm self-employed persons, domestics, and unpaid helpers in nonfarm family enterprises, wage and salaried employees, and estimates of total unemployment. Data from the CPS are provided for the week prior to the survey.The voting and registration supplement data are collected every two years to monitor trends in the voting and nonvoting behavior of United States citizens in terms of their different demographic and economic characteristics. The supplement was designed to be a proxy response supplement, meaning a single respondent could provide answers for all eligible household members. The supplement questions were asked of all persons who were both United States citizens and 18 years of age or older. The CPS instrument determined who was eligible for the voting and registration supplement through the use of check items that referred to basic CPS items, including age and citizenship.Respondents were queried on whether they were registered to vote in the November 4, 2008 election, main reasons for not being registered to vote, main reasons for not voting, whether they voted in person or by mail, and method used to register to vote. Demographic variables include age, sex, race, Hispanic origin, marital status, veteran status, educational attainment, occupation, and income. There is no supplement weight associated with the November 2008 supplement. Use the basic CPS weight, PWSSWGT, for tallying the supplement items. Please refer to the User Guide for additional information concerning the creation and use of this and other weight variables. All persons in the civilian noninstitutionalized population of the United States living in households. A multistage probability sample based on results of the decennial Census was used for the housing unit. computer-assisted personal interview (CAPI), computer-assisted telephone interview (CATI)Users are strongly encouraged to refer to the User Guide (produced by the Principal Investigators), which contains the questionnaire for the supplement, as well as additional detailed technical documentation regarding the study design, sampling frame used, and response rates.The universe statements for each variable are defined in either the basic or supplement record layout, which is located in Attachment 6 and 7, respectively, of the User Guide.ICPSR removed all FILLER and PADDING variables from the data. As a result, the column locations in any ICPSR-released data product (e.g., codebook and setup files) will have column locations that are not consistent with locations described in the User Guide.
The Consumer Expenditure Survey (CE) program provides a continuous and comprehensive flow of data on the buying habits of American consumers, including data on their expenditures, income, and consumer unit (families and single consumers) characteristics. These data are used widely in economic research and analysis, and in support of revisions of the Consumer Price Index. The Consumer Expenditure Survey (CE) program consists of two surveys, the Quarterly Interview Survey and the Diary Survey, that provide information on the buying habits of America's consumers, including data on their expenditures, income, and consumer unit (families and single consumers) characteristics. The survey data are collected for the Bureau of Labor Statistics by the U.S. Census Bureau. The CE is important because it is the only Federal survey to provide information on the complete range of consumers' expenditures and incomes, as well as the characteristics of those consumers. It is used by economic policymakers examining the impact of policy changes on economic groups, by the Census Bureau as the source of thresholds for the Supplemental Poverty Measure, by businesses and academic researchers studying consumers' spending habits and trends, by other Federal agencies, and, perhaps most importantly, to regularly revise the Consumer Price Index market basket of goods and services and their relative importance.
National
Consumer Units
Eligible population includes all civilian non-institutional persons.
Sample survey data [ssd]
Samples for the CE are national probability samples of households designed to be representative of the total U.S. civilian population. Eligible population includes all civilian non-institutional persons. The first step in sampling is the selection of primary sampling units (PSUs), which consist of counties (or parts thereof) or groups of counties. The set of sample PSUs used for the 2012 and 2013 samples is composed of 91 areas. The design classifies the PSUs into four categories:
? 21 "A" certainty PSUs are Metropolitan Statistical Areas (MSA's) with a population greater than 1.5 million. ? 38 "X" PSUs, are medium-sized MSA's. ? 16 "Y" PSUs are nonmetropolitan areas that are included in the CPI. ? 16 "Z" PSUs are nonmetropolitan areas where only the urban population data will be included in the CPI.
The sampling frame (that is, the list from which housing units were chosen) for the 2012 survey is generated from the 2000 Census of Population 100-percent-detail file. The sampling frame is augmented by new construction permits and by techniques used to eliminate recognized deficiencies in census coverage. All Enumeration Districts (EDs) from the Census that fail to meet the criterion for good addresses for new construction, and all EDs in nonpermit-issuing areas are grouped into the area segment frame. Interviewers are then assigned to list these areas before a sample is drawn. To the extent possible, an unclustered sample of units is selected within each PSU. This lack of clustering is desirable because the sample size of the Diary Survey is small relative to other surveys, while the intraclass correlations for expenditure characteristics are relatively large. This suggests that any clustering of the sample units could result in an unacceptable increase in the within-PSU variance and, as a result, the total variance. The Interview Survey is a panel rotation survey. Each panel is interviewed for five consecutive quarters and then dropped from the survey. As one panel leaves the survey, a new panel is introduced. Approximately 20 percent of the addresses are new to the survey each month.
Computer Assisted Personal Interview [capi]
The CE program is comprised of two separate components, each with its own questionnaire and independent sample: (1) the quarterly Interview Survey, and (2) the Diary Survey.