Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
For a comprehensive guide to this data and other UCR data, please see my book at ucrbook.comVersion 15 release notes:Adds 2021 data.Version 14 release notes:Adds 2020 data. Please note that the FBI has retired UCR data ending in 2020 data so this will be the last Arrests by Age, Sex, and Race data they release. Version 13 release notes:Changes R files from .rda to .rds.Fixes bug where the number_of_months_reported variable incorrectly was the largest of the number of months reported for a specific crime variable. For example, if theft was reported Jan-June and robbery was reported July-December in an agency, in total there were 12 months reported. But since each crime (and let's assume no other crime was reported more than 6 months of the year) only was reported 6 months, the number_of_months_reported variable was incorrectly set at 6 months. Now it is the total number of months reported of any crime. So it would be set to 12 months in this example. Thank you to Nick Eubank for alerting me to this issue.Adds rows even when a agency reported zero arrests that month; all arrest values are set to zero for these rows.Version 12 release notes:Adds 2019 data.Version 11 release notes:Changes release notes description, does not change data.Version 10 release notes:The data now has the following age categories (which were previously aggregated into larger groups to reduce file size): under 10, 10-12, 13-14, 40-44, 45-49, 50-54, 55-59, 60-64, over 64. These categories are available for female, male, and total (female+male) arrests. The previous aggregated categories (under 15, 40-49, and over 49 have been removed from the data). Version 9 release notes:For each offense, adds a variable indicating the number of months that offense was reported - these variables are labeled as "num_months_[crime]" where [crime] is the offense name. These variables are generated by the number of times one or more arrests were reported per month for that crime. For example, if there was at least one arrest for assault in January, February, March, and August (and no other months), there would be four months reported for assault. Please note that this does not differentiate between an agency not reporting that month and actually having zero arrests. The variable "number_of_months_reported" is still in the data and is the number of months that any offense was reported. So if any agency reports murder arrests every month but no other crimes, the murder number of months variable and the "number_of_months_reported" variable will both be 12 while every other offense number of month variable will be 0. Adds data for 2017 and 2018.Version 8 release notes:Adds annual data in R format.Changes project name to avoid confusing this data for the ones done by NACJD.Fixes bug where bookmaking was excluded as an arrest category. Changed the number of categories to include more offenses per category to have fewer total files. Added a "total_race" file for each category - this file has total arrests by race for each crime and a breakdown of juvenile/adult by race. Version 7 release notes: Adds 1974-1979 dataAdds monthly data (only totals by sex and race, not by age-categories). All data now from FBI, not NACJD. Changes some column names so all columns are <=32 characters to be usable in Stata.Changes how number of months reported is calculated. Now it is the number of unique months with arrest data reported - months of data from the monthly header file (i.e. juvenile disposition data) are not considered in this calculation. Version 6 release notes: Fix bug where juvenile female columns had the same value as juvenile male columns.Version 5 release notes: Removes support for SPSS and Excel data.Changes the crimes that are stored in each file. There are more files now with fewer crimes per file. The files and their included crimes have been updated below.Adds in agencies that report 0 months of the year.Adds a column that indicates the number of months reported. This is generated summing up the number of unique months an agency reports data for. Note that this indicates the number of months an agency reported arrests for ANY crime. They may not necessarily report every crime every month. Agencies that did not report a crime with have a value of NA for every arrest column for that crime.Removes data on runaways.Version 4 release notes: Changes column names from "p
Facebook
TwitterRace is a social and historical construct, and the racial categories counted by the census change over time so the process of constructing stable racial categories for these 50 years out of census data required complex and imperfect decisions. Here we have used historical research on early 20th century southern California to construct historic racial categories from the IPUMS full count data, which allows us to track groups that were not formally classified as racial groups in some census decades like Mexican, but which were important racial categories in southern California. Detailed explanation of how we constructed these categories and the rationale we used for the decisions we made can be found here. Layers are symbolized to show the percentage of each of the following groups from 1900-1940:AmericanIndian Not-Hispanic, AmericanIndian Hispanic, Black non-Hispanic, Black-Hispanic, Chinese, Korean, Filipino and Japanese, Mexican, Hispanic Not-Mexican, white non-Hispanic. The IPUMS Census data is messy and includes some errors and undercounts, making it hard to map some smaller populations, like Asian Indians (in census called Hindu in 1920) and creating a possible undercount of Native American populations. The race data mapped here also includes categories that may not have been socially meaningful at the time like Black-Hispanic, which generally would represent people from Mexico who the census enumerator classified as Black because of their dark skin, but who were likely simply part of Mexican communities at the time. We have included maps of the Hispanic not-Mexican category which shows very small numbers of non-Mexican Hispanic population, and American Indian Hispanic, which often captures people who would have been listed as Indian in the census, probably because of skin color, but had ancestry from Mexico (or another Hispanic country). This category may include some indigenous Californians who married into or assimilated into Mexican American communities in the early 20th century. If you are interested in mapping some of the other racial or ethnic groups in the early 20th century, you can explore and map the full range of variables we have created in the People's History of the IE IE_ED1900-1940 Race Hispanic Marriage and Age Feature layer.Suggested Citation: Tilton, Jennifer. People's History Race Ethnicity Dot Density Map 1900-1940. A People's History of the Inland Empire Census Project 1900-1940 using IPUMS Ancestry Full Count Data. Program in Race and Ethnic Studies University of Redlands, Center for Spatial Studies University of Redlands, UCR Public History. 2023. 2025Feature Layer CitationTilton, Jennifer, Tessa VanRy & Lisa Benvenuti. Race and Demographic Data 1900-1940. A People's History of the Inland Empire Census Project 1900-1940 using IPUMS Ancestry Full Count Data. Program in Race and Ethnic Studies University of Redlands, Center for Spatial Studies University of Redlands, UCR Public History. 2023. Additional contributing authors: Mackenzie Nelson, Will Blach & Andy Garcia Funding provided by: People’s History of the IE: Storyscapes of Race, Place, and Queer Space in Southern California with funding from NEH-SSRC Grant 2022-2023 & California State Parks grant to Relevancy & History. Source for Census Data 1900- 1940 Ruggles, Steven, Catherine A. Fitch, Ronald Goeken, J. David Hacker, Matt A. Nelson, Evan Roberts, Megan Schouweiler, and Matthew Sobek. IPUMS Ancestry Full Count Data: Version 3.0 [dataset]. Minneapolis, MN: IPUMS, 2021. Primary Sources for Enumeration District Linework 1900-1940 Steve Morse provided the full list of transcribed EDs for all 5 decades "United States Enumeration District Maps for the Twelfth through the Sixteenth US Censuses, 1900-1940." Images. FamilySearch. https://FamilySearch.org: 9 February 2023. Citing NARA microfilm publication A3378. Washington, D.C.: National Archives and Records Administration, 2003. BLM PLSS Map Additional Historical Sources consulted include: San Bernardino City Annexation GIS Map Redlands City Charter Proposed with Ward boundaries (Not passed) 1902. Courtesy of Redlands City Clerk. Redlands Election Code Precincts 1908, City Ordinances of the City of Redlands, p. 19-22. Courtesy of Redlands City Clerk Riverside City Charter 1907 (for 1910 linework) courtesy of Riverside City Clerk. 1900-1940 Raw Census files for specific EDs, to confirm boundaries when needed, accessed through Family Search. If you have additional questions or comments, please contact jennifer_tilton@redlands.edu.
Facebook
Twitterhttps://www.icpsr.umich.edu/web/ICPSR/studies/9589/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/9589/terms
These data examine the effects on total crime rates of changes in the demographic composition of the population and changes in criminality of specific age and race groups. The collection contains estimates from national data of annual age-by-race specific arrest rates and crime rates for murder, robbery, and burglary over the 21-year period 1965-1985. The data address the following questions: (1) Are the crime rates reported by the Uniform Crime Reports (UCR) data series valid indicators of national crime trends? (2) How much of the change between 1965 and 1985 in total crime rates for murder, robbery, and burglary is attributable to changes in the age and race composition of the population, and how much is accounted for by changes in crime rates within age-by-race specific subgroups? (3) What are the effects of age and race on subgroup crime rates for murder, robbery, and burglary? (4) What is the effect of time period on subgroup crime rates for murder, robbery, and burglary? (5) What is the effect of birth cohort, particularly the effect of the very large (baby-boom) cohorts following World War II, on subgroup crime rates for murder, robbery, and burglary? (6) What is the effect of interactions among age, race, time period, and cohort on subgroup crime rates for murder, robbery, and burglary? (7) How do patterns of age-by-race specific crime rates for murder, robbery, and burglary compare for different demographic subgroups? The variables in this study fall into four categories. The first category includes variables that define the race-age cohort of the unit of observation. The values of these variables are directly available from UCR and include year of observation (from 1965-1985), age group, and race. The second category of variables were computed using UCR data pertaining to the first category of variables. These are period, birth cohort of age group in each year, and average cohort size for each single age within each single group. The third category includes variables that describe the annual age-by-race specific arrest rates for the different crime types. These variables were estimated for race, age, group, crime type, and year using data directly available from UCR and population estimates from Census publications. The fourth category includes variables similar to the third group. Data for estimating these variables were derived from available UCR data on the total number of offenses known to the police and total arrests in combination with the age-by-race specific arrest rates for the different crime types.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Version 5 release notes: Removes support for SPSS and Excel data.Changes the crimes that are stored in each file. There are more files now with fewer crimes per file. The files and their included crimes have been updated below.Adds in agencies that report 0 months of the year.Adds a column that indicates the number of months reported. This is generated summing up the number of unique months an agency reports data for. Note that this indicates the number of months an agency reported arrests for ANY crime. They may not necessarily report every crime every month. Agencies that did not report a crime with have a value of NA for every arrest column for that crime.Removes data on runaways.Version 4 release notes: Changes column names from "poss_coke" and "sale_coke" to "poss_heroin_coke" and "sale_heroin_coke" to clearly indicate that these column includes the sale of heroin as well as similar opiates such as morphine, codeine, and opium. Also changes column names for the narcotic columns to indicate that they are only for synthetic narcotics. Version 3 release notes: Add data for 2016.Order rows by year (descending) and ORI.Version 2 release notes: Fix bug where Philadelphia Police Department had incorrect FIPS county code. The Arrests by Age, Sex, and Race data is an FBI data set that is part of the annual Uniform Crime Reporting (UCR) Program data. This data contains highly granular data on the number of people arrested for a variety of crimes (see below for a full list of included crimes). The data sets here combine data from the years 1980-2015 into a single file. These files are quite large and may take some time to load. All the data was downloaded from NACJD as ASCII+SPSS Setup files and read into R using the package asciiSetupReader. All work to clean the data and save it in various file formats was also done in R. For the R code used to clean this data, see here. https://github.com/jacobkap/crime_data. If you have any questions, comments, or suggestions please contact me at jkkaplan6@gmail.com.I did not make any changes to the data other than the following. When an arrest column has a value of "None/not reported", I change that value to zero. This makes the (possible incorrect) assumption that these values represent zero crimes reported. The original data does not have a value when the agency reports zero arrests other than "None/not reported." In other words, this data does not differentiate between real zeros and missing values. Some agencies also incorrectly report the following numbers of arrests which I change to NA: 10000, 20000, 30000, 40000, 50000, 60000, 70000, 80000, 90000, 100000, 99999, 99998. To reduce file size and make the data more manageable, all of the data is aggregated yearly. All of the data is in agency-year units such that every row indicates an agency in a given year. Columns are crime-arrest category units. For example, If you choose the data set that includes murder, you would have rows for each agency-year and columns with the number of people arrests for murder. The ASR data breaks down arrests by age and gender (e.g. Male aged 15, Male aged 18). They also provide the number of adults or juveniles arrested by race. Because most agencies and years do not report the arrestee's ethnicity (Hispanic or not Hispanic) or juvenile outcomes (e.g. referred to adult court, referred to welfare agency), I do not include these columns. To make it easier to merge with other data, I merged this data with the Law Enforcement Agency Identifiers Crosswalk (LEAIC) data. The data from the LEAIC add FIPS (state, county, and place) and agency type/subtype. Please note that some of the FIPS codes have leading zeros and if you open it in Excel it will automatically delete those leading zeros. I created 9 arrest categories myself. The categories are: Total Male JuvenileTotal Female JuvenileTotal Male AdultTotal Female AdultTotal MaleTotal FemaleTotal JuvenileTotal AdultTotal ArrestsAll of these categories are based on the sums of the sex-age categories (e.g. Male under 10, Female aged 22) rather than using the provided age-race categories (e.g. adult Black, juvenile Asian). As not all agencies report the race data, my method is more accurate. These categories also make up the data in the "simple" version of the data. The "simple" file only includes the above 9 columns as the arrest data (all other columns in the
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
In this dataset you'll find statistics on arrests by race.
This data comes from https://data.world/ucr/arrests-by-race-and-ethnicity-2018.
Facebook
Twitterhttps://www.icpsr.umich.edu/web/ICPSR/studies/38790/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/38790/terms
In response to a growing concern about hate crimes, the United States Congress enacted the Hate Crime Statistics Act of 1990. The Act requires the attorney general to establish guidelines and collect, as part of the Uniform Crime Reporting (UCR) Program, data "about crimes that manifest evidence of prejudice based on race, religion, sexual orientation, or ethnicity, including where appropriate the crimes of murder and non-negligent manslaughter, forcible rape, aggravated assault, simple assault, intimidation, arson, and destruction, damage or vandalism of property." Hate crime data collection was required by the Act to begin in calendar year 1990 and to continue for four successive years. In September 1994, the Violent Crime Control and Law Enforcement Act amended the Hate Crime Statistics Act to add disabilities, both physical and mental, as factors that could be considered a basis for hate crimes. Although the Act originally mandated data collection for five years, the Church Arson Prevention Act of 1996 amended the collection duration "for each calendar year," making hate crime statistics a permanent addition to the UCR program. As with the other UCR data, law enforcement agencies contribute reports either directly or through their state reporting programs. Information contained in the data includes number of victims and offenders involved in each hate crime incident, type of victims, bias motivation, offense type, and location type.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
For a comprehensive guide to this data and other UCR data, please see my book at ucrbook.comVersion 13 release notes:Changes R files from .rda to .rds.Fixes bug where the number_of_months_reported variable incorrectly was the largest of the number of months reported for a specific crime variable. For example, if theft was reported Jan-June and robbery was reported July-December in an agency, in total there were 12 months reported. But since each crime (and let's assume no other crime was reported more than 6 months of the year) only was reported 6 months, the number_of_months_reported variable was incorrectly set at 6 months. Now it is the total number of months reported of any crime. So it would be set to 12 months in this example. Thank you to Nick Eubank for alerting me to this issue.Adds rows even when a agency reported zero arrests that month; all arrest values are set to zero for these rows.Version 12 release notes:Adds 2019 data.Version 11 release notes:Changes release notes description, does not change data.Version 10 release notes:The data now has the following age categories (which were previously aggregated into larger groups to reduce file size): under 10, 10-12, 13-14, 40-44, 45-49, 50-54, 55-59, 60-64, over 64. These categories are available for female, male, and total (female+male) arrests. The previous aggregated categories (under 15, 40-49, and over 49 have been removed from the data). Version 9 release notes:For each offense, adds a variable indicating the number of months that offense was reported - these variables are labeled as "num_months_[crime]" where [crime] is the offense name. These variables are generated by the number of times one or more arrests were reported per month for that crime. For example, if there was at least one arrest for assault in January, February, March, and August (and no other months), there would be four months reported for assault. Please note that this does not differentiate between an agency not reporting that month and actually having zero arrests. The variable "number_of_months_reported" is still in the data and is the number of months that any offense was reported. So if any agency reports murder arrests every month but no other crimes, the murder number of months variable and the "number_of_months_reported" variable will both be 12 while every other offense number of month variable will be 0. Adds data for 2017 and 2018.Version 8 release notes:Adds annual data in R format.Changes project name to avoid confusing this data for the ones done by NACJD.Fixes bug where bookmaking was excluded as an arrest category. Changed the number of categories to include more offenses per category to have fewer total files. Added a "total_race" file for each category - this file has total arrests by race for each crime and a breakdown of juvenile/adult by race. Version 7 release notes: Adds 1974-1979 dataAdds monthly data (only totals by sex and race, not by age-categories). All data now from FBI, not NACJD. Changes some column names so all columns are <=32 characters to be usable in Stata.Changes how number of months reported is calculated. Now it is the number of unique months with arrest data reported - months of data from the monthly header file (i.e. juvenile disposition data) are not considered in this calculation. Version 6 release notes: Fix bug where juvenile female columns had the same value as juvenile male columns.Version 5 release notes: Removes support for SPSS and Excel data.Changes the crimes that are stored in each file. There are more files now with fewer crimes per file. The files and their included crimes have been updated below.Adds in agencies that report 0 months of the year.Adds a column that indicates the number of months reported. This is generated summing up the number of unique months an agency reports data for. Note that this indicates the number of months an agency reported arrests for ANY crime. They may not necessarily report every crime every month. Agencies that did not report a crime with have a value of NA for every arrest column for that crime.Removes data on runaways.Version 4 release notes: Changes column names from "poss_coke" and "sale_coke" to "poss_heroin_coke" and "sale_heroin_coke" to clearly indicate that these column includes the sale of heroin as well as similar opiates such as morphine, codeine, and opium. Also changes column
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
For a comprehensive guide to this data and other UCR data, please see my book at ucrbook.comVersion 15 release notes:Adds 2022-2024 data.Converts data from wide to long to be more consistent with the raw data.Adds parquet file typeVersion 15 release notes:Adds 2021 data.Version 14 release notes:Adds 2020 data. Please note that the FBI has retired UCR data ending in 2020 data so this will be the last Arrests by Age, Sex, and Race data they release. Version 13 release notes:Changes R files from .rda to .rds.Fixes bug where the number_of_months_reported variable incorrectly was the largest of the number of months reported for a specific crime variable. For example, if theft was reported Jan-June and robbery was reported July-December in an agency, in total there were 12 months reported. But since each crime (and let's assume no other crime was reported more than 6 months of the year) only was reported 6 months, the number_of_months_reported variable was incorrectly set at 6 months. Now it is the total number of months reported of any crime. So it would be set to 12 months in this example. Thank you to Nick Eubank for alerting me to this issue.Adds rows even when a agency reported zero arrests that month; all arrest values are set to zero for these rows.Version 12 release notes:Adds 2019 data.Version 11 release notes:Changes release notes description, does not change data.Version 10 release notes:The data now has the following age categories (which were previously aggregated into larger groups to reduce file size): under 10, 10-12, 13-14, 40-44, 45-49, 50-54, 55-59, 60-64, over 64. These categories are available for female, male, and total (female+male) arrests. The previous aggregated categories (under 15, 40-49, and over 49 have been removed from the data). Version 9 release notes:For each offense, adds a variable indicating the number of months that offense was reported - these variables are labeled as "num_months_[crime]" where [crime] is the offense name. These variables are generated by the number of times one or more arrests were reported per month for that crime. For example, if there was at least one arrest for assault in January, February, March, and August (and no other months), there would be four months reported for assault. Please note that this does not differentiate between an agency not reporting that month and actually having zero arrests. The variable "number_of_months_reported" is still in the data and is the number of months that any offense was reported. So if any agency reports murder arrests every month but no other crimes, the murder number of months variable and the "number_of_months_reported" variable will both be 12 while every other offense number of month variable will be 0. Adds data for 2017 and 2018.Version 8 release notes:Adds annual data in R format.Changes project name to avoid confusing this data for the ones done by NACJD.Fixes bug where bookmaking was excluded as an arrest category. Changed the number of categories to include more offenses per category to have fewer total files. Added a "total_race" file for each category - this file has total arrests by race for each crime and a breakdown of juvenile/adult by race. Version 7 release notes: Adds 1974-1979 dataAdds monthly data (only totals by sex and race, not by age-categories). All data now from FBI, not NACJD. Changes some column names so all columns are <=32 characters to be usable in Stata.Changes how number of months reported is calculated. Now it is the number of unique months with arrest data reported - months of data from the monthly header file (i.e. juvenile disposition data) are not considered in this calculation. Version 6 release notes: Fix bug where juvenile female columns had the same value as juvenile male columns.Version 5 release notes: Removes support for SPSS and Excel data.Changes the crimes that are stored in each file. There are more files now with fewer crimes per file. The files and their included crimes have been updated below.Adds in agencies that report 0 months of the year.Adds a column that indicates the number of months reported. This is generated summing up the number of unique months an agency reports data for. Note that this indicates the number of months an agency reported arrests for ANY crime. They may not necessarily report every crime every month. Agencies that did not report a crime wi
Facebook
Twitterhttps://www.icpsr.umich.edu/web/ICPSR/studies/39062/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/39062/terms
These data provide information on the number of arrests reported to the Federal Bureau of Investigation's (FBI) Uniform Crime Reporting (UCR) Program each month by police agencies in the United States. Although not as well known as the "Crimes Known to the Police" data drawn from the Uniform Crime Report's Return A form, the arrest reports by age, sex, and race provide valuable data on 44 offenses including violent, drug, gambling, and larceny crimes. The data received by ICPSR were structured as a hierarchical file containing (per reporting police agency) an agency header record, and 1 to 12 monthly header reports, and 1 to 43 detail offense records containing the counts of arrests by age, sex, and race for a particular offense. ICPSR restructured the original data to a rectangular format.
Facebook
TwitterFor any questions about this data please email me at jacob@crimedatatool.com. If you use this data, please cite it.
Version 5 release notes:
Adds data in the following formats: SPSS, SAS, and Excel.Changes project name to avoid confusing this data for the ones done by NACJD.Adds data for 1991.Fixes bug where bias motivation "anti-lesbian, gay, bisexual, or transgender, mixed group (lgbt)" was labeled "anti-homosexual (gay and lesbian)" prior to 2013 causing there to be two columns and zero values for years with the wrong label.All data is now directly from the FBI, not NACJD. The data initially comes as ASCII+SPSS Setup files and read into R using the package asciiSetupReader. All work to clean the data and save it in various file formats was also done in R. For the R code used to clean this data, see here. https://github.com/jacobkap/crime_data. Version 4 release notes:
Adds data for 2017.Adds rows that submitted a zero-report (i.e. that agency reported no hate crimes in the year). This is for all years 1992-2017. Made changes to categorical variables (e.g. bias motivation columns) to make categories consistent over time. Different years had slightly different names (e.g. 'anti-am indian' and 'anti-american indian') which I made consistent.
Made the 'population' column which is the total population in that agency.
Version 3 release notes:
Adds data for 2016.Order rows by year (descending) and ORI.Version 2 release notes:
Fix bug where Philadelphia Police Department had incorrect FIPS county code. The Hate Crime data is an FBI data set that is part of the annual Uniform Crime Reporting (UCR) Program data. This data contains information about hate crimes reported in the United States. Please note that the files are quite large and may take some time to open.
Each row indicates a hate crime incident for an agency in a given year. I have made a unique ID column ("unique_id") by combining the year, agency ORI9 (the 9 character Originating Identifier code), and incident number columns together. Each column is a variable related to that incident or to the reporting agency.
Some of the important columns are the incident date, what crime occurred (up to 10 crimes), the number of victims for each of these crimes, the bias motivation for each of these crimes, and the location of each crime. It also includes the total number of victims, total number of offenders, and race of offenders (as a group). Finally, it has a number of columns indicating if the victim for each offense was a certain type of victim or not (e.g. individual victim, business victim religious victim, etc.).
The only changes I made to the data are the following. Minor changes to column names to make all column names 32 characters or fewer (so it can be saved in a Stata format), changed the name of some UCR offense codes (e.g. from "agg asslt" to "aggravated assault"), made all character values lower case, reordered columns. I also added state, county, and place FIPS code from the LEAIC (crosswalk) and generated incident month, weekday, and month-day variables from the incident date variable included in the original data.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
For a comprehensive guide to this data and other UCR data, please see my book at ucrbook.comVersion 12 release notes:Adds 2019 data.Version 11 release notes:Changes release notes description, does not change data.Version 10 release notes:The data now has the following age categories (which were previously aggregated into larger groups to reduce file size): under 10, 10-12, 13-14, 40-44, 45-49, 50-54, 55-59, 60-64, over 64. These categories are available for female, male, and total (female+male) arrests. The previous aggregated categories (under 15, 40-49, and over 49 have been removed from the data). Version 9 release notes:For each offense, adds a variable indicating the number of months that offense was reported - these variables are labeled as "num_months_[crime]" where [crime] is the offense name. These variables are generated by the number of times one or more arrests were reported per month for that crime. For example, if there was at least one arrest for assault in January, February, March, and August (and no other months), there would be four months reported for assault. Please note that this does not differentiate between an agency not reporting that month and actually having zero arrests. The variable "number_of_months_reported" is still in the data and is the number of months that any offense was reported. So if any agency reports murder arrests every month but no other crimes, the murder number of months variable and the "number_of_months_reported" variable will both be 12 while every other offense number of month variable will be 0. Adds data for 2017 and 2018.Version 8 release notes:Adds annual data in R format.Changes project name to avoid confusing this data for the ones done by NACJD.Fixes bug where bookmaking was excluded as an arrest category. Changed the number of categories to include more offenses per category to have fewer total files. Added a "total_race" file for each category - this file has total arrests by race for each crime and a breakdown of juvenile/adult by race. Version 7 release notes: Adds 1974-1979 dataAdds monthly data (only totals by sex and race, not by age-categories). All data now from FBI, not NACJD. Changes some column names so all columns are <=32 characters to be usable in Stata.Changes how number of months reported is calculated. Now it is the number of unique months with arrest data reported - months of data from the monthly header file (i.e. juvenile disposition data) are not considered in this calculation. Version 6 release notes: Fix bug where juvenile female columns had the same value as juvenile male columns.Version 5 release notes: Removes support for SPSS and Excel data.Changes the crimes that are stored in each file. There are more files now with fewer crimes per file. The files and their included crimes have been updated below.Adds in agencies that report 0 months of the year.Adds a column that indicates the number of months reported. This is generated summing up the number of unique months an agency reports data for. Note that this indicates the number of months an agency reported arrests for ANY crime. They may not necessarily report every crime every month. Agencies that did not report a crime with have a value of NA for every arrest column for that crime.Removes data on runaways.Version 4 release notes: Changes column names from "poss_coke" and "sale_coke" to "poss_heroin_coke" and "sale_heroin_coke" to clearly indicate that these column includes the sale of heroin as well as similar opiates such as morphine, codeine, and opium. Also changes column names for the narcotic columns to indicate that they are only for synthetic narcotics. Version 3 release notes: Add data for 2016.Order rows by year (descending) and ORI.Version 2 release notes: Fix bug where Philadelphia Police Department had incorrect FIPS county code. The Arrests by Age, Sex, and Race (ASR) data is an FBI data set that is part of the annual Uniform Crime Reporting (UCR) Program data. This data contains highly granular data on the number of people arrested for a variety of crimes (see below for a full list of included crimes). The data sets here combine data from the years 1974-2019 into a single file for each group of crimes. Each monthly file is only a single year as my laptop can't handle combining all the years together. These files are quite large and may take some time to load. Col
Facebook
TwitterThese data provide information on the number of arrests reported to the Federal Bureau of Investigation's Uniform Crime Reporting (UCR) Program each year by police agencies in the United States. These arrest reports provide data on 43 offenses including violent crime, drug use, gambling, and larceny. The data received by ICPSR were structured as a hierarchical file containing (per reporting police agency) an agency header record, and 1 to 12 monthly header reports, and 1 to 43 detail offense records containing the counts of arrests by age, sex, and race for a particular offense. ICPSR restructured the original data to a rectangular format.
Facebook
TwitterIn 2023, 8,842 murderers in the United States were white, while 6,405 were Black. A further 461 murderers were of another race, including American Indian or Alaska Native, Asian, and Native Hawaiian or Other Pacific Islander. However, not all law enforcement agencies submitted homicide data to the FBI in 2023, meaning there may be more murder offenders of each race than depicted. While the majority of circumstances behind murders in the U.S. are unknown, narcotics, robberies, and gang killings are most commonly identified.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
These are the fixed-width ASCII files that the FBI sends you when you request Uniform Crime Reporting (UCR) Program data. All data are .dat or .txt files. I did not make any changes to the data at all. For a small number of files (mostly data within the last few years), I changed the file name to indicate the data category (e.g. arrests, arson) or to add the .dat extension. Also included are the documents that the FBI provides that instructs users on how to make an .sps or .sas setup file to read in the data ("record descriptions".Please note that when unzipped the files may be quite large.The following data are available:Arson, 1979-2017Arrests by Age, Sex, and Race - Monthly Data, 1974-2016Law Enforcement Officers Killed and Assaulted (LEOKA), 1960-2017Offenses Known and Cleared by Arrest (Return A), 1960-2017Property Stolen and Recovered (Supplement to Return A), 1960-2017
Facebook
TwitterFor any questions about this data please email me at jacob@crimedatatool.com. If you use this data, please cite it.Version 8 release notes:Adds 2018 data.Changes source of data for years 1985-2018 to be directly from the FBI. 2018 data was received via email from the FBI, 2016-2017 is from the FBI who mailed me a DVD, and 1985-2015 data is from the FBI's Crime Data Explorer site (https://crime-data-explorer.fr.cloud.gov/downloads-and-docs).Adds .csv version of the data.Makes minor changes to value labels for consistency and to fix grammar. Version 7 release notes:Changes project name to avoid confusing this data for the ones done by NACJD.Version 6 release notes:Adds 2017 data.Version 5 release notes:Adds 2016 data.Standardizes the "group" column which categorizes cities and counties by population.Arrange rows in descending order by year and ascending order by ORI. Version 4 release notes: Fix bug where Philadelphia Police Department had incorrect FIPS county code. Version 3 Release Notes:Merges data with LEAIC data to add FIPS codes, census codes, agency type variables, and ORI9 variable.Change column names for relationship variables from offender_n_relation_to_victim_1 to victim_1_relation_to_offender_n to better indicate that all relationship are victim 1's relationship to each offender. Reorder columns.This is a single file containing all data from the Supplementary Homicide Reports from 1976 to 2018. The Supplementary Homicide Report provides detailed information about the victim, offender, and circumstances of the murder. Details include victim and offender age, sex, race, ethnicity (Hispanic/not Hispanic), the weapon used, circumstances of the incident, and the number of both offenders and victims. Years 1976-1984 were downloaded from NACJD, while more recent years are from the FBI. All files came as ASCII+SPSS Setup files and were cleaned using R. The "cleaning" just means that column names were standardized (different years have slightly different spellings for many columns). Standardization of column names is necessary to stack multiple years together. Categorical variables (e.g. state) were also standardized (i.e. fix spelling errors, have terminology be the same across years). The following is the summary of the Supplementary Homicide Report copied from ICPSR's 2015 page for the data.The Uniform Crime Reporting Program Data: Supplementary Homicide Reports (SHR) provide detailed information on criminal homicides reported to the police. These homicides consist of murders; non-negligent killings also called non-negligent manslaughter; and justifiable homicides. UCR Program contributors compile and submit their crime data by one of two means: either directly to the FBI or through their State UCR Programs. State UCR Programs frequently impose mandatory reporting requirements which have been effective in increasing both the number of reporting agencies as well as the number and accuracy of each participating agency's reports. Each agency may be identified by its numeric state code, alpha-numeric agency ("ORI") code, jurisdiction population, and population group. In addition, each homicide incident is identified by month of occurrence and situation type, allowing flexibility in creating aggregations and subsets.
Facebook
TwitterOpen Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
This Alberta Official Statistic describes the violent crime rates for Canada and provinces for the years from 1998 to 2014. The rate is based on the incidence of violent crime per 100,000 population in each province. The Canadian Centre for Justice Statistics (CCJS), in co-operation with the policing community, collects police-reported crime statistics through the Uniform Crime Reporting (UCR) Survey. The UCR Survey was designed to measure the incidence of crime in Canadian society and its characteristics. UCR data reflect reported crime that has been substantiated by police. Information collected by the survey includes the number of criminal incidents, the clearance status of those incidents and persons-charged information. The UCR Survey produces a continuous historical record of crime and traffic statistics reported by every police agency in Canada since 1962. In 1988, a new version of the survey (UCR3) was created, which is referred to as the "incident-based" survey. It captures microdata on characteristics of incidents, victims and accused. Data from the UCR Survey provide key information for crime analysis, resource planning and program development for the policing community. Municipal and provincial governments use the data to aid decisions about the distribution of police resources, definitions of provincial standards and for comparisons with other departments and provinces. To the federal government, the UCR survey provides information for policy and legislative development, evaluation of new legislative initiatives, and international comparisons. To the public, the UCR survey offers information on the nature and extent of police-reported crime and crime trends in Canada. As well, media, academics and researchers use these data to examine specific issues about crime.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Version 5 release notes:Adds 2016 dataStandardizes the "group" column which categorizes cities and counties by population.Arrange rows in descending order by year and ascending order by ORI. Version 4 release notes: Fix bug where Philadelphia Police Department had incorrect FIPS county code. Version 3 Release Notes:Merges data with LEAIC data to add FIPS codes, census codes, agency type variables, and ORI9 variable.Change column names for relationship variables from offender_n_relation_to_victim_1 to victim_1_relation_to_offender_n to better indicate that all relationship are victim 1's relationship to each offender. Reorder columns.This is a single file containing all data from the Supplementary Homicide Reports from 1976 to 2015. The Supplementary Homicide Report provides detailed information about the victim, offender, and circumstances of the murder. Details include victim and offender age, sex, race, ethnicity (Hispanic/not Hispanic), the weapon used, circumstances of the incident, and the number of both offenders and victims. All the data was downloaded from NACJD as ASCII+SPSS Setup files and cleaned using R. The "cleaning" just means that column names were standardized (different years have slightly different spellings for many columns). Standardization of column names is necessary to stack multiple years together. Categorical variables (e.g. state) were also standardized (i.e. fix spelling errors, have terminology be the same across years). The following is the summary of the Supplementary Homicide Report copied from ICPSR's 2015 page for the data.The Uniform Crime Reporting Program Data: Supplementary Homicide Reports (SHR) provide detailed information on criminal homicides reported to the police. These homicides consist of murders; non-negligent killings also called non-negligent manslaughter; and justifiable homicides. UCR Program contributors compile and submit their crime data by one of two means: either directly to the FBI or through their State UCR Programs. State UCR Programs frequently impose mandatory reporting requirements which have been effective in increasing both the number of reporting agencies as well as the number and accuracy of each participating agency's reports. Each agency may be identified by its numeric state code, alpha-numeric agency ("ORI") code, jurisdiction population, and population group. In addition, each homicide incident is identified by month of occurrence and situation type, allowing flexibility in creating aggregations and subsets.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
For a comprehensive guide to this data and other UCR data, please see my book at ucrbook.comVersion 13 release notes:Adds 2022 dataVersion 12 release notes:Adds 2021 data.Version 11 release notes:Adds 2020 data. Please note that the FBI has retired UCR data ending in 2020 data so this will be the last SHR data they release. Changes .rda file to .rds.Version 10 release notes:Changes release notes description, does not change data.Version 9 release notes:Adds 2019 data.Version 8 release notes:Adds 2018 data.Changes source of data for years 1985-2018 to be directly from the FBI. 2018 data was received via email from the FBI, 2016-2017 is from the FBI who mailed me a DVD, and 1985-2015 data is from the FBI's Crime Data Explorer site (https://crime-data-explorer.fr.cloud.gov/downloads-and-docs).Adds .csv version of the data.Makes minor changes to value labels for consistency and to fix grammar. Version 7 release notes:Changes project name to avoid confusing this data for the ones done by NACJD.Version 6 release notes:Adds 2017 data.Version 5 release notes:Adds 2016 data.Standardizes the "group" column which categorizes cities and counties by population.Arrange rows in descending order by year and ascending order by ORI. Version 4 release notes: Fix bug where Philadelphia Police Department had incorrect FIPS county code. Version 3 Release Notes:Merges data with LEAIC data to add FIPS codes, census codes, agency type variables, and ORI9 variable.Change column names for relationship variables from offender_n_relation_to_victim_1 to victim_1_relation_to_offender_n to better indicate that all relationship are victim 1's relationship to each offender. Reorder columns.This is a single file containing all data from the Supplementary Homicide Reports from 1976 to 2018. The Supplementary Homicide Report provides detailed information about the victim, offender, and circumstances of the murder. Details include victim and offender age, sex, race, ethnicity (Hispanic/not Hispanic), the weapon used, circumstances of the incident, and the number of both offenders and victims. Years 1976-1984 were downloaded from NACJD, while more recent years are from the FBI. All files came as ASCII+SPSS Setup files and were cleaned using R. The "cleaning" just means that column names were standardized (different years have slightly different spellings for many columns). Standardization of column names is necessary to stack multiple years together. Categorical variables (e.g. state) were also standardized (i.e. fix spelling errors, have terminology be the same across years). The following is the summary of the Supplementary Homicide Report copied from ICPSR's 2015 page for the data.The Uniform Crime Reporting Program Data: Supplementary Homicide Reports (SHR) provide detailed information on criminal homicides reported to the police. These homicides consist of murders; non-negligent killings also called non-negligent manslaughter; and justifiable homicides. UCR Program contributors compile and submit their crime data by one of two means: either directly to the FBI or through their State UCR Programs. State UCR Programs frequently impose mandatory reporting requirements which have been effective in increasing both the number of reporting agencies as well as the number and accuracy of each participating agency's reports. Each agency may be identified by its numeric state code, alpha-numeric agency ("ORI") code, jurisdiction population, and population group. In addition, each homicide incident is identified by month of occurrence and situation type, allowing flexibility in creating aggregations and subsets.
Facebook
TwitterThe National Incident-Based Reporting System (NIBRS) is a part of the Uniform Crime Reporting Program (UCR), administered by the Federal Bureau of Investigation (FBI). In the late 1970s, the law enforcement community called for a thorough evaluative study of the UCR with the objective of recommending an expanded and enhanced UCR program to meet law enforcement needs into the 21st century. The FBI fully concurred with the need for an updated program to meet contemporary needs and provided its support, formulating a comprehensive redesign effort. Following a multiyear study, a "Blueprint for the Future of the Uniform Crime Reporting Program" was developed. Using the "Blueprint" and in consultation with local and state law enforcement executives, the FBI formulated new guidelines for the Uniform Crime Reports. The National Incident-Based Reporting System (NIBRS) is being implemented to meet these guidelines. NIBRS data are archived at ICPSR as 13 separate data files, which may be merged by using linkage variables. The data focus on a variety of aspects of a crime incident. Part 4, Administrative Segment, offers data on the incident itself (date and time). Each crime incident is delineated by one administrative segment record. Also provided are Part 5, Offense Segment (offense type, location, weapon use, and bias motivation), Part 6, Property Segment (type of property loss, property description, property value, drug type and quantity), Part 7, Victim Segment (age, sex, race, ethnicity, and injuries), Part 8, Offender Segment (age, sex, and race), and Part 9, Arrestee Segment (arrest date, age, sex, race, and weapon use). The Batch Header Segment (Parts 1-3) separates and identifies individual police agencies by Originating Agency Identifier (ORI). Batch Header information, which is contained on three records for each ORI, includes agency name, geographic location, and population of the area. Part 10, Group B Arrest Report Segment, includes arrestee data for Group B crimes. Window Segments files (Parts 11-13) pertain to incidents for which the complete Group A Incident Report was not submitted to the FBI. In general, a Window Segment record will be generated if the incident occurred prior to January 1 of the previous year or if the incident occurred prior to when the agency started NIBRS reporting. As with UCR, participation in NIBRS is voluntary on the part of law enforcement agencies. The data are not a representative sample of crime in the United States. For 1995, 9 states, fully or partially participating in NIBRS, were included in the dataset.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
For a comprehensive guide to this data and other UCR data, please see my book at ucrbook.comVersion 15 release notes:Adds 2021 data.Version 14 release notes:Adds 2020 data. Please note that the FBI has retired UCR data ending in 2020 data so this will be the last Arrests by Age, Sex, and Race data they release. Version 13 release notes:Changes R files from .rda to .rds.Fixes bug where the number_of_months_reported variable incorrectly was the largest of the number of months reported for a specific crime variable. For example, if theft was reported Jan-June and robbery was reported July-December in an agency, in total there were 12 months reported. But since each crime (and let's assume no other crime was reported more than 6 months of the year) only was reported 6 months, the number_of_months_reported variable was incorrectly set at 6 months. Now it is the total number of months reported of any crime. So it would be set to 12 months in this example. Thank you to Nick Eubank for alerting me to this issue.Adds rows even when a agency reported zero arrests that month; all arrest values are set to zero for these rows.Version 12 release notes:Adds 2019 data.Version 11 release notes:Changes release notes description, does not change data.Version 10 release notes:The data now has the following age categories (which were previously aggregated into larger groups to reduce file size): under 10, 10-12, 13-14, 40-44, 45-49, 50-54, 55-59, 60-64, over 64. These categories are available for female, male, and total (female+male) arrests. The previous aggregated categories (under 15, 40-49, and over 49 have been removed from the data). Version 9 release notes:For each offense, adds a variable indicating the number of months that offense was reported - these variables are labeled as "num_months_[crime]" where [crime] is the offense name. These variables are generated by the number of times one or more arrests were reported per month for that crime. For example, if there was at least one arrest for assault in January, February, March, and August (and no other months), there would be four months reported for assault. Please note that this does not differentiate between an agency not reporting that month and actually having zero arrests. The variable "number_of_months_reported" is still in the data and is the number of months that any offense was reported. So if any agency reports murder arrests every month but no other crimes, the murder number of months variable and the "number_of_months_reported" variable will both be 12 while every other offense number of month variable will be 0. Adds data for 2017 and 2018.Version 8 release notes:Adds annual data in R format.Changes project name to avoid confusing this data for the ones done by NACJD.Fixes bug where bookmaking was excluded as an arrest category. Changed the number of categories to include more offenses per category to have fewer total files. Added a "total_race" file for each category - this file has total arrests by race for each crime and a breakdown of juvenile/adult by race. Version 7 release notes: Adds 1974-1979 dataAdds monthly data (only totals by sex and race, not by age-categories). All data now from FBI, not NACJD. Changes some column names so all columns are <=32 characters to be usable in Stata.Changes how number of months reported is calculated. Now it is the number of unique months with arrest data reported - months of data from the monthly header file (i.e. juvenile disposition data) are not considered in this calculation. Version 6 release notes: Fix bug where juvenile female columns had the same value as juvenile male columns.Version 5 release notes: Removes support for SPSS and Excel data.Changes the crimes that are stored in each file. There are more files now with fewer crimes per file. The files and their included crimes have been updated below.Adds in agencies that report 0 months of the year.Adds a column that indicates the number of months reported. This is generated summing up the number of unique months an agency reports data for. Note that this indicates the number of months an agency reported arrests for ANY crime. They may not necessarily report every crime every month. Agencies that did not report a crime with have a value of NA for every arrest column for that crime.Removes data on runaways.Version 4 release notes: Changes column names from "p