5 datasets found
  1. E

    [Cross Bay Demographics] - Demographic data for introduced crab from...

    • erddap.bco-dmo.org
    Updated Jan 14, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    BCO-DMO (2020). [Cross Bay Demographics] - Demographic data for introduced crab from multiple bays along the Central California coast in 2009-2016 (RAPID: A rare opportunity to examine overcompensation resulting from intensive harvest of an introduced predator) [Dataset]. https://erddap.bco-dmo.org/erddap/info/bcodmo_dataset_701751/index.html
    Explore at:
    Dataset updated
    Jan 14, 2020
    Dataset provided by
    Biological and Chemical Oceanographic Data Management Office (BCO-DMO)
    Authors
    BCO-DMO
    License

    https://www.bco-dmo.org/dataset/701751/licensehttps://www.bco-dmo.org/dataset/701751/license

    Area covered
    Variables measured
    bay, sex, date, site, size, trap, gravid, injury, species, latitude, and 2 more
    Description

    Demographic data for introduced crab from multiple bays along the Central California coast, shallow subtidal (<3 m depth), in 2015. access_formats=.htmlTable,.csv,.json,.mat,.nc,.tsv,.esriCsv,.geoJson acquisition_description=We conducted monthly trappings of invasive European green crabs to gather demographic data from several bays in northern California: Bodega Harbor, Tomales Bay, Bolinas Lagoon, San Francisco Bay, and Elkhorn Slough. All sites were accessed by foot via shore entry. At each of four sites within each bay, we placed 5 baited traps (folding Fukui fish traps) and 5 baited minnow traps in shallow intertidal areas. Traps arrays were set with fish and minnow traps alternating and with each 20 m apart. Traps were retrieved 24 hours later and traps were rebaited and collected again the following day.\u00a0Trapping was continued for three consecutive days with traps removed on the final day.\u00a0Each day, data for crab species, size, sex, reproductive condition, and injuries were collected for all crabs in the field. Following data collection, all crabs were returned to the lab, and frozen overnight prior to disposal.\u00a0

    See Turner et al. (2016)\u00a0Biological Invasions\u00a018: 533-548 for additional methodological details:
    Turner, B.C., de Rivera, C.E., Grosholz, E.D., & Ruiz, G.M. 2016. Assessing population increase as a possible outcome to management of invasive species. Biological Invasions, 18(2), pp 533\u2013548. doi:10.1007/s10530-015-1026-9 awards_0_award_nid=699764 awards_0_award_number=OCE-1514893 awards_0_data_url=http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=1514893 awards_0_funder_name=NSF Division of Ocean Sciences awards_0_funding_acronym=NSF OCE awards_0_funding_source_nid=355 awards_0_program_manager=David L. Garrison awards_0_program_manager_nid=50534 cdm_data_type=Other comment=Demographic data for introduced crab from multiple bays in 2015 PI: Edwin Grosholz (UC Davis) Co-PI: Catherine de Rivera & Gregory Ruiz (Portland State University)
    Version: 15 June 2017 Conventions=COARDS, CF-1.6, ACDD-1.3 data_source=extract_data_as_tsv version 2.3 19 Dec 2019 defaultDataQuery=&time<now doi=10.1575/1912/bco-dmo.701751.1 Easternmost_Easting=-121.738422 geospatial_lat_max=38.316968 geospatial_lat_min=36.823953 geospatial_lat_units=degrees_north geospatial_lon_max=-121.738422 geospatial_lon_min=-123.058725 geospatial_lon_units=degrees_east infoUrl=https://www.bco-dmo.org/dataset/701751 institution=BCO-DMO instruments_0_dataset_instrument_description=At each of four sites within each bay, we placed 5 baited traps (folding Fukui fish traps) and 5 baited minnow traps in shallow intertidal areas. instruments_0_dataset_instrument_nid=701774 instruments_0_description=Fukui produces multi-species, multi-purpose collapsible or stackable fish traps, available in different sizes. instruments_0_instrument_name=Fukui fish trap instruments_0_instrument_nid=701772 instruments_0_supplied_name=folding Fukui fish traps metadata_source=https://www.bco-dmo.org/api/dataset/701751 Northernmost_Northing=38.316968 param_mapping={'701751': {'lat': 'master - latitude', 'lon': 'master - longitude'}} parameter_source=https://www.bco-dmo.org/mapserver/dataset/701751/parameters people_0_affiliation=University of California-Davis people_0_affiliation_acronym=UC Davis people_0_person_name=Edwin Grosholz people_0_person_nid=699768 people_0_role=Principal Investigator people_0_role_type=originator people_1_affiliation=Portland State University people_1_affiliation_acronym=PSU people_1_person_name=Catherine de Rivera people_1_person_nid=699771 people_1_role=Co-Principal Investigator people_1_role_type=originator people_2_affiliation=Portland State University people_2_affiliation_acronym=PSU people_2_person_name=Gregory Ruiz people_2_person_nid=471603 people_2_role=Co-Principal Investigator people_2_role_type=originator people_3_affiliation=Woods Hole Oceanographic Institution people_3_affiliation_acronym=WHOI BCO-DMO people_3_person_name=Shannon Rauch people_3_person_nid=51498 people_3_role=BCO-DMO Data Manager people_3_role_type=related project=Invasive_predator_harvest projects_0_acronym=Invasive_predator_harvest projects_0_description=The usual expectation is that when populations of plants and animals experience repeated losses to predators or human harvest, they would decline over time. If instead these populations rebound to numbers exceeding their initial levels, this would seem counter-intuitive or even paradoxical. However, for several decades mathematical models of population processes have shown that this unexpected response, formally known as overcompensation, is not only possible, but even expected under some circumstances. In what may be the first example of overcompensation in a marine system, a dramatic increase in a population of the non-native European green crab was recently observed following an intensive removal program. This RAPID project will use field surveys and laboratory experiments to verify that this population explosion results from overcompensation. Data will be fed into population models to understand to what degree populations processes such as cannibalism by adult crabs on juvenile crabs and changes in maturity rate of reproductive females are contributing to or modifying overcompensation. The work will provide important insights into the fundamental population dynamics that can produce overcompensation in both natural and managed populations. Broader Impacts include mentoring graduate trainees and undergraduate interns in the design and execution of field experiments as well as in laboratory culture and feeding experiments. The project will also involve a network of citizen scientists who are involved with restoration activities in this region and results will be posted on the European Green Crab Project website. This project aims to establish the first example of overcompensation in marine systems. Overcompensation refers to the paradoxical process where reduction of a population due to natural or human causes results in a greater equilibrium population than before the reduction. A population explosion of green crabs has been recently documented in a coastal lagoon and there are strong indications that this may be the result of overcompensation. Accelerated maturation of females, which can accompany and modify the expression of overcompensation has been observed. This RAPID project will collect field data from this unusual recruitment class and conduct targeted mesocosm experiments. These will include population surveys and mark-recapture studies to measure demographic rates across study sites. Laboratory mesocosm studies using this recruitment class will determine size specific mortality. Outcomes will be used in population dynamics models to determine to what degree overcompensation has created this dramatic population increase. The project will seek answers to the following questions: 1) what are the rates of cannibalism by adult green crabs and large juveniles on different sizes of juvenile green crabs, 2) what are the consequences of smaller size at first reproduction for population dynamics and for overcompensation and 3) how quickly will the green crab population return to the levels observed prior to the eradication program five years earlier? projects_0_end_date=2016-11 projects_0_geolocation=Europe projects_0_name=RAPID: A rare opportunity to examine overcompensation resulting from intensive harvest of an introduced predator projects_0_project_nid=699765 projects_0_start_date=2014-12 sourceUrl=(local files) Southernmost_Northing=36.823953 standard_name_vocabulary=CF Standard Name Table v55 version=1 Westernmost_Easting=-123.058725 xml_source=osprey2erddap.update_xml() v1.3

  2. d

    Population genetics, demographic and evolutionary history of the Dudley’s...

    • datadryad.org
    zip
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tracy Misiewicz, Population genetics, demographic and evolutionary history of the Dudley’s lousewort, a rare redwood forest specialist (Pedicularis dudleyi) [Dataset]. http://doi.org/10.6078/D1S415
    Explore at:
    zipAvailable download formats
    Dataset provided by
    Dryad
    Authors
    Tracy Misiewicz
    Time period covered
    Jun 30, 2021
    Description

    Pedicularis dudleyi (Dudley’s Lousewort, Orobanchaceae) is an extremely rare wildflower endemic to the redwood forests of Central California. Until recently the species was known only from three extant natural populations. However, one of those populations was recently described as a novel species (P. rigginsiae D.J. Keil) based on morphological and ecological data leaving only two populations described as P. dudleyi. While little is known about the past distribution of the species, historical records have led to speculation that the species was once more widespread and may have suffered from habitat destruction as a result of widespread logging during the early twentieth century. We utilized a combination of ddRAD SNP and Sanger sequencing data to: 1) Describe the genetic diversity and population structure of P. dudleyi; 2) Test the hypothesis that the species underwent a bottleneck corresponding with increased logging of redwood forests in the early twentieth ...

  3. E

    [Monthly Trapping] - Demographic data from introduced crab in Seadrift...

    • erddap.bco-dmo.org
    Updated Jan 14, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    BCO-DMO (2020). [Monthly Trapping] - Demographic data from introduced crab in Seadrift Lagoon 2009-2019 (RAPID: A rare opportunity to examine overcompensation resulting from intensive harvest of an introduced predator) [Dataset]. https://erddap.bco-dmo.org/erddap/info/bcodmo_dataset_701863/index.html
    Explore at:
    Dataset updated
    Jan 14, 2020
    Dataset provided by
    Biological and Chemical Oceanographic Data Management Office (BCO-DMO)
    Authors
    BCO-DMO
    License

    https://www.bco-dmo.org/dataset/701863/licensehttps://www.bco-dmo.org/dataset/701863/license

    Area covered
    Variables measured
    sex, date, site, size, gravid, injury, lagoon, species, latitude, longitude, and 2 more
    Description

    Demographic data from introduced crab in Seadrift Lagoon (Central California coast, shallow subtidal (<3 m depth)) in 2015. access_formats=.htmlTable,.csv,.json,.mat,.nc,.tsv,.esriCsv,.geoJson acquisition_description=We conducted monthly trapping of invasive European green crabs to gather demographic data in Seadrift Lagoon, Stinson Beach, CA (lat 37.907440 long -122.666169).\u00a0All sites were accessed by either kayak or by foot via shore entry.\u00a0At each of six sites, we placed 10 baited traps (folding Fukui fish traps) in shallow (<2 m) subtidal areas. Traps were retrieved 24 hours later and were rebaited and collected again the following day.\u00a0Trapping was continued for three consecutive days with traps removed on the final day.\u00a0Each day, data for crab species, size, sex, reproductive condition, injuries, and presence of marks were collected for all crabs in the field. Following data collection, all crabs were returned to the lab, frozen overnight disposed of in commercial agricultural compost. \u00a0

    For each date and site, crabs from all traps (e.g. 10 traps per site) are pooled for counting and measuring.
    Traps Used for each date (some with macroalgae "Ulva"):
    02/19/2015\u00a0\u00a0 \u00a010 baited traps + 5 traps with ulva
    02/20/2015\u00a0\u00a0 \u00a010 baited traps + 5 with ulva
    03/05/2015\u00a0\u00a0 \u00a010 baited traps + 5 traps with ulva per site
    03/06/2015\u00a0\u00a0 \u00a010 baited traps + 5 traps with ulva
    03/24/2015\u00a0\u00a0 \u00a010 traps/site
    04/08/2015\u00a0\u00a0 \u00a010 traps/site
    04/15/2015\u00a0\u00a0 \u00a010 baited traps + 4 traps with ulva
    04/24/2015\u00a0\u00a0 \u00a010 traps/site
    05/27/2015\u00a0\u00a0 \u00a0site 1 & 5 had 10 traps, site 3 had 9 traps
    06/23/2015\u00a0\u00a0 \u00a0site 1 & 3 had 15 traps, site 5 had 14 traps
    06/24/2015\u00a0\u00a0 \u00a0site 1 & 3 had 15 traps, site 5 had 14 traps
    07/21/2015\u00a0\u00a0 \u00a0traps per site: site 1=20, site 2=20, site 3=17, site 4=15, site 5=10, site 6=10, site 7=20
    08/25/2017\u00a0\u00a0 \u00a010 traps/site
    08/26/2015\u00a0\u00a0 \u00a010 traps/site
    08/27/2015\u00a0\u00a0 \u00a010 traps/site
    09/01/2015\u00a0\u00a0 \u00a010 traps/site
    09/02/2015\u00a0\u00a0 \u00a010 traps/site
    09/30/2015\u00a0\u00a0 \u00a010 traps/site
    10/01/2015\u00a0\u00a0 \u00a010 traps/site
    10/02/2015\u00a0\u00a0 \u00a010 traps/site
    12/01/2015\u00a0\u00a0 \u00a010 traps/site
    12/02/2015\u00a0\u00a0 \u00a010 traps/site
    12/03/2015\u00a0\u00a0 \u00a010 traps/site

    See Turner et al. (2016)\u00a0Biological Invasions\u00a018: 533-548 for additional methodological details:
    Turner, B.C., de Rivera, C.E., Grosholz, E.D., & Ruiz, G.M. 2016. Assessing population increase as a possible outcome to management of invasive species. Biological Invasions, 18(2), pp 533\u2013548. doi:10.1007/s10530-015-1026-9 awards_0_award_nid=699764 awards_0_award_number=OCE-1514893 awards_0_data_url=http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=1514893 awards_0_funder_name=NSF Division of Ocean Sciences awards_0_funding_acronym=NSF OCE awards_0_funding_source_nid=355 awards_0_program_manager=David L. Garrison awards_0_program_manager_nid=50534 cdm_data_type=Other comment=Monthly trapping in Seadrift Lagoon in 2015 PI: Edwin Grosholz (UC Davis) Co-PI: Catherine de Rivera & Gregory Ruiz (Portland State University)
    Version: 02 June 2017 Conventions=COARDS, CF-1.6, ACDD-1.3 data_source=extract_data_as_tsv version 2.3 19 Dec 2019 defaultDataQuery=&time<now doi=10.1575/1912/bco-dmo.701863.1 Easternmost_Easting=-122.6661694 geospatial_lat_max=37.90744 geospatial_lat_min=37.90744 geospatial_lat_units=degrees_north geospatial_lon_max=-122.6661694 geospatial_lon_min=-122.6661694 geospatial_lon_units=degrees_east infoUrl=https://www.bco-dmo.org/dataset/701863 institution=BCO-DMO instruments_0_dataset_instrument_description=At each of the six sites used for monthly trapping plus three additional sites, we placed 15 baited traps (folding Fukui fish traps) in shallow ( instruments_0_dataset_instrument_nid=701870 instruments_0_description=Fukui produces multi-species, multi-purpose collapsible or stackable fish traps, available in different sizes. instruments_0_instrument_name=Fukui fish trap instruments_0_instrument_nid=701772 instruments_0_supplied_name=Fukui fish traps metadata_source=https://www.bco-dmo.org/api/dataset/701863 Northernmost_Northing=37.90744 param_mapping={'701863': {'lat': 'master - latitude', 'lon': 'master - longitude'}} parameter_source=https://www.bco-dmo.org/mapserver/dataset/701863/parameters people_0_affiliation=University of California-Davis people_0_affiliation_acronym=UC Davis people_0_person_name=Edwin Grosholz people_0_person_nid=699768 people_0_role=Principal Investigator people_0_role_type=originator people_1_affiliation=Portland State University people_1_affiliation_acronym=PSU people_1_person_name=Catherine de Rivera people_1_person_nid=699771 people_1_role=Co-Principal Investigator people_1_role_type=originator people_2_affiliation=Portland State University people_2_affiliation_acronym=PSU people_2_person_name=Gregory Ruiz people_2_person_nid=471603 people_2_role=Co-Principal Investigator people_2_role_type=originator people_3_affiliation=Woods Hole Oceanographic Institution people_3_affiliation_acronym=WHOI BCO-DMO people_3_person_name=Shannon Rauch people_3_person_nid=51498 people_3_role=BCO-DMO Data Manager people_3_role_type=related project=Invasive_predator_harvest projects_0_acronym=Invasive_predator_harvest projects_0_description=The usual expectation is that when populations of plants and animals experience repeated losses to predators or human harvest, they would decline over time. If instead these populations rebound to numbers exceeding their initial levels, this would seem counter-intuitive or even paradoxical. However, for several decades mathematical models of population processes have shown that this unexpected response, formally known as overcompensation, is not only possible, but even expected under some circumstances. In what may be the first example of overcompensation in a marine system, a dramatic increase in a population of the non-native European green crab was recently observed following an intensive removal program. This RAPID project will use field surveys and laboratory experiments to verify that this population explosion results from overcompensation. Data will be fed into population models to understand to what degree populations processes such as cannibalism by adult crabs on juvenile crabs and changes in maturity rate of reproductive females are contributing to or modifying overcompensation. The work will provide important insights into the fundamental population dynamics that can produce overcompensation in both natural and managed populations. Broader Impacts include mentoring graduate trainees and undergraduate interns in the design and execution of field experiments as well as in laboratory culture and feeding experiments. The project will also involve a network of citizen scientists who are involved with restoration activities in this region and results will be posted on the European Green Crab Project website. This project aims to establish the first example of overcompensation in marine systems. Overcompensation refers to the paradoxical process where reduction of a population due to natural or human causes results in a greater equilibrium population than before the reduction. A population explosion of green crabs has been recently documented in a coastal lagoon and there are strong indications that this may be the result of overcompensation. Accelerated maturation of females, which can accompany and modify the expression of overcompensation has been observed. This RAPID project will collect field data from this unusual recruitment class and conduct targeted mesocosm experiments. These will include population surveys and mark-recapture studies to measure demographic rates across study sites. Laboratory mesocosm studies using this recruitment class will determine size specific mortality. Outcomes will be used in population dynamics models to determine to what degree overcompensation has created this dramatic population increase. The project will seek answers to the following questions: 1) what are the rates of cannibalism by adult green crabs and large juveniles on different sizes of juvenile green crabs, 2) what are the consequences of smaller size at first reproduction for population dynamics and for overcompensation and 3) how quickly will the green crab population return to the levels observed prior to the eradication program five years earlier? projects_0_end_date=2016-11 projects_0_geolocation=Europe projects_0_name=RAPID: A rare opportunity to examine overcompensation resulting from intensive harvest of an introduced predator projects_0_project_nid=699765 projects_0_start_date=2014-12 sourceUrl=(local files) Southernmost_Northing=37.90744 standard_name_vocabulary=CF Standard Name Table v55 subsetVariables=lagoon,latitude,longitude version=1 Westernmost_Easting=-122.6661694 xml_source=osprey2erddap.update_xml() v1.3

  4. Study of Women's Health Across the Nation (SWAN), 2002-2004: Visit 06...

    • icpsr.umich.edu
    ascii, delimited, r +3
    Updated Jun 30, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sutton-Tyrrell, Kim; Selzer, Faith; Sowers, MaryFran R. (Mary Francis Roy); Finkelstein, Joel S.; Powell, Lynda H.; Gold, Ellen B.; Greendale, Gail A.; Weiss, Gerson; Matthews, Karen A. (2025). Study of Women's Health Across the Nation (SWAN), 2002-2004: Visit 06 Dataset [Dataset]. http://doi.org/10.3886/ICPSR31181.v3
    Explore at:
    r, sas, ascii, delimited, stata, spssAvailable download formats
    Dataset updated
    Jun 30, 2025
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    Authors
    Sutton-Tyrrell, Kim; Selzer, Faith; Sowers, MaryFran R. (Mary Francis Roy); Finkelstein, Joel S.; Powell, Lynda H.; Gold, Ellen B.; Greendale, Gail A.; Weiss, Gerson; Matthews, Karen A.
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/31181/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/31181/terms

    Time period covered
    Mar 15, 2002 - Feb 15, 2004
    Area covered
    California, United States, Los Angeles, Michigan, Pennsylvania, New Jersey, Ypsilanti, Alameda County, Boston, Massachusetts
    Description

    The Study of Women's Health Across the Nation (SWAN), is a multi-site longitudinal, epidemiologic study designed to examine the health of women during their middle years. The study examines the physical, biological, psychological and social changes during this transitional period. The goal of SWAN's research is to help scientists, health care providers and women learn how mid-life experiences affect health and quality of life during aging. Data were collected about doctor visits, medical conditions, medications, treatments, medical procedures, relationships, smoking, and menopause related information such as age at pre-, peri- and post-menopause, self-attitudes, feelings, and common physical problems associated with menopause. The study began in 1994. Between 2002 and 2004, 2,448 of the 3,302 women that joined SWAN were seen for their sixth follow-up visit. The research centers are located in the following communities: Ypsilanti and Inkster, MI (University of Michigan); Boston, MA (Massachusetts General Hospital); Chicago, IL (Rush Presbyterian-St. Luke's Medical Center); Alameda and Contra Costa County, CA (University of California-Davis and Kaiser Permanente); Los Angeles, CA (University of California-Los Angeles); Hackensack, NJ (Hackensack University Medical Center); and Pittsburgh, PA (University of Pittsburgh). SWAN participants represent five racial/ethnic groups and a variety of backgrounds and cultures. Demographic and background information includes age, language of interview, marital status, household composition, and employment.

  5. n

    Wildfire alters the disturbance impacts of an emerging infectious disease...

    • data.niaid.nih.gov
    • search.dataone.org
    • +1more
    zip
    Updated Aug 25, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Allison Simler-Williamson; Margaret Metz; Kerri Frangioso; David Rizzo (2020). Wildfire alters the disturbance impacts of an emerging infectious disease via changes to host occurrence and demographic structure [Dataset]. http://doi.org/10.25338/B8N626
    Explore at:
    zipAvailable download formats
    Dataset updated
    Aug 25, 2020
    Dataset provided by
    Lewis & Clark College
    University of California, Davis
    University of California
    Authors
    Allison Simler-Williamson; Margaret Metz; Kerri Frangioso; David Rizzo
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description
    1. Anthropogenic activities have altered historical disturbance regimes, and understanding the mechanisms by which these shifting perturbations interact is essential to predicting where they may erode ecosystem resilience. Emerging infectious plant diseases, caused by human translocation of nonnative pathogens, can generate ecologically-damaging forms of novel biotic disturbance. Further, abiotic disturbances, such as wildfire, may influence the severity and extent of disease-related perturbations via their effects on the occurrence of hosts, pathogens, and microclimates; however, these interactions have rarely been examined.

    2. The disease “sudden oak death” (SOD), associated with the introduced pathogen Phytophthora ramorum, causes acute, landscape-scale tree mortality in California’s fire-prone coastal forests. Here, we examined interactions between wildfire and the biotic disturbance impacts of this emerging infectious disease. Leveraging long-term datasets that describe wildfire occurrence and P. ramorum dynamics across the Big Sur region, we modeled the influence of recent and historical fires on epidemiological parameters, including pathogen presence, infestation intensity, reinvasion, and host mortality.

    3. Past wildfire altered disease dynamics and reduced SOD-related mortality, indicating a negative interaction between these abiotic and biotic disturbances. Frequently-burned forests were less likely to be invaded by P. ramorum, had lower incidence of host infection, and exhibited decreased disease-related biotic disturbance, which was associated with reduced occurrence and density of epidemiologically-significant hosts. Following a recent wildfire, survival of mature bay laurel, a key sporulating host, was the primary driver of P. ramorum infestation and reinvasion, but younger, rapidly regenerating host vegetation capable of sporulation did not measurably influence disease dynamics. Notably, the effect of P. ramorum infection on host mortality was reduced in recently-burned areas, indicating that the loss of mature host canopies may temporarily dampen pathogen transmission and “release” susceptible species from significant inoculum pressure.

    4.Synthesis: Cumulatively, our findings indicate that fire history has contributed to heterogeneous patterns of biotic disturbance and disease-related decline across this landscape, via changes to the both the occurrence of available hosts and the demography of epidemiologically-important host populations. These results highlight that human-altered abiotic disturbances may play a foundational role in structuring infectious disease dynamics, contributing to future outbreaks, and driving biotic disturbance regimes.

    Methods This dataset is a subset of a long-term forest monitoring study to examine the impacts of Phytopthora ramorum on the coast redwood and mixed evergreen forests of Big Sur, California. The data was collected over 3 field survey periods, from 2006-7, 2010-11, and 2013-14, and a subset of the included survey plots were impacted by the 2008 Basin Complex and Chalk fires. More detailed information about the variables collected and the field and laboratory methods used to collect these variables can be found in the associated manuscript. The plot-level variables included in this dataset have been aggregated from measurements collected at the stem and tree level from individual tagged trees. The included tree and stem measurements have been subsetted to include only tanoak and oak trees, which are the focus of the associated manuscript.

  6. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
BCO-DMO (2020). [Cross Bay Demographics] - Demographic data for introduced crab from multiple bays along the Central California coast in 2009-2016 (RAPID: A rare opportunity to examine overcompensation resulting from intensive harvest of an introduced predator) [Dataset]. https://erddap.bco-dmo.org/erddap/info/bcodmo_dataset_701751/index.html

[Cross Bay Demographics] - Demographic data for introduced crab from multiple bays along the Central California coast in 2009-2016 (RAPID: A rare opportunity to examine overcompensation resulting from intensive harvest of an introduced predator)

Explore at:
Dataset updated
Jan 14, 2020
Dataset provided by
Biological and Chemical Oceanographic Data Management Office (BCO-DMO)
Authors
BCO-DMO
License

https://www.bco-dmo.org/dataset/701751/licensehttps://www.bco-dmo.org/dataset/701751/license

Area covered
Variables measured
bay, sex, date, site, size, trap, gravid, injury, species, latitude, and 2 more
Description

Demographic data for introduced crab from multiple bays along the Central California coast, shallow subtidal (<3 m depth), in 2015. access_formats=.htmlTable,.csv,.json,.mat,.nc,.tsv,.esriCsv,.geoJson acquisition_description=We conducted monthly trappings of invasive European green crabs to gather demographic data from several bays in northern California: Bodega Harbor, Tomales Bay, Bolinas Lagoon, San Francisco Bay, and Elkhorn Slough. All sites were accessed by foot via shore entry. At each of four sites within each bay, we placed 5 baited traps (folding Fukui fish traps) and 5 baited minnow traps in shallow intertidal areas. Traps arrays were set with fish and minnow traps alternating and with each 20 m apart. Traps were retrieved 24 hours later and traps were rebaited and collected again the following day.\u00a0Trapping was continued for three consecutive days with traps removed on the final day.\u00a0Each day, data for crab species, size, sex, reproductive condition, and injuries were collected for all crabs in the field. Following data collection, all crabs were returned to the lab, and frozen overnight prior to disposal.\u00a0

See Turner et al. (2016)\u00a0Biological Invasions\u00a018: 533-548 for additional methodological details:
Turner, B.C., de Rivera, C.E., Grosholz, E.D., & Ruiz, G.M. 2016. Assessing population increase as a possible outcome to management of invasive species. Biological Invasions, 18(2), pp 533\u2013548. doi:10.1007/s10530-015-1026-9 awards_0_award_nid=699764 awards_0_award_number=OCE-1514893 awards_0_data_url=http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=1514893 awards_0_funder_name=NSF Division of Ocean Sciences awards_0_funding_acronym=NSF OCE awards_0_funding_source_nid=355 awards_0_program_manager=David L. Garrison awards_0_program_manager_nid=50534 cdm_data_type=Other comment=Demographic data for introduced crab from multiple bays in 2015 PI: Edwin Grosholz (UC Davis) Co-PI: Catherine de Rivera & Gregory Ruiz (Portland State University)
Version: 15 June 2017 Conventions=COARDS, CF-1.6, ACDD-1.3 data_source=extract_data_as_tsv version 2.3 19 Dec 2019 defaultDataQuery=&time<now doi=10.1575/1912/bco-dmo.701751.1 Easternmost_Easting=-121.738422 geospatial_lat_max=38.316968 geospatial_lat_min=36.823953 geospatial_lat_units=degrees_north geospatial_lon_max=-121.738422 geospatial_lon_min=-123.058725 geospatial_lon_units=degrees_east infoUrl=https://www.bco-dmo.org/dataset/701751 institution=BCO-DMO instruments_0_dataset_instrument_description=At each of four sites within each bay, we placed 5 baited traps (folding Fukui fish traps) and 5 baited minnow traps in shallow intertidal areas. instruments_0_dataset_instrument_nid=701774 instruments_0_description=Fukui produces multi-species, multi-purpose collapsible or stackable fish traps, available in different sizes. instruments_0_instrument_name=Fukui fish trap instruments_0_instrument_nid=701772 instruments_0_supplied_name=folding Fukui fish traps metadata_source=https://www.bco-dmo.org/api/dataset/701751 Northernmost_Northing=38.316968 param_mapping={'701751': {'lat': 'master - latitude', 'lon': 'master - longitude'}} parameter_source=https://www.bco-dmo.org/mapserver/dataset/701751/parameters people_0_affiliation=University of California-Davis people_0_affiliation_acronym=UC Davis people_0_person_name=Edwin Grosholz people_0_person_nid=699768 people_0_role=Principal Investigator people_0_role_type=originator people_1_affiliation=Portland State University people_1_affiliation_acronym=PSU people_1_person_name=Catherine de Rivera people_1_person_nid=699771 people_1_role=Co-Principal Investigator people_1_role_type=originator people_2_affiliation=Portland State University people_2_affiliation_acronym=PSU people_2_person_name=Gregory Ruiz people_2_person_nid=471603 people_2_role=Co-Principal Investigator people_2_role_type=originator people_3_affiliation=Woods Hole Oceanographic Institution people_3_affiliation_acronym=WHOI BCO-DMO people_3_person_name=Shannon Rauch people_3_person_nid=51498 people_3_role=BCO-DMO Data Manager people_3_role_type=related project=Invasive_predator_harvest projects_0_acronym=Invasive_predator_harvest projects_0_description=The usual expectation is that when populations of plants and animals experience repeated losses to predators or human harvest, they would decline over time. If instead these populations rebound to numbers exceeding their initial levels, this would seem counter-intuitive or even paradoxical. However, for several decades mathematical models of population processes have shown that this unexpected response, formally known as overcompensation, is not only possible, but even expected under some circumstances. In what may be the first example of overcompensation in a marine system, a dramatic increase in a population of the non-native European green crab was recently observed following an intensive removal program. This RAPID project will use field surveys and laboratory experiments to verify that this population explosion results from overcompensation. Data will be fed into population models to understand to what degree populations processes such as cannibalism by adult crabs on juvenile crabs and changes in maturity rate of reproductive females are contributing to or modifying overcompensation. The work will provide important insights into the fundamental population dynamics that can produce overcompensation in both natural and managed populations. Broader Impacts include mentoring graduate trainees and undergraduate interns in the design and execution of field experiments as well as in laboratory culture and feeding experiments. The project will also involve a network of citizen scientists who are involved with restoration activities in this region and results will be posted on the European Green Crab Project website. This project aims to establish the first example of overcompensation in marine systems. Overcompensation refers to the paradoxical process where reduction of a population due to natural or human causes results in a greater equilibrium population than before the reduction. A population explosion of green crabs has been recently documented in a coastal lagoon and there are strong indications that this may be the result of overcompensation. Accelerated maturation of females, which can accompany and modify the expression of overcompensation has been observed. This RAPID project will collect field data from this unusual recruitment class and conduct targeted mesocosm experiments. These will include population surveys and mark-recapture studies to measure demographic rates across study sites. Laboratory mesocosm studies using this recruitment class will determine size specific mortality. Outcomes will be used in population dynamics models to determine to what degree overcompensation has created this dramatic population increase. The project will seek answers to the following questions: 1) what are the rates of cannibalism by adult green crabs and large juveniles on different sizes of juvenile green crabs, 2) what are the consequences of smaller size at first reproduction for population dynamics and for overcompensation and 3) how quickly will the green crab population return to the levels observed prior to the eradication program five years earlier? projects_0_end_date=2016-11 projects_0_geolocation=Europe projects_0_name=RAPID: A rare opportunity to examine overcompensation resulting from intensive harvest of an introduced predator projects_0_project_nid=699765 projects_0_start_date=2014-12 sourceUrl=(local files) Southernmost_Northing=36.823953 standard_name_vocabulary=CF Standard Name Table v55 version=1 Westernmost_Easting=-123.058725 xml_source=osprey2erddap.update_xml() v1.3

Search
Clear search
Close search
Google apps
Main menu