The map is designed to be used as a basemap by marine GIS professionals and as a reference map by anyone interested in ocean data. The basemap focuses on bathymetry. It also includes inland waters and roads, overlaid on land cover and shaded relief imagery.
[From The Landmap Project: Introduction, "http://www.landmap.ac.uk/background/intro.html"]
A joint project to provide orthorectified satellite image mosaics of Landsat,
SPOT and ERS radar data and a high resolution Digital Elevation Model for the
whole of the UK. These data will be in a form which can easily be merged with
other data, such as road networks, so that any user can quickly produce a
precise map of their area of interest.
Predominately aimed at the UK academic and educational sectors these data and
software are held online at the Manchester University super computer facility
where users can either process the data remotely or download it to their local
network.
Please follow the links to the left for more information about the project or
how to obtain data or access to the radar processing system at MIMAS. Please
also refer to the MIMAS spatial-side website,
"http://www.mimas.ac.uk/spatial/", for related remote sensing materials.
The map is designed to be used as a basemap by marine GIS professionals and as a reference map by anyone interested in ocean data. The basemap focuses on bathymetry. It also includes inland waters and roads, overlaid on land cover and shaded relief imagery.The Ocean Base map currently provides coverage for the world down to a scale of ~1:577k; coverage down to ~1:72k in United States coastal areas and various other areas; and coverage down to ~1:9k in limited regional areas.The World Ocean Reference is designed to be drawn on top of this map and provides selected city labels throughout the world. This web map lets you view the World Ocean Base with the Reference service drawn on top. Article in the Fall 2011 ArcUser about this basemap: "A Foundation for Ocean GIS".The map was compiled from a variety of best available sources from several data providers, including General Bathymetric Chart of the Oceans GEBCO_08 Grid version 20100927 and IHO-IOC GEBCO Gazetteer of Undersea Feature Names August 2010 version (https://www.gebco.net), National Oceanic and Atmospheric Administration (NOAA) and National Geographic for the oceans; and Garmin, and Esri for topographic content. You can contribute your bathymetric data to this service and have it served by Esri for the benefit of the Ocean GIS community. For details on the users who contributed bathymetric data for this map via the Community Maps Program, view the list of Contributors for the Ocean Basemap. The basemap was designed and developed by Esri. The GEBCO_08 Grid is largely based on a database of ship-track soundings with interpolation between soundings guided by satellite-derived gravity data. In some areas, data from existing grids are included. The GEBCO_08 Grid does not contain detailed information in shallower water areas, information concerning the generation of the grid can be found on GEBCO's website: https://www.gebco.net/data_and_products/gridded_bathymetry_data/. The GEBCO_08 Grid is accompanied by a Source Identifier (SID) Grid which indicates which cells in the GEBCO_08 Grid are based on soundings or existing grids and which have been interpolated. The latest version of both grids and accompanying documentation is available to download, on behalf of GEBCO, from the British Oceanographic Data Centre (BODC) https://www.bodc.ac.uk/data/online_delivery/gebco/.The names of the IHO (International Hydrographic Organization), IOC (intergovernmental Oceanographic Commission), GEBCO (General Bathymetric Chart of the Oceans), NERC (Natural Environment Research Council) or BODC (British Oceanographic Data Centre) may not be used in any way to imply, directly or otherwise, endorsement or support of either the Licensee or their mapping system.Tip: Here are some famous oceanic locations as they appear this map. Each URL launches this map at a particular location via parameters specified in the URL: Challenger Deep, Galapagos Islands, Hawaiian Islands, Maldive Islands, Mariana Trench, Tahiti, Queen Charlotte Sound, Notre Dame Bay, Labrador Trough, New York Bight, Massachusetts Bay, Mississippi Sound
The map is designed to be used as a basemap by marine GIS professionals and as a reference map by anyone interested in ocean data. The basemap focuses on bathymetry. It also includes inland waters and roads, overlaid on land cover and shaded relief imagery.The Ocean Base map currently provides coverage for the world down to a scale of ~1:577k; coverage down to ~1:72k in United States coastal areas and various other areas; and coverage down to ~1:9k in limited regional areas.The World Ocean Reference is designed to be drawn on top of this map and provides selected city labels throughout the world. This web map lets you view the World Ocean Base with the Reference service drawn on top. Article in the Fall 2011 ArcUser about this basemap: "A Foundation for Ocean GIS".The map was compiled from a variety of best available sources from several data providers, including General Bathymetric Chart of the Oceans GEBCO_08 Grid version 20100927 and IHO-IOC GEBCO Gazetteer of Undersea Feature Names August 2010 version (https://www.gebco.net), National Oceanic and Atmospheric Administration (NOAA) and National Geographic for the oceans; and Garmin, HERE, and Esri for topographic content. You can contribute your bathymetric data to this service and have it served by Esri for the benefit of the Ocean GIS community. For details on the users who contributed bathymetric data for this map via the Community Maps Program, view the list of Contributors for the Ocean Basemap. The basemap was designed and developed by Esri. The GEBCO_08 Grid is largely based on a database of ship-track soundings with interpolation between soundings guided by satellite-derived gravity data. In some areas, data from existing grids are included. The GEBCO_08 Grid does not contain detailed information in shallower water areas, information concerning the generation of the grid can be found on GEBCO's website: https://www.gebco.net/data_and_products/gridded_bathymetry_data/. The GEBCO_08 Grid is accompanied by a Source Identifier (SID) Grid which indicates which cells in the GEBCO_08 Grid are based on soundings or existing grids and which have been interpolated. The latest version of both grids and accompanying documentation is available to download, on behalf of GEBCO, from the British Oceanographic Data Centre (BODC) https://www.bodc.ac.uk/data/online_delivery/gebco/.The names of the IHO (International Hydrographic Organization), IOC (intergovernmental Oceanographic Commission), GEBCO (General Bathymetric Chart of the Oceans), NERC (Natural Environment Research Council) or BODC (British Oceanographic Data Centre) may not be used in any way to imply, directly or otherwise, endorsement or support of either the Licensee or their mapping system.Tip: Here are some famous oceanic locations as they appear this map. Each URL launches this map at a particular location via parameters specified in the URL: Challenger Deep, Galapagos Islands, Hawaiian Islands, Maldive Islands, Mariana Trench, Tahiti, Queen Charlotte Sound, Notre Dame Bay, Labrador Trough, New York Bight, Massachusetts Bay, Mississippi Sound
This data results from the NRSC's ongoing 1:25000 UK Aerial Photography Programme; a project designed to maintain an up to date aerial coverage of the United Kingdom, covering the complete area at least every 5 years.
The Orthoview product has been generated from vertical aerial photographs. The photographs have been orthorectified (to correct for distortion towards their edges) then mosaiced to provide a seamless dataset for the UK at a 0.5 metre resolution. This allows imagery for any area of interest to be generated without issues associated with scenes falling across multiple photographs.
In addition to its prime application in photogrammetric mapping (from updating and contouring existing maps to preparing large scale engineering plans), the data is used for environmental studies, general planning, land use and land capability, soils, pollution, forestry, mining and quarrying, housing and leisure development, agriculture, geology, water, transport and civil engineering, boundary disputes, public enquiries, etc.
The data is stored in digital form and can be supplied on either Exabyte, CD-ROM or CCT. Various hard copy forms can also be generated, including posters and photographic positives/negatives. Price lists and further information are available from the National Remote Sensing Centre (NRSC).
Note: All photography is flown to RICS Specification for Aerial Photography Issue III, see references.
https://vocab.nerc.ac.uk/collection/L08/current/UN/https://vocab.nerc.ac.uk/collection/L08/current/UN/
The GEBCO_2020 Grid is a global continuous terrain model for ocean and land with a spatial resolution of 15 arc seconds. In regions outside of the Arctic Ocean area, the grid uses as a base Version 2 of the SRTM15_plus data set (Tozer, B. et al, 2019). This data set is a fusion of land topography with measured and estimated seafloor topography. Included on top of this base grid are gridded bathymetric data sets developed by the four Regional Centers of The Nippon Foundation-GEBCO Seabed 2030 Project. The GEBCO_2020 Grid represents all data within the 2020 compilation. The compilation of the GEBCO_2020 Grid was carried out at the Seabed 2030 Global Center, hosted at the National Oceanography Centre, UK, with the aim of producing a seamless global terrain model. Outside of Polar regions, the gridded bathymetric data sets supplied by the Regional Centers, as sparse grids, i.e. only grid cells that contain data were populated, were included on to the base grid without any blending. The data sets supplied in the form of complete grids (primarily areas north of 60N and south of 50S) were included using feather blending techniques from GlobalMapper software. The GEBCO_2020 Grid has been developed through the Nippon Foundation-GEBCO Seabed 2030 Project. This is a collaborative project between the Nippon Foundation of Japan and the General Bathymetric Chart of the Oceans (GEBCO). It aims to bring together all available bathymetric data to produce the definitive map of the world ocean floor by 2030 and make it available to all. Funded by the Nippon Foundation, the four Seabed 2030 Regional Centers include the Southern Ocean - hosted at the Alfred Wegener Institute, Germany; South and West Pacific Ocean - hosted at the National Institute of Water and Atmospheric Research, New Zealand; Atlantic and Indian Oceans - hosted at the Lamont Doherty Earth Observatory, Columbia University, USA; Arctic and North Pacific Oceans - hosted at Stockholm University, Sweden and the Center for Coastal and Ocean Mapping at the University of New Hampshire, USA.
This data results from the NRSC's ongoing 1:25000 UK Aerial Photography Programme; a project designed to maintain an up to date aerial coverage of the United Kingdom, covering the complete area at least every 5 years.
These vertical aerial photographs are taken with a large camera mounted in the floor of an aeroplane flying in a series of pre-planned flight lines. The images overlap by 60% along the flight line to allow for stereoscopic (3D) viewing. There is a 25% overlap between flight lines.
In addition to their prime application in photogrammetric mapping (from updating and contouring existing maps to preparing large scale engineering plans), air photos are used for environmental studies, general planning, land use and land capability, soils, pollution, forestry, mining and quarrying, housing and leisure development, agriculture, geology, water, transport and civil engineering, boundary disputes, public enquiries, etc.
The data is stored mainly as colour photographic negatives and can be supplied as both digital and photographic products (positive or negative). To find out what imagery is available for a specific area, a cover search can be performed free of charge. Price lists and further information about cover searches are available, on request, from the National Remote Sensing Centre (NRSC).
Note: All photography is flown to RICS Specification for Aerial Photography Issue III, see references.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The GEBCO_2021 Grid is a global continuous terrain model for ocean and land with a spatial resolution of 15 arc seconds. In regions outside of the Arctic Ocean area, the grid uses as a base Version 2.2 of the SRTM15_plus data set (Tozer, B. et al, 2019). This data set is a fusion of land topography with measured and estimated seafloor topography. Included on top of this base grid are gridded bathymetric data sets developed by the four Regional Centers of The Nippon Foundation-GEBCO Seabed 2030 Project. The GEBCO_2021 Grid represents all data within the 2021 compilation. The compilation of the GEBCO_2021 Grid was carried out at the Seabed 2030 Global Center, hosted at the National Oceanography Centre, UK, with the aim of producing a seamless global terrain model. Outside of Polar regions, the Regional Centers provide their data sets as sparse grids i.e. only grid cells that contain data are populated. These data sets were included on to the base grid without any blending. The data sets supplied in the form of complete grids (primarily areas north of 60N and south of 50S) were included using feather blending techniques from GlobalMapper software. The GEBCO_2021 Grid has been developed through the Nippon Foundation-GEBCO Seabed 2030 Project. This is a collaborative project between the Nippon Foundation of Japan and the General Bathymetric Chart of the Oceans (GEBCO). It aims to bring together all available bathymetric data to produce the definitive map of the world ocean floor by 2030 and make it available to all. Funded by the Nippon Foundation, the four Seabed 2030 Regional Centers include the Southern Ocean - hosted at the Alfred Wegener Institute, Germany; South and West Pacific Ocean - hosted at the National Institute of Water and Atmospheric Research, New Zealand; Atlantic and Indian Oceans - hosted at the Lamont-Doherty Earth Observatory, Columbia University, USA; Arctic and North Pacific Oceans - hosted at Stockholm University, Sweden and the Center for Coastal and Ocean Mapping at the University of New Hampshire, USA.
b3_croppedncdf format raster file for the base map. Derived from naturalearthdata.comwibreed_rastThe files wibreed_rast.nc and wiwinter_rast.nc are raster files of the range of Wilson's Warblers in the Americas. They were generated from shapefiles provided to us by BirdLife International. (BirdLife International and NatureServe (2012) Bird species distribution maps of the world. BirdLife International, Cambridge, UK and NatureServe, Arlington, USA). Persons interested in the range map should contact BirdLife International or NatureServe directly.wiwinter_rastThe files wibreed_rast.nc and wiwinter_rast.nc are raster files of the range of Wilson's Warblers in the Americas. They were generated from shapefiles provided to us by BirdLife International. (BirdLife International and NatureServe (2012) Bird species distribution maps of the world. BirdLife International, Cambridge, UK and NatureServe, Arlington, USA). Persons interested in the range map should contact BirdLife International o...
http://reference.data.gov.uk/id/open-government-licencehttp://reference.data.gov.uk/id/open-government-licence
“Public Rights of Way in the Metropolitan Borough of Calderdale, including public footpaths, public bridleways, restricted byways and byways open to all traffic (BOATs).”
Advice on use of the data:
The location of most of our public rights of way has been captured from the Definitive Map. This uses Ordnance Survey base mapping at a scale of 1:10560. When this data is displayed on other geographical information viewers and programs, this can rely on the use of map and image data supplied by others. Due to the different way this imagery or mapping has been captured and processed this may in some circumstances result in public rights of way being shown to be along routes that do not compare accurately with features shown on the third party imagery or maps. Hence, when used in this way no conclusions should be drawn as to the actual position of a public right of way in the real world. Furthermore, the data should not be interrogated for accuracy at a scale greater than 1 in 10,560. Any queries you may have on the data or any anomalies you may wish to enquire about should be sent to our public rights of way team by email at rightsofway@calderdale.gov.uk
Disclaimer on this data:
Calderdale Metropolitan Borough Council is not liable if the information is shown to be inaccurate. It is provided for information and navigation purposes only. The locations of public footpaths, bridleways, restricted byways and Byways Open to All Traffic shown are approximate only. There is no contract and no warranty is implied as to the accuracy of the data. The data is derived from the West Yorkshire Modified Definitive Map (Relevant Date 30 April 1985) and later modifications. This is not the Definitive Map but is an interpretation only and should not be relied upon for legal purposes. There may have been additional changes to the public rights of way network, since the date of publication of this data, which are not shown.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The GEBCO_2023 Grid is a global continuous terrain model for ocean and land with a spatial resolution of 15 arc seconds. In regions outside of the Arctic Ocean area, the grid uses as a base Version 2.5.5 of the SRTM15_plus data set (Tozer, B. et al, 2019). This data set is a fusion of land topography with measured and estimated seafloor topography. Included on top of this base grid are gridded bathymetric data sets developed by the four Regional Centers of The Nippon Foundation-GEBCO Seabed 2030 Project. The GEBCO_2023 Grid represents all data within the 2023 compilation. The compilation of the GEBCO_2023 Grid was carried out at the Seabed 2030 Global Center, hosted at the National Oceanography Centre, UK, with the aim of producing a seamless global terrain model. Outside of Polar regions, the Regional Centers provide their data sets as sparse grids i.e. only grid cells that contain data are populated. These data sets were included on to the base using a 'remove-restore' blending procedure. This is a two-stage process of computing the difference between the new data and the base grid and then gridding the difference and adding the difference back to the existing base grid. The aim is to achieve a smooth transition between the new and base data sets with the minimum of perturbation of the existing base data set. The data sets supplied in the form of complete grids (primarily areas north of 60N and south of 50S) were included using feather blending techniques from GlobalMapper software. The GEBCO_2023 Grid has been developed through the Nippon Foundation-GEBCO Seabed 2030 Project. This is a collaborative project between the Nippon Foundation of Japan and the General Bathymetric Chart of the Oceans (GEBCO). It aims to bring together all available bathymetric data to produce the definitive map of the world ocean floor by 2030 and make it available to all. Funded by the Nippon Foundation, the four Seabed 2030 Regional Centers include the Southern Ocean - hosted at the Alfred Wegener Institute, Germany; South and West Pacific Ocean - hosted at the National Institute of Water and Atmospheric Research, New Zealand; Atlantic and Indian Oceans - hosted at the Lamont-Doherty Earth Observatory, Columbia University, USA; Arctic and North Pacific Oceans - hosted at Stockholm University, Sweden and the Center for Coastal and Ocean Mapping at the University of New Hampshire, USA.
Landsat MSS data has been available from 23rd of July 1972 and the National Remote Sensing Centre (NRSC) acquired this data from the ESA receiving stations to build up its archive of good quality scenes of the UK. The archive also contains many scenes from various countries of the world. The MSS data is available in 4 bands (0.6-0.6, 0.6-0.7, 0.7-0.8, 0.8-1.1). Landsat 1/2/3 had an 18 day repeat cycle and Landsat 4/5 have a 16 day repeat cycle. The resolution is 80m.
The products available from the NRSC are digital or photographic. The
digital products are:
i) MSS raw data
ii) MSS absolute radiometric correction
iii) MSS statistical radiometric correction
iv) MSS absolute and statistical radiometric correction
The photographic products are:
i) B/W print of a single band of an MSS scene
ii) MSS colour composite of a given scene
Price lists of these products are available on request from the National
Remote Sensing Centre (NRSC).
The GEBCO_2019 Grid is a global continuous terrain model for ocean and land with a spatial resolution of 15 arc seconds.
The grid uses as a base Version 1 of the SRTM15_plus data set (Sandwell et al). This data set is a fusion of land topography with measured and estimated seafloor topography. It is largely based on version 11 of SRTM30_plus (5). Included on top of this base grid are gridded bathymetric data sets developed by the four Regional Centers of The Nippon Foundation-GEBCO Seabed 2030 Project, and from a number of international and national data repositories and regional mapping initiatives. The GEBCO_2019 Grid represents all data within the 2019 compilation. The compilation of the GEBCO_2019 Grid was carried out at the Seabed 2030 Global Center, hosted at the National Oceanography Centre, UK, with the aim of producing a seamless global terrain model. The majority of the compilation was done using the remove-restore procedure (Smith and Sandwell, 1997; Becker, Sandwell and Smith, 2009 and Hell and Jakobsson, 2011). This is a two stage process of computing the difference between the new data and the base grid and then gridding the difference and adding the difference back to the existing base grid. The aim is to achieve a smooth transition between the new and base data sets with the minimum of perturbation of the existing base data set. The data sets supplied in the form of complete grids (primarily areas north of 60N and south of 50S) were included using feather blending techniques from GlobalMapper software. The GEBCO_2019 Grid has been developed through the Nippon Foundation-GEBCO Seabed 2030 Project. This is a collaborative project between the Nippon Foundation of Japan and the General Bathymetric Chart of the Oceans (GEBCO). It aims to bring together all available bathymetric data to produce the definitive map of the world ocean floor by 2030 and make it available to all. Funded by the Nippon Foundation, the four Seabed 2030 Regional Centers include the Southern Ocean - hosted at the Alfred Wegener Institute, Germany; South and West Pacific Ocean - hosted at the National Institute of Water and Atmospheric Research, New Zealand; Atlantic and Indian Oceans - hosted at the Lamont Doherty Earth Observatory, Columbia University, USA; Arctic and North Pacific Oceans - hosted at Stockholm University, Sweden and the Center for Coastal and Ocean Mapping at the University of New Hampshire, USA).
https://vocab.nerc.ac.uk/collection/L08/current/CC/https://vocab.nerc.ac.uk/collection/L08/current/CC/
A series of approximately 3250 navigational charts covering the world. The series is maintained by Admiralty Notices to Mariners issued every week. New editions or new charts are published as required. Two thirds of the series are now available in metric units.
In areas where the United Kingdom is, or until recently has been, the responsible hydrographic authority - i.e. Home Waters, some Commonwealth countries, British colonies, and certain areas like the Gulf, Red Sea and parts of the eastern Mediterranean - the Admiralty charts afford detailed cover of all waters, ports and harbours. These make up about 30 per cent of the total series. Modern charts in these areas usually have a source data diagram showing the sources from which the chart was compiled. The quantity and quality of the sources vary due to age and the part of the world the chart depicts. The other 70 per cent are derived from information on foreign charts, and the Admiralty versions are designed to provide charts for ocean passage and landfall, and approach and entry to the major ports.
The series contains charts on many different scales, but can be divided very broadly as follows:
Route planning 1:10 million Ocean planning 1:3.5 million Coast approach or landfall identification 1:1 million Coasting 1:300,000 to 1:200,000 Intricate or congested coastal waters 1:150,000 to 1:75,000 Port approach 1:50,000 or larger Terminal installation 1:12,500 or larger
Charts on scales smaller than 1:50,000, except in polar regions, are on Mercator projection. Since 1978 all charts on 1:50,000 and larger have been produced on Transverse Mercator projection. Prior to 1978 larger scale charts were on a modified polyconic projection referred to as 'gnomonic', not to be confused with the true Gnomonic projection.
Most of the detail shown on a chart consists of hydrographic information - soundings (selected spot depths) in metres (on older charts in fathoms or feet) reduced to a stated vertical datum; depth contours; dredged channels; and the nature of the seabed and foreshore. Features which present hazards to navigation, fishing and other marine operations are also shown. These include underwater rocks and reefs; wrecks and obstructions; submarine cables and pipelines and offshore installations. Shallow water areas are usually highlighted with pale blue tint(s). Also shown are aids established to assist the navigator - buoys, beacons, lights, fog signals and radio position finding and reporting services; and information about traffic separation schemes, anchorages, tides, tidal streams and magnetic variation. Outline coastal topography is shown especially objects of use as fixing marks. As a base for navigation the chart carries compass roses, scales, horizontal datum information, graduation (and sometimes land map grids), conversion tables and tables of tidal and tidal stream rates.
https://www.bodc.ac.uk/data/documents/nodb/599364/https://www.bodc.ac.uk/data/documents/nodb/599364/
The GEBCO_2024 Grid is a global continuous terrain model for ocean and land with a spatial resolution of 15 arc seconds. In regions largely outside of the Arctic Ocean area, the grid uses as a base Version 2.6 of the SRTM15_plus data set (Tozer et al, 2019). This data set is a fusion of land topography with measured and estimated seafloor topography. Included on top of this base grid are gridded bathymetric data sets developed by the four Regional Centers of The Nippon Foundation-GEBCO Seabed 2030 Project. The GEBCO_2024 Grid represents all data within the 2024 compilation. The compilation of the GEBCO_2024 Grid was carried out at the Seabed 2030 Global Center, hosted at the National Oceanography Centre, UK, with the aim of producing a seamless global terrain model. Outside of Polar regions, the Regional Centers provide their data sets as sparse grids i.e. only grid cells that contain data are populated. These data sets were included on to the base using a ‘remove-restore’ blending procedure. This is a two-stage process of computing the difference between the new data and the base grid and then gridding the difference and adding the difference back to the existing base grid. The aim is to achieve a smooth transition between the new and base data sets with the minimum of perturbation of the existing base data set. The data sets supplied in the form of complete grids (primarily areas north of 60N and south of 50S) were included using feather blending techniques from GlobalMapper software. The GEBCO_2024 Grid has been developed through the Nippon Foundation-GEBCO Seabed 2030 Project. This is a collaborative project between the Nippon Foundation of Japan and the General Bathymetric Chart of the Oceans (GEBCO). It aims to bring together all available bathymetric data to produce the definitive map of the world ocean floor by 2030 and make it available to all. Funded by the Nippon Foundation, the four Seabed 2030 Regional Centers include the Southern Ocean - hosted at the Alfred Wegener Institute (AWI), Germany; Pacific Ocean - hosted at the National Institute of Water and Atmospheric Research (NIWA), New Zealand; Atlantic and Indian Oceans - hosted at the Lamont-Doherty Earth Observatory (LDEO), Columbia University, USA; Arctic and North Pacific Oceans - jointly hosted at Stockholm University, Sweden and the Center for Coastal and Ocean Mapping at the University of New Hampshire, USA.
In order to generate a soil map of Scotland using the WRB soil classification system, the dominant soil taxonomic unit in each 1:250 000 scale soil map units were classified according to the diagnostic criteria laid out in WRB 2007 (IUSS Working Group WRB, 2007) and following the updated procedures for constructing small scale map legends (IUSS Working Group WRB, 2010). As the intention was to produce a map at a notional scale of 1:1 000 000, the soils were classified to the level of the Reference Soil Group and two qualifiers. Boorman, D.B., Hollis, J.M and Lilly, A. 1995. Hydrology of soil types: a hydrologically-based classification of the soils of the United Kingdom. Institute of Hydrology Report No.126. Institute of Hydrology, Wallingford. IUSS Working Group WRB. 2007. World Reference Base for Soil Resources 2006, first update 2007. World Soil Resources Reports No. 103. FAO, Rome. IUSS Working Group WRB. 2010. Addendum to the World Reference Base for Soil Resources: Guidelines for constructing small-scale map legends using the World Reference Base for Soil Resources. FAO, Rome. Soil Survey of Scotland Staff. (1981). Soil maps of Scotland at a scale of 1:250 000. Macaulay Institute for Soil Research, Aberdeen.
The Seasat SAR mission took place from the 26th June to 10th October 1978. The SAR was an L-band HH polarisation; the resolution was 25m; the swath was 100km; and the antenna had a depression angle of 70. Multi-look directions are available.
The raw data belongs to Earthnet and is serial bit stream instead of being blocked or error corrected. The UK Royal Aerospace Establishment (RAE) holds around 4000 of these tapes.
The RAE and DLR have processed some 700 scenes of variable size, available on CCT and as prints or film. The processed data is 16 bit and includes several files per image: header; image data; text file containing processing parameters, position data, satellite attenuation, orbit and telemetry.
There are 240 survey processed SAR films from optical processing of 120 sequences, and 120 full resolution SAR films 60 sequences.
For further information such as the catalogue listing, data availability and prices please contact:
Earthnet User Services
ESA/ESRIN
Via G.Galilei
I-00044 Frascati, Italy
Telephone: 39 6 94180360
Telex: 610637 Esrin, Italy
Fax: 39 6 94180361
https://www.bodc.ac.uk/data/documents/nodb/599364/https://www.bodc.ac.uk/data/documents/nodb/599364/
The GEBCO_2019 Grid is a global continuous terrain model for ocean and land with a spatial resolution of 15 arc seconds. The grid uses as a base Version 1 of the SRTM15_plus data set (Sandwell et al). This data set is a fusion of land topography with measured and estimated seafloor topography. It is largely based on version 11 of SRTM30_plus (5). Included on top of this base grid are gridded bathymetric data sets developed by the four Regional Centers of The Nippon Foundation-GEBCO Seabed 2030 Project, and from a number of international and national data repositories and regional mapping initiatives. The GEBCO_2019 Grid represents all data within the 2019 compilation. The compilation of the GEBCO_2019 Grid was carried out at the Seabed 2030 Global Center, hosted at the National Oceanography Centre, UK, with the aim of producing a seamless global terrain model. The majority of the compilation was done using the remove-restore procedure (Smith and Sandwell, 1997; Becker, Sandwell and Smith, 2009 and Hell and Jakobsson, 2011). This is a two stage process of computing the difference between the new data and the base grid and then gridding the difference and adding the difference back to the existing base grid. The aim is to achieve a smooth transition between the new and base data sets with the minimum of perturbation of the existing base data set. The data sets supplied in the form of complete grids (primarily areas north of 60N and south of 50S) were included using feather blending techniques from GlobalMapper software. The GEBCO_2019 Grid has been developed through the Nippon Foundation-GEBCO Seabed 2030 Project. This is a collaborative project between the Nippon Foundation of Japan and the General Bathymetric Chart of the Oceans (GEBCO). It aims to bring together all available bathymetric data to produce the definitive map of the world ocean floor by 2030 and make it available to all. Funded by the Nippon Foundation, the four Seabed 2030 Regional Centers include the Southern Ocean - hosted at the Alfred Wegener Institute, Germany; South and West Pacific Ocean - hosted at the National Institute of Water and Atmospheric Research, New Zealand; Atlantic and Indian Oceans - hosted at the Lamont Doherty Earth Observatory, Columbia University, USA; Arctic and North Pacific Oceans - hosted at Stockholm University, Sweden and the Center for Coastal and Ocean Mapping at the University of New Hampshire, USA).
This archive contains aerial photography of UK boroughs (towns/cities) and counties. The scale of the photographs depends to some extent on the borough/county, but is predominantly 1:5000 for towns/cities and 1:10000 for complete counties.
These vertical aerial photographs are taken with a large camera mounted in the floor of an aeroplane flying in a series of pre-planned flight lines. The images overlap by 60% along the flight line to allow for stereoscopic (3D) viewing. There is a 25% overlap between flight lines.
In addition to their prime application in photogrammetric mapping (from updating and contouring existing maps to preparing large scale engineering plans), air photos are used for environmental studies, general planning, land use and land capability, soils, pollution, forestry, mining and quarrying, housing and leisure development, agriculture, geology, water, transport and civil engineering, boundary disputes, public enquiries, etc.
The data is stored mainly as colour photographic negatives and can be supplied as both digital and photographic products (positive or negative). To find out what imagery is available for a specific area, a cover search can be performed free of charge. Price lists and further information about cover searches are available, on request, from the National Remote Sensing Centre (NRSC).
Note: All photography is flown to RICS Specification for Aerial Photography Issue III, see references.
This archive contains 1:10000 scale vertical aerial photography scenes of Nigeria.
These vertical aerial photographs are taken with a large camera mounted in the floor of an aeroplane flying in a series of pre-planned flight lines. The images overlap by 60% along the flight line to allow for stereoscopic (3D) viewing. There is a 25% overlap between flight lines.
In addition to their prime application in photogrammetric mapping (from updating and contouring existing maps to preparing large scale engineering plans), air photos are used for environmental studies, general planning, land use and land capability, soils, pollution, forestry, mining and quarrying, housing and leisure development, agriculture, geology, water, transport and civil engineering, boundary disputes, public enquiries, etc.
The data is stored mainly as colour photographic negatives and can be supplied as both digital and photographic products (positive or negative). To find out what imagery is available for a specific area, a cover search can be performed free of charge. Price lists and further information about cover searches are available, on request, from the National Remote Sensing Centre (NRSC).
Note: All photography is flown to RICS Specification for Aerial Photography Issue III, see references.
The map is designed to be used as a basemap by marine GIS professionals and as a reference map by anyone interested in ocean data. The basemap focuses on bathymetry. It also includes inland waters and roads, overlaid on land cover and shaded relief imagery.