VITAL SIGNS INDICATOR Population (LU1)
FULL MEASURE NAME Population estimates
LAST UPDATED October 2019
DESCRIPTION Population is a measurement of the number of residents that live in a given geographical area, be it a neighborhood, city, county or region.
DATA SOURCES U.S Census Bureau: Decennial Census No link available (1960-1990) http://factfinder.census.gov (2000-2010)
California Department of Finance: Population and Housing Estimates Table E-6: County Population Estimates (1961-1969) Table E-4: Population Estimates for Counties and State (1971-1989) Table E-8: Historical Population and Housing Estimates (2001-2018) Table E-5: Population and Housing Estimates (2011-2019) http://www.dof.ca.gov/Forecasting/Demographics/Estimates/
U.S. Census Bureau: Decennial Census - via Longitudinal Tract Database Spatial Structures in the Social Sciences, Brown University Population Estimates (1970 - 2010) http://www.s4.brown.edu/us2010/index.htm
U.S. Census Bureau: American Community Survey 5-Year Population Estimates (2011-2017) http://factfinder.census.gov
U.S. Census Bureau: Intercensal Estimates Estimates of the Intercensal Population of Counties (1970-1979) Intercensal Estimates of the Resident Population (1980-1989) Population Estimates (1990-1999) Annual Estimates of the Population (2000-2009) Annual Estimates of the Population (2010-2017) No link available (1970-1989) http://www.census.gov/popest/data/metro/totals/1990s/tables/MA-99-03b.txt http://www.census.gov/popest/data/historical/2000s/vintage_2009/metro.html https://www.census.gov/data/datasets/time-series/demo/popest/2010s-total-metro-and-micro-statistical-areas.html
CONTACT INFORMATION vitalsigns.info@bayareametro.gov
METHODOLOGY NOTES (across all datasets for this indicator) All legal boundaries and names for Census geography (metropolitan statistical area, county, city, and tract) are as of January 1, 2010, released beginning November 30, 2010, by the U.S. Census Bureau. A Priority Development Area (PDA) is a locally-designated area with frequent transit service, where a jurisdiction has decided to concentrate most of its housing and jobs growth for development in the foreseeable future. PDA boundaries are current as of August 2019. For more information on PDA designation see http://gis.abag.ca.gov/website/PDAShowcase/.
Population estimates for Bay Area counties and cities are from the California Department of Finance, which are as of January 1st of each year. Population estimates for non-Bay Area regions are from the U.S. Census Bureau. Decennial Census years reflect population as of April 1st of each year whereas population estimates for intercensal estimates are as of July 1st of each year. Population estimates for Bay Area tracts are from the decennial Census (1970 -2010) and the American Community Survey (2008-2012 5-year rolling average; 2010-2014 5-year rolling average; 2013-2017 5-year rolling average). Estimates of population density for tracts use gross acres as the denominator.
Population estimates for Bay Area PDAs are from the decennial Census (1970 - 2010) and the American Community Survey (2006-2010 5 year rolling average; 2010-2014 5-year rolling average; 2013-2017 5-year rolling average). Population estimates for PDAs are derived from Census population counts at the tract level for 1970-1990 and at the block group level for 2000-2017. Population from either tracts or block groups are allocated to a PDA using an area ratio. For example, if a quarter of a Census block group lies with in a PDA, a quarter of its population will be allocated to that PDA. Tract-to-PDA and block group-to-PDA area ratios are calculated using gross acres. Estimates of population density for PDAs use gross acres as the denominator.
Annual population estimates for metropolitan areas outside the Bay Area are from the Census and are benchmarked to each decennial Census. The annual estimates in the 1990s were not updated to match the 2000 benchmark.
The following is a list of cities and towns by geographical area: Big Three: San Jose, San Francisco, Oakland Bayside: Alameda, Albany, Atherton, Belmont, Belvedere, Berkeley, Brisbane, Burlingame, Campbell, Colma, Corte Madera, Cupertino, Daly City, East Palo Alto, El Cerrito, Emeryville, Fairfax, Foster City, Fremont, Hayward, Hercules, Hillsborough, Larkspur, Los Altos, Los Altos Hills, Los Gatos, Menlo Park, Mill Valley, Millbrae, Milpitas, Monte Sereno, Mountain View, Newark, Pacifica, Palo Alto, Piedmont, Pinole, Portola Valley, Redwood City, Richmond, Ross, San Anselmo, San Bruno, San Carlos, San Leandro, San Mateo, San Pablo, San Rafael, Santa Clara, Saratoga, Sausalito, South San Francisco, Sunnyvale, Tiburon, Union City, Vallejo, Woodside Inland, Delta and Coastal: American Canyon, Antioch, Benicia, Brentwood, Calistoga, Clayton, Cloverdale, Concord, Cotati, Danville, Dixon, Dublin, Fairfield, Gilroy, Half Moon Bay, Healdsburg, Lafayette, Livermore, Martinez, Moraga, Morgan Hill, Napa, Novato, Oakley, Orinda, Petaluma, Pittsburg, Pleasant Hill, Pleasanton, Rio Vista, Rohnert Park, San Ramon, Santa Rosa, Sebastopol, Sonoma, St. Helena, Suisun City, Vacaville, Walnut Creek, Windsor, Yountville Unincorporated: all unincorporated towns
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
U.S. Census Bureau QuickFacts statistics for San Francisco County, California. QuickFacts data are derived from: Population Estimates, American Community Survey, Census of Population and Housing, Current Population Survey, Small Area Health Insurance Estimates, Small Area Income and Poverty Estimates, State and County Housing Unit Estimates, County Business Patterns, Nonemployer Statistics, Economic Census, Survey of Business Owners, Building Permits.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the distribution of median household income among distinct age brackets of householders in South San Francisco. Based on the latest 2019-2023 5-Year Estimates from the American Community Survey, it displays how income varies among householders of different ages in South San Francisco. It showcases how household incomes typically rise as the head of the household gets older. The dataset can be utilized to gain insights into age-based household income trends and explore the variations in incomes across households.
Key observations: Insights from 2023
In terms of income distribution across age cohorts, in South San Francisco, householders within the 25 to 44 years age group have the highest median household income at $174,940, followed by those in the 45 to 64 years age group with an income of $142,141. Meanwhile householders within the under 25 years age group report the second lowest median household income of $86,654. Notably, householders within the 65 years and over age group, had the lowest median household income at $84,211.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.
Age groups classifications include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for South San Francisco median household income by age. You can refer the same here
The Census Bureau conducts nearly one hundred surveys and censuses every year. By law, no one is permitted to reveal information from these censuses and surveys that could identify any person, household, or business. The Decennial Census collects data every 10 years about households, income, education, homeownership, and more. NOTE: Follow the link and search for SAN FRANCISCO data.
2020 Census block groups for the San Francisco Bay Region, clipped to remove major coastal and bay water areas. Features were extracted from California 2021 TIGER/Line shapefile by the Metropolitan Transportation Commission.Block groups are clusters of blocks within the same census tract. Each census tract contains at least one block group, and block groups are uniquely numbered within census tracts. Block groups have a valid code range of 0 through 9. Block groups have the same first digit of their 4-digit census block number from the same decennial census. For example, tabulation blocks numbered 3001, 3002, 3003,.., 3999 within census tract 1210.02 are also within Block Group 3 within that census tract. Block groups coded 0 are intended to only include water area, no land area, and they are generally in territorial seas, coastal water, and Great Lakes water areas.Block groups generally contain between 600 and 3,000 people. A block group usually covers a contiguous area but never crosses county or census tract boundaries. They may, however, cross the boundaries of other geographic entities like county subdivisions, places, urban areas, voting districts, congressional districts, and American Indian/Alaska Native/Native Hawaiian areas. The block group boundaries in this release are those that were delineated as part of the Census Bureau's Participant Statistical Areas Program (PSAP) for the 2020 Census.
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
A. SUMMARY Census Block groups are the next level above census blocks in the geographic hierarchy. Block groups are a combination of census blocks that is a subdivision of a census tract.A block group consists of all census blocks whose numbers begin with the same digit in a given census tract; for example, block group 3 includes all census blocks numbered in the 300s. More information on the census tracts can be found here.
B. HOW THE DATASET IS CREATED The boundaries are uploaded from TIGER/Line shapefiles provided by the U.S. Census Bureau.
C. UPDATE PROCESS This dataset is static. Changes to the census blocks are tracked in multiple datasets. See here for 2000 census tract boundaries.
D. HOW TO USE THIS DATASET This boundary file can be joined to other census datasets on GEOID. Column descriptions can be found on in the technical documentation included on the census.gov website
E. RELATED DATASETS Census 2020: Census Tracts for San Francisco Analysis Neighborhoods - 2020 census tracts assigned to neighborhoods Census 2020: Blocks for San Francisco Census 2020: Blocks for San Francisco Clipped to SF Shoreline Census 2020: Blocks Groups for San Francisco Clipped to SF Shoreline
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
This filtered view contains the population estimates for San Francisco demographic groups from the U.S. Census Bureau’s American Community Survey that are used in the Department of Public Health’s public reporting. Details on the underlying demographic data from the American Community Survey are available below. The demographics included are race/ethnicity and age groups. Different age groups are used for reporting on cases reporting versus vaccinations. The specific groups used in each of these reports can be found by using the "reporting_segment" column. We are using 2016-2020 ACS estimates in our public reporting, but additional years are included in this view as well for historical purposes.
The COVID-19 reports which use this data are available on SF.gov by clicking here.
San Francisco Population and Demographic Census data dataset filtered on:
B. HOW THE DATASET IS CREATED The raw data is obtained from the census API. Some estimates as published as-is and some are derived.
C. UPDATE PROCESS New estimates and years of data are appended to this dataset. To request additional census data for San Francisco, email support@datasf.org
D. HOW TO USE THIS DATASET The dataset is long and contains multiple estimates, years and geographies. To use this dataset, you can filter by the overall segment which contains information about the source, years, geography, demographic category and reporting segment. For census data used in specific reports, you can filter to the reporting segment. To use a subset of the data, you can create a filtered view. More information of how to filter data and create a view can be found here
This feature layer contains census tracts for the San Francisco Bay Region for Census 2020. The features were extracted from a statewide data set downloaded from the United States Census Bureau by Metropolitan Transportation Commission staff.The purpose of this feature layer is for the production of feature sets for public access and download to avoid licensing issues related to the agency's base data.Source data downloaded from https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.html_The TIGER/Line Files are shapefiles and related database files (.dbf) that are an extract of selected geographic and cartographic information from the United States Census Bureau's Master Address File/Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line File is designed to stand alone as an independent data set, or they can be combined to cover the entire nation.Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the Census 2020 Participant Statistical Areas Program (PSAP). The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,500 and 8,000 people, with an optimum size of 4,000 people.When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, etc. may require boundary revisions before a census. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some States and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries are always census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the data for the South San Francisco, CA population pyramid, which represents the South San Francisco population distribution across age and gender, using estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It lists the male and female population for each age group, along with the total population for those age groups. Higher numbers at the bottom of the table suggest population growth, whereas higher numbers at the top indicate declining birth rates. Furthermore, the dataset can be utilized to understand the youth dependency ratio, old-age dependency ratio, total dependency ratio, and potential support ratio.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for South San Francisco Population by Age. You can refer the same here
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Estimate of Median Household Income for San Francisco County/City, CA (MHICA06075A052NCEN) from 1989 to 2023 about San Francisco County/City, CA; San Francisco; CA; households; median; income; and USA.
This data layer depicts, by census block group, race for the San Francisco Bay Region. The source data, from the United States Census Bureau, has been reprocessed by the Metropolitan Transportation Commission.
To produce this feature set, the Metropolitan Transportation Commission pulled data from the Decennial Census API P2 Table, and re-tabulated race and ethnicity population totals into following categories: ● Non-Hispanic White ● Hispanic ● Non-Hispanic Asian (includes Native Hawaiian and Pacific Islander) ● Non-Hispanic Black/African American ● Non-Hispanic Other Race and Multiple Races
The resulting attribute table had all margin of error fields deleted, Hispanic subcategories deleted, percentage fields added, county code field added, and the source field names were changed.
The source table used to develop this feature service is from the United States Census Bureau, 2020 Decennial Census.
2020 Census block groups for the San Francisco Bay Region. Features were extracted from California 2021 TIGER/Line shapefile by the Metropolitan Transportation Commission.Block groups are clusters of blocks within the same census tract. Each census tract contains at least one block group, and block groups are uniquely numbered within census tracts. Block groups have a valid code range of 0 through 9. Block groups have the same first digit of their 4-digit census block number from the same decennial census. For example, tabulation blocks numbered 3001, 3002, 3003,.., 3999 within census tract 1210.02 are also within Block Group 3 within that census tract. Block groups coded 0 are intended to only include water area, no land area, and they are generally in territorial seas, coastal water, and Great Lakes water areas.Block groups generally contain between 600 and 3,000 people. A block group usually covers a contiguous area but never crosses county or census tract boundaries. They may, however, cross the boundaries of other geographic entities like county subdivisions, places, urban areas, voting districts, congressional districts, and American Indian/Alaska Native/Native Hawaiian areas. The block group boundaries in this release are those that were delineated as part of the Census Bureau's Participant Statistical Areas Program (PSAP) for the 2020 Census.
Tracts; January 1, 2019 vintage; Generalized
Features provide a view of 2020 Census tracts for the San Francisco Bay Region. Features are a subset of the Census Tracts 500k service at https://data.bayareametro.gov/dataset/Census-Tracts-500K/dg5p-pxcu.
Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2020 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses.
Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline.
Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division or incorporated place boundaries in some States and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy.
In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous.
For the 2010 Census and beyond, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.
The Census Bureau uses suffixes to help identify census tract changes for comparison purposes. Local participants have an opportunity to review the existing census tracts before each census. If local participants split a census tract, the split parts usually retain the basic number, but receive different suffixes. In a few counties, local participants request major changes to, and renumbering of, the census tracts. Changes to individual census tract boundaries usually do not result in census tract numbering changes.
Relationship to Other Geographic Entities—Within the standard census geographic hierarchy, census tracts never cross state or county boundaries, but may cross the boundaries of county subdivisions, places, urban areas, voting districts, congressional districts, and American Indian, Alaska Native, and Native Hawaiian areas.
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
A. SUMMARY Census blocks, the smallest geographic area for which the Bureau of the Census collects and tabulates decennial census data, are formed by streets, roads, railroads, streams and other bodies of water, other visible physical and cultural features, and the legal boundaries shown on Census Bureau maps. More information on the census tracts can be found here. B. HOW THE DATASET IS CREATED The boundaries are uploaded from TIGER/Line shapefiles provided by the U.S. Census Bureau. C. UPDATE PROCESS This dataset is static. Changes to the census blocks are tracked in multiple datasets. See here for 2000 and 2010 census tract boundaries. D. HOW TO USE THIS DATASET This boundary file can be joined to other census datasets on GEOID. Column descriptions can be found on in the technical documentation included on the census.gov website E. RELATED DATASETS Census 2020: Census Tracts for San Francisco Analysis Neighborhoods - 2020 census tracts assigned to neighborhoods Census 2020: Blocks for San Francisco Clipped to SF Shoreline Census 2020: Blocks Groups for San Francisco Census 2020: Blocks Groups for San Francisco Clipped to SF Shoreline
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Incorporated Places (cities and towns) are those reported to the Census Bureau as legally in existence as of May 28, 2021, under the laws of their respective states. Features were extracted from, and clipped using, California 2020 TIGER/Line shapefiles by the Metropolitan Transportation Commission. An incorporated place provides governmental functions for a concentration of people, as opposed to a minor civil division, which generally provides services or administers an area without regard, necessarily, to population. Places may extend across county and county subdivision boundaries, but never across state boundaries. An incorporated place usually is a city, town, village, or borough, but can have other legal descriptions.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the the household distribution across 16 income brackets among four distinct age groups in South San Francisco: Under 25 years, 25-44 years, 45-64 years, and over 65 years. The dataset highlights the variation in household income, offering valuable insights into economic trends and disparities within different age categories, aiding in data analysis and decision-making..
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Income brackets:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for South San Francisco median household income by age. You can refer the same here
This data layer depicts, by census tract, mortgage payments as a percentage of household income in the past 12 months for the San Francisco Bay Region. The source data, from the United States Census Bureau, has been reprocessed by the Metropolitan Transportation Commission.
To produce this feature set, the Metropolitan Transportation Commission downloaded American Community Survey (ACS) table B25091 to create a feature set representing housing unit mortgage payments as a percentage of household income by the following categories: ● Mortgage less than 30% of household income ● Mortgage is 30.0% to 49.9% of household income ● Mortgage is greater than or equal to 50% of household income
The resulting attribute table had all margin of error fields deleted, housing units without a mortgage fields deleted, percentage fields added, county code field added, jurisdiction name added, and the source field names were changed.
The source table used to develop this feature service is from the United States Census Bureau, 2015-2019 American Community Survey 5-Year Estimates and can be downloaded from https://data.census.gov/cedsci/table?q=B25091%3A%20MORTGAGE%20STATUS%20BY%20SELECTED%20MONTHLY%20OWNER%20COSTS%20AS%20A%20PERCENTAGE%20OF%20HOUSEHOLD%20INCOME%20IN%20THE%20PAST%2012%20MONTHS&g=0400000US06%241500000&tid=ACSDT5Y2019.B25091
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
County boundaries for the San Francisco Bay Region. Features were extracted from California 2020 TIGER/Line shapefile by the Metropolitan Transportation Commission. The 2020 TIGER/Line Shapefiles reflect available governmental unit boundaries of the counties and equivalent entities as of May 28, 2021.Counties and equivalent entities are primary legal divisions of states. In most states, these entities are termed “counties.” Each county or statistically equivalent entity is assigned a 3-character FIPS code that is unique within a state.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
County boundaries for the San Francisco Bay Region, clipped to remove major coastal and bay water areas. Features were extracted from, and clipped using, California 2020 TIGER/Line shapefiles by the Metropolitan Transportation Commission. The 2020 TIGER/Line Shapefiles reflect available governmental unit boundaries of the counties and equivalent entities as of May 28, 2021.Counties and equivalent entities are primary legal divisions of states. In most states, these entities are termed “counties.” Each county or statistically equivalent entity is assigned a 3-character FIPS code that is unique within a state.
A. SUMMARY Census blocks with Pacific Ocean and San Francisco Bay water clipped out. Census Block groups are the next level above census blocks in the geographic hierarchy. Block groups are a combination of census blocks that is a subdivision of a census tract.A block group consists of all census blocks whose numbers begin with the same digit in a given census tract; for example, block group 3 includes all census blocks numbered in the 300s. More information on the census tracts can be found here. B. HOW THE DATASET IS CREATED The boundaries are uploaded from TIGER/Line shapefiles provided by the U.S. Census Bureau and clipped using the water boundaries provided by the U.S. Census Bureau. C. UPDATE PROCESS This dataset is static. Changes to the census blocks are tracked in multiple datasets. See here for 2000 census tract boundaries. D. HOW TO USE THIS DATASET This boundary file can be joined to other census datasets on GEOID. Column descriptions can be found on in the technical documentation included on the census.gov website E. RELATED DATASETS Census 2020: Census Tracts for San Francisco Analysis Neighborhoods - 2020 census tracts assigned to neighborhoods Census 2020: Blocks for San Francisco Census 2020: Blocks for San Francisco Clipped to SF Shoreline Census 2020: Blocks Groups for San Francisco
VITAL SIGNS INDICATOR Population (LU1)
FULL MEASURE NAME Population estimates
LAST UPDATED October 2019
DESCRIPTION Population is a measurement of the number of residents that live in a given geographical area, be it a neighborhood, city, county or region.
DATA SOURCES U.S Census Bureau: Decennial Census No link available (1960-1990) http://factfinder.census.gov (2000-2010)
California Department of Finance: Population and Housing Estimates Table E-6: County Population Estimates (1961-1969) Table E-4: Population Estimates for Counties and State (1971-1989) Table E-8: Historical Population and Housing Estimates (2001-2018) Table E-5: Population and Housing Estimates (2011-2019) http://www.dof.ca.gov/Forecasting/Demographics/Estimates/
U.S. Census Bureau: Decennial Census - via Longitudinal Tract Database Spatial Structures in the Social Sciences, Brown University Population Estimates (1970 - 2010) http://www.s4.brown.edu/us2010/index.htm
U.S. Census Bureau: American Community Survey 5-Year Population Estimates (2011-2017) http://factfinder.census.gov
U.S. Census Bureau: Intercensal Estimates Estimates of the Intercensal Population of Counties (1970-1979) Intercensal Estimates of the Resident Population (1980-1989) Population Estimates (1990-1999) Annual Estimates of the Population (2000-2009) Annual Estimates of the Population (2010-2017) No link available (1970-1989) http://www.census.gov/popest/data/metro/totals/1990s/tables/MA-99-03b.txt http://www.census.gov/popest/data/historical/2000s/vintage_2009/metro.html https://www.census.gov/data/datasets/time-series/demo/popest/2010s-total-metro-and-micro-statistical-areas.html
CONTACT INFORMATION vitalsigns.info@bayareametro.gov
METHODOLOGY NOTES (across all datasets for this indicator) All legal boundaries and names for Census geography (metropolitan statistical area, county, city, and tract) are as of January 1, 2010, released beginning November 30, 2010, by the U.S. Census Bureau. A Priority Development Area (PDA) is a locally-designated area with frequent transit service, where a jurisdiction has decided to concentrate most of its housing and jobs growth for development in the foreseeable future. PDA boundaries are current as of August 2019. For more information on PDA designation see http://gis.abag.ca.gov/website/PDAShowcase/.
Population estimates for Bay Area counties and cities are from the California Department of Finance, which are as of January 1st of each year. Population estimates for non-Bay Area regions are from the U.S. Census Bureau. Decennial Census years reflect population as of April 1st of each year whereas population estimates for intercensal estimates are as of July 1st of each year. Population estimates for Bay Area tracts are from the decennial Census (1970 -2010) and the American Community Survey (2008-2012 5-year rolling average; 2010-2014 5-year rolling average; 2013-2017 5-year rolling average). Estimates of population density for tracts use gross acres as the denominator.
Population estimates for Bay Area PDAs are from the decennial Census (1970 - 2010) and the American Community Survey (2006-2010 5 year rolling average; 2010-2014 5-year rolling average; 2013-2017 5-year rolling average). Population estimates for PDAs are derived from Census population counts at the tract level for 1970-1990 and at the block group level for 2000-2017. Population from either tracts or block groups are allocated to a PDA using an area ratio. For example, if a quarter of a Census block group lies with in a PDA, a quarter of its population will be allocated to that PDA. Tract-to-PDA and block group-to-PDA area ratios are calculated using gross acres. Estimates of population density for PDAs use gross acres as the denominator.
Annual population estimates for metropolitan areas outside the Bay Area are from the Census and are benchmarked to each decennial Census. The annual estimates in the 1990s were not updated to match the 2000 benchmark.
The following is a list of cities and towns by geographical area: Big Three: San Jose, San Francisco, Oakland Bayside: Alameda, Albany, Atherton, Belmont, Belvedere, Berkeley, Brisbane, Burlingame, Campbell, Colma, Corte Madera, Cupertino, Daly City, East Palo Alto, El Cerrito, Emeryville, Fairfax, Foster City, Fremont, Hayward, Hercules, Hillsborough, Larkspur, Los Altos, Los Altos Hills, Los Gatos, Menlo Park, Mill Valley, Millbrae, Milpitas, Monte Sereno, Mountain View, Newark, Pacifica, Palo Alto, Piedmont, Pinole, Portola Valley, Redwood City, Richmond, Ross, San Anselmo, San Bruno, San Carlos, San Leandro, San Mateo, San Pablo, San Rafael, Santa Clara, Saratoga, Sausalito, South San Francisco, Sunnyvale, Tiburon, Union City, Vallejo, Woodside Inland, Delta and Coastal: American Canyon, Antioch, Benicia, Brentwood, Calistoga, Clayton, Cloverdale, Concord, Cotati, Danville, Dixon, Dublin, Fairfield, Gilroy, Half Moon Bay, Healdsburg, Lafayette, Livermore, Martinez, Moraga, Morgan Hill, Napa, Novato, Oakley, Orinda, Petaluma, Pittsburg, Pleasant Hill, Pleasanton, Rio Vista, Rohnert Park, San Ramon, Santa Rosa, Sebastopol, Sonoma, St. Helena, Suisun City, Vacaville, Walnut Creek, Windsor, Yountville Unincorporated: all unincorporated towns