Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This repository stores synthetic datasets derived from the database of the UK Biobank (UKB) cohort.
The datasets were generated for illustrative purposes, in particular for reproducing specific analyses on the health risks associated with long-term exposure to air pollution using the UKB cohort. The code used to create the synthetic datasets is available and documented in a related GitHub repo, with details provided in the section below. These datasets can be freely used for code testing and for illustrating other examples of analyses on the UKB cohort.
Note: while the synthetic versions of the datasets resemble the real ones in several aspects, the users should be aware that these data are fake and must not be used for testing and making inferences on specific research hypotheses. Even more importantly, these data cannot be considered a reliable description of the original UKB data, and they must not be presented as such.
The original datasets are described in the article by Vanoli et al in Epidemiology (2024) (DOI: 10.1097/EDE.0000000000001796) [freely available here], which also provides information about the data sources.
The work was supported by the Medical Research Council-UK (Grant ID: MR/Y003330/1).
The series of synthetic datasets (stored in two versions with csv and RDS formats) are the following:
In addition, this repository provides these additional files:
The datasets resemble the real data used in the analysis, and they were generated using the R package synthpop (www.synthpop.org.uk). The generation process involves two steps, namely the synthesis of the main data (cohort info, baseline variables, annual PM2.5 exposure) and then the sampling of death events. The R scripts for performing the data synthesis are provided in the GitHub repo (subfolder Rcode/synthcode).
The first part merges all the data including the annual PM2.5 levels in a single wide-format dataset (with a row for each subject), generates a synthetic version, adds fake IDs, and then extracts (and reshapes) the single datasets. In the second part, a Cox proportional hazard model is fitted on the original data to estimate risks associated with various predictors (including the main exposure represented by PM2.5), and then these relationships are used to simulate death events in each year. Details on the modelling aspects are provided in the article.
This process guarantees that the synthetic data do not hold specific information about the original records, thus preserving confidentiality. At the same time, the multivariate distribution and correlation across variables as well as the mortality risks resemble those of the original data, so the results of descriptive and inferential analyses are similar to those in the original assessments. However, as noted above, the data are used only for illustrative purposes, and they must not be used to test other research hypotheses.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains GWAS summary statistics for 9 quantitative phenotypes from the UK Biobank.
The phenotypes are:
The GWAS study used data from "White British" samples (N = 337225), which were randomly divided into 5 folds for the purposes of cross-validation. The upload contains, for each fold, GWAS summary statistics for the training, validation, and test set. The validation summary statistics can be used for model selection/tuning. The test summary statistics can be used to evaluate PRS models via pseudo-validation methods. Association testing was done with plink2.
The structure of the data is as follows:
For more details about the GWAS study, Quality Control (QC) criteria, or other information, please consult our publication:
Zabad, S., Gravel, S., & Li, Y. (2023). Fast and accurate Bayesian polygenic risk modeling with variational inference. The American Journal of Human Genetics, 110(5), 741–761. https://doi.org/10.1016/j.ajhg.2023.03.009
If you use this data in your work, please cite the publication above.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Abstract
Brain ageing is a highly variable, spatially and temporally heterogeneous process, marked by numerous structural and functional changes. These can cause discrepancies between individuals’ chronological age and the apparent age of their brain, as inferred from neuroimaging data. Machine learning models, and particularly Convolutional Neural Networks (CNNs), have proven adept in capturing patterns relating to ageing induced changes in the brain. The differences between the predicted and chronological ages, referred to as brain age deltas, have emerged as useful biomarkers for exploring those factors which promote accelerated ageing or resilience, such as pathologies or lifestyle factors. However, previous studies rely only on structural neuroimaging for predictions, overlooking potentially informative functional and microstructural changes. Here we show that multiple contrasts derived from different MRI modalities can predict brain age, each encoding bespoke brain ageing information. By using 3D CNNs and UK Biobank data, we found that 57 contrasts derived from structural, susceptibility-weighted, diffusion, and functional MRI can successfully predict brain age. For each contrast, different patterns of association with non-imaging phenotypes were found, resulting in a total of 191 unique, statistically significant associations. Furthermore, we found that ensembling data from multiple contrasts results in both higher prediction accuracies and stronger correlations to non-imaging measurements. Our results demonstrate that other 3D contrasts and modalities, which have not been considered so far for the task of brain age prediction, encode different information about the ageing brain. We envision our work as being the starting point for future investigations into the causal links underpinning the observed brain age deltas and non-imaging measurement associations. For instance, drug effects can be monitored, given that certain medications correlated with accelerated brain ageing. Furthermore, continued development of brain age models could facilitate their deployment in clinical trials for recruitment and monitoring, and hospitals for diagnostic and screening tasks.
Data Description
This dataset contains the full correlation results with all nIDPs in the UK Biobank. These are presented in datasets split by sex in Female and Male subjects. For easier data manipulation, two smaller datasets have also been made available, containing just those correlation which pass the False Discovery Rate (FDR) threshold.
As experiments were also conducted for ensembles using multiple contrasts, similar datasets are provided for those.
Finally, global datasets are also provided. These are the concatenation of the associations contained in the Male and Female datasets.
Paper & Code
The original paper for this article can be accessed here:
To access the codes relevant for this project, please access the project GitHub Repos:
If using this work, please cite it based on the above paper, or using the following BibTex:
@inproceedings{roibu2023brain,
title={Brain Ages Derived from Different MRI Modalities are Associated with Distinct Biological Phenotypes},
author={Roibu, Andrei-Claudiu and Adaszewski, Stanislaw and Schindler, Torsten and Smith, Stephen M and Namburete, Ana IL and Lange, Frederik J},
booktitle={2023 10th IEEE Swiss Conference on Data Science (SDS)},
pages={17--25},
year={2023},
organization={IEEE},
doi={10.1109/SDS57534.2023.00010}
}
Data Access
The data for this project is freely available upon application at the UK Biobank. For more information regarding the individual nIDPs, please access the UK Biobank Showcase website at: https://biobank.ctsu.ox.ac.uk/showcase/search.cgi
Funding
ACR is supported by EPSRC Grant EP/S024093/1, F. Hoffmann-La Roche AG and a 2021 Industrial Fellowship offered by the Royal Commission for the Exhibition of 1851. SMS is supported by a Wellcome Trust Collaborative Award 215573/Z/19/Z. AILN is grateful for support from the Academy of Medical Sciences under the Springboard Awards scheme (SBF005/1136), and the Bill and Melinda Gates Foundation. FJL is supported by a Wellcome Trust Collaborative Award (215573/Z/19/Z). The WIN is supported by core funding from the Wellcome Trust (203139/Z/16/Z). The computational aspects were supported by the Wellcome Trust (203141/Z/16/Z) and the NIHR Oxford BRC. Corresponding authors: ACR (andreiroibu@icloud.com), SA (stanislaw.adaszewski@roche.com) and AILN (ana.namburete@cs.ox.ac.uk).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
*based on the UK Biobank Data Showcase 11.Participant characteristics.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains GWAS summary statistics for Standing Height in the UK Biobank.
The GWAS study used data from "White British" samples (N = 337225), which were randomly divided into 5 folds for the purposes of cross-validation. The upload contains, for each fold, GWAS summary statistics for the training and test set. The test summary statistics can be used to evaluate PRS models via pseudo-validation methods. Association testing was done with plink2.
The structure of the data is as follows:
For more details about the GWAS study, Quality Control (QC) criteria, or other information, please consult our publication:
Zabad, S., Gravel, S., & Li, Y. (2023). Fast and accurate Bayesian polygenic risk modeling with variational inference. The American Journal of Human Genetics, 110(5), 741–761. https://doi.org/10.1016/j.ajhg.2023.03.009
If you use this data in your work, please cite the publication above.
https://ega-archive.org/dacs/EGAC00001000514https://ega-archive.org/dacs/EGAC00001000514
Please note: This synthetic data set (with cohort “participants” / ”subjects” marked with FAKE) has no identifiable data and cannot be used to make any inference about cohort data or results. The purpose of this dataset is to aid development of technical implementations for cohort data discovery, harmonization, access, and federated analysis. In support of FAIRness in data sharing, this dataset is made freely available under the Creative Commons Licence (CC-BY). Please ensure this preamble is included with this dataset and that the CINECA project (funding: EC H2020 grant 825775) is acknowledged. For any questions please contact isuru@ebi.ac.uk or cthomas@ebi.ac.uk
This dataset (CINECA_synthetic_cohort_EUROPE_UK1) consists of 2521 samples which have genetic data based on 1000 Genomes data (https://www.nature.com/articles/nature15393), and synthetic subject attributes and phenotypic data derived from UKBiobank (https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1001779). These data were initially derived using the TOFU tool (https://github.com/spiros/tofu), which generates randomly generated values based on the UKBiobank data dictionary. Categorical values were randomly generated based on the data dictionary, continuous variables generated based on the distribution of values reported by the UK Biobank showcase, and date / time values were random. Additionally we split the phenotypes and attributes into 4 main classes - general, cancer, diabetes mellitus, and cardiac. We assigned the general attributes to all the samples, and the cardiac / diabetes mellitus / cancer attributes to a proportion of the total samples. Once the initial set of phenotypes and attributes were generated, the data data was checked for consistency and where possible dependent attributes were calculated from the independent variables generated by TOFU. For example, BMI was calculated from height and weight data, and age at death generated by date of death and date of birth. These data were then loaded to the development instance of Biosamples (https://www.ebi.ac.uk/biosamples/) which accessioned each of the samples. The genetic data are derived from the 1000 Genomes Phase 3 release (https://www.internationalgenome.org/category/phase-3/). The genotype data consists of a single joint call vcf files with call genotypes for all 2504 samples, plus bed, bim, fam, and nosex files generated via plink for these samples and genotypes. The genotype data has had a variety of errors introduced to mimic real data and as a test for quality control pipelines. These include gender mismatches, ethnic background mislabelling and low call rates for a randomly chosen subset of sample data as well as deviations from Hardy Weinberg equilibrium and low call rates for a random selection of variants. Additionally 40 samples have raw genetic data available in the form of both bam and cram files, including unmapped data. The gender of the samples in the 1000 genomes data has been matched to the synthetic phenotypic data generated for these samples. The genetic data was then linked to the synthetic data in BioSamples, and submitted to EGA.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This repository stores synthetic datasets derived from the database of the UK Biobank (UKB) cohort.
The datasets were generated for illustrative purposes, in particular for reproducing specific analyses on the health risks associated with long-term exposure to air pollution using the UKB cohort. The code used to create the synthetic datasets is available and documented in a related GitHub repo, with details provided in the section below. These datasets can be freely used for code testing and for illustrating other examples of analyses on the UKB cohort.
Note: while the synthetic versions of the datasets resemble the real ones in several aspects, the users should be aware that these data are fake and must not be used for testing and making inferences on specific research hypotheses. Even more importantly, these data cannot be considered a reliable description of the original UKB data, and they must not be presented as such.
The original datasets are described in the article by Vanoli et al in Epidemiology (2024) (DOI: 10.1097/EDE.0000000000001796) [freely available here], which also provides information about the data sources.
The work was supported by the Medical Research Council-UK (Grant ID: MR/Y003330/1).
The series of synthetic datasets (stored in two versions with csv and RDS formats) are the following:
In addition, this repository provides these additional files:
The datasets resemble the real data used in the analysis, and they were generated using the R package synthpop (www.synthpop.org.uk). The generation process involves two steps, namely the synthesis of the main data (cohort info, baseline variables, annual PM2.5 exposure) and then the sampling of death events. The R scripts for performing the data synthesis are provided in the GitHub repo (subfolder Rcode/synthcode).
The first part merges all the data including the annual PM2.5 levels in a single wide-format dataset (with a row for each subject), generates a synthetic version, adds fake IDs, and then extracts (and reshapes) the single datasets. In the second part, a Cox proportional hazard model is fitted on the original data to estimate risks associated with various predictors (including the main exposure represented by PM2.5), and then these relationships are used to simulate death events in each year. Details on the modelling aspects are provided in the article.
This process guarantees that the synthetic data do not hold specific information about the original records, thus preserving confidentiality. At the same time, the multivariate distribution and correlation across variables as well as the mortality risks resemble those of the original data, so the results of descriptive and inferential analyses are similar to those in the original assessments. However, as noted above, the data are used only for illustrative purposes, and they must not be used to test other research hypotheses.