The highest average temperature recorded in 2024 until November was in August, at 16.8 degrees Celsius. Since 2015, the highest average daily temperature in the UK was registered in July 2018, at 18.7 degrees Celsius. The summer of 2018 was the joint hottest since institutions began recording temperatures in 1910. One noticeable anomaly during this period was in December 2015, when the average daily temperature reached 9.5 degrees Celsius. This month also experienced the highest monthly rainfall in the UK since before 2014, with England, Wales, and Scotland suffering widespread flooding. Daily hours of sunshine Unsurprisingly, the heat wave that spread across the British Isles in 2018 was the result of particularly sunny weather. July 2018 saw an average of 8.7 daily sun hours in the United Kingdom. This was more hours of sun than was recorded in July 2024, which only saw 5.8 hours of sun. Temperatures are on the rise Since the 1960s, there has been an increase in regional temperatures across the UK. Between 1961 and 1990, temperatures in England averaged nine degrees Celsius, and from 2013 to 2022, average temperatures in the country had increased to 10.3 degrees Celsius. Due to its relatively southern location, England continues to rank as the warmest country in the UK.
The annual mean temperature in the United Kingdom has fluctuated greatly since 1990. Temperatures during this period were at their highest in 2022, surpassing 10 degrees Celsius. In 2010, the mean annual temperature stood at 7.94 degrees, the lowest recorded during this time. Daily temperatures Average daily temperatures have remained stable since the turn of the century, rarely dropping below 10 degrees Celsius. In 2010, they dropped to a low of nine degrees Celsius. The peak average daily temperature was recorded in 2022 when it reached 11.2 degrees. This was an increase of one degree Celsius compared to the long-term mean, and the most positive deviation during the period of consideration. Highs and lows The maximum average temperature recorded across the UK since 2015 was in July 2018. This month saw a maximum temperature of 22.6 degrees Celsius. In comparison, the lowest monthly minimum temperature was in February of the same year, at just minus 0.6 degrees. This was an especially cold February, as the previous year the minimum temperature for this month was 2.6 degrees.
These statistics show quarterly and monthly weather trends for:
They provide contextual information for consumption patterns in energy, referenced in the Energy Trends chapters for each energy type.
Trends in wind speeds, sun hours and rainfall provide contextual information for trends in renewable electricity generation.
All these tables are published monthly, on the last Thursday of each month. The data is 1 month in arrears.
If you have questions about this content, please email: energy.stats@energysecurity.gov.uk.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The UK daily temperature data contain maximum and minimum temperatures (air, grass and concrete slab) measured over a period of up to 24 hours. The measurements were recorded by observation stations operated by the Met Office across the UK and transmitted within NCM, DLY3208 or AWSDLY messages. The data span from 1853 to 2023. For details on measurement techniques, including calibration information and changes in measurements, see section 5.2 of the MIDAS User Guide linked to from this record. Soil temperature data may be found in the UK soil temperature datasets linked from this record.
This version supersedes the previous version of this dataset and a change log is available in the archive, and in the linked documentation for this record, detailing the differences between this version and the previous version. The change logs detail new, replaced and removed data. These include the addition of data for calendar year 2023.
This dataset is part of the Midas-open dataset collection made available by the Met Office under the UK Open Government Licence, containing only UK mainland land surface observations owned or operated by the Met Office. It is a subset of the fuller, restricted Met Office Integrated Data Archive System (MIDAS) Land and Marine Surface Stations dataset, also available through the Centre for Environmental Data Analysis - see the related dataset section on this record. Currently this represents approximately 95% of available daily temperature observations within the full MIDAS collection.
England's highest monthly mean air temperatures are typically recorded in July and August of each year. Since 2015, the warmest mean temperature was measured in July 2018 at 18.8 degrees Celsius. On the other hand, February of that same year registered the coolest temperature, at 2.6 degrees Celsius. In February 2025, the mean air temperature was five degrees Celsius, 50 percent lower than the same month the previous year. The English weather England is the warmest region in the United Kingdom and the driest. In 2024, the average annual temperature in England amounted to 10.73 degrees Celsius – around 1.1 degrees above the national mean. That same year, precipitation in England stood at about 1,020 millimeters. By contrast, Scotland – the wettest region in the UK – recorded over 1,500 millimeters of rainfall in 2024. Temperatures on the rise Throughout the last decades, the average temperature in the United Kingdom has seen an upward trend, reaching a record high in 2022. Global temperatures have experienced a similar pattern over the same period. This gradual increase in the Earth's average temperature is primarily due to various human activities, such as burning fossil fuels and deforestation, which lead to the emission of greenhouse gases. This phenomenon has severe consequences, including more frequent and intense weather events, rising sea levels, and adverse effects on human health and the environment.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Contains data from the World Bank's data portal. There is also a consolidated country dataset on HDX.
Climate change is expected to hit developing countries the hardest. Its effects—higher temperatures, changes in precipitation patterns, rising sea levels, and more frequent weather-related disasters—pose risks for agriculture, food, and water supplies. At stake are recent gains in the fight against poverty, hunger and disease, and the lives and livelihoods of billions of people in developing countries. Addressing climate change requires unprecedented global cooperation across borders. The World Bank Group is helping support developing countries and contributing to a global solution, while tailoring our approach to the differing needs of developing country partners. Data here cover climate systems, exposure to climate impacts, resilience, greenhouse gas emissions, and energy use. Other indicators relevant to climate change are found under other data pages, particularly Environment, Agriculture & Rural Development, Energy & Mining, Health, Infrastructure, Poverty, and Urban Development.
The wettest months in the United Kingdom tend to be at the start and end of the year. In the period of consideration, the greatest measurement of rainfall was nearly 217 millimeters, recorded in December 2015. The lowest level of rainfall was recorded in April 2021, at 20.6 millimeters. Rainy days The British Isles are known for their wet weather, and in 2024 there were approximately 164 rain days in the United Kingdom. A rainday is when more than one millimeter of rain falls within a day. Over the past 30 years, the greatest number of rain days was recorded in the year 2000. In that year, the average annual rainfall in the UK amounted to 1,242.1 millimeters. Climate change According to the Met Office, climate change in the United Kingdom has resulted in the weather getting warmer and wetter. In 2022, the annual average temperature in the country reached a new record high, surpassing 10 degrees Celsius for the first time. This represented an increase of nearly two degrees Celsius when compared to the annual average temperature recorded in 1910. In a recent survey conducted amongst UK residents, almost 80 percent of respondents had concerns about climate change.
https://eidc.ceh.ac.uk/licences/future-flows-click-through/plainhttps://eidc.ceh.ac.uk/licences/future-flows-click-through/plain
Future Flows Climate (FF-HadRM3-PPE) is an eleven-member ensemble climate projection for Great Britain at a 1-km resolution spanning from 1950 to 2098. It was specifically developed for hydrological application and contain daily time series of Available Precipitation, which is the precipiated water available to hydrological processes after delays due to snow and ice storage are accounted for; and monthly reference Potential Evapotranspiration calculated using the FAO56 method. Future Flows Climate is derived from the Hadley Centre's Regional climate projection ensemble HadRM3-PPE based on 11 different variants of the regional climate model run under the SRES A1B emission scenario. HadRM3-PPE is underpinning the UKCP09 products. Bias correction and spatial downscaling were applied to the total precpitation and air temperature variables before Future Flows Climate APr and PE were generated. The development of Future Flows Climate was made during the partnership project 'Future Flows and Groundwater Levels' funded by the Environment Agency for England and Wales, Defra, UK Water Research Industry, NERC (Centre for Ecology & Hydrology and British Geological Survey) and Wallingford HydroSolutions.
What does the data show?
This data shows annual averages of precipitation (mm/day) for 2050-2079 from the UKCP18 regional climate projections. The data is for the high emissions scenario (RCP8.5).
Limitations of the data
We recommend the use of multiple grid cells or an average of grid cells around a point of interest to help users get a sense of the variability in the area. This will provide a more robust set of values for informing decisions based on the data.
What are the naming conventions and how do I explore the data?
This data contains a field for the average over the period. They are named 'pr' (precipitation), the month, and 'upper' 'median' or 'lower'. E.g. 'pr Median' is the median value.
To understand how to explore the data, see this page: https://storymaps.arcgis.com/stories/457e7a2bc73e40b089fac0e47c63a578
Please note, if viewing in ArcGIS Map Viewer, the map will default to ‘pr January Median’ values.
What do the ‘median’, ‘upper’, and ‘lower’ values mean?
Climate models are numerical representations of the climate system. To capture uncertainty in projections for the future, an ensemble, or group, of climate models are run. Each ensemble member has slightly different starting conditions or model set-ups. Considering all of the model outcomes gives users a range of plausible conditions which could occur in the future.
For this dataset, the model projections consist of 12 separate ensemble members. To select which ensemble members to use, the annual averages of precipitation for 2050-2079 were calculated for each ensemble member and they were then ranked in order from lowest to highest for each location.
The ‘lower’ fields are the second lowest ranked ensemble member. The ‘upper’ fields are the second highest ranked ensemble member. The ‘median’ field is the central value of the ensemble.
This gives a median value, and a spread of the ensemble members indicating the range of possible outcomes in the projections. This spread of outputs can be used to infer the uncertainty in the projections. The larger the difference between the lower and upper fields, the greater the uncertainty.
Data source
pr_rcp85_land-rcm_uk_12km_12_ann-30y_200912-207911.nc (median)
pr_rcp85_land-rcm_uk_12km_05_ann-30y_200912-207911.nc (lower)
pr_rcp85_land-rcm_uk_12km_04_ann-30y_200912-207911.nc (upper)
UKCP18 v20190731 (downloaded 04/11/2021)
Useful links
Further information on the UK Climate Projections (UKCP). Further information on understanding climate data within the Met Office Climate Data Portal
The UK climate projections 2009 (UKCP09) observed climate provides data for a range of climate variables (for example, temperature, pressure, vapour pressure, rainfall, snowfall, sunshine) over the climate averaging period 1961-1990. The observed data is provided over the UK at grid box resolutions of 25km and 5km. The observed data refers to data that has been directly measured and obtained in UK from a network of synoptic observations and weather stations. These data are commonly processed to convert irregularly spaced point observations to a regular grid. The observed climate data can be used both to explore past climate trends, to construct and validate climate models and to provide a baseline to construct climate differences.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Continuous dataset collection since 2014 through Urban Observatory (UO) sensors. The data covers the geographical area of the North East of England centred on Newcastle upon Tyne (for geographical extent and location of sensors see http://uoweb1.ncl.ac.uk). Data is collected from a variety of sensor platforms with different performance metrics, sampling regimes and sensitivity levels. Information on individual sensors should be consulted before use at http://uoweb1.ncl.ac.uk. Data can be downloaded or accessed via a REST API at http://uoweb1.ncl.ac.uk. Weather metrics include: Rain Int, Solar Radiation, Max Wind Speed, Rain Acc, Humidity, Pressure, Temperature, Wind Direction, Daily Accumulation Rainfall, Visibility, Wind Speed, Wind Gust, Rainfall
The average temperature across the United Kingdom presented a trend of continuous growth since 1961. During the first period, from 1961 to 1990, the country recorded an average temperature of 8.3 degrees Celsius. In the next period, from 1991 to 2020, the UK's average temperature increased by 0.8 degrees Celsius and increased further by 0.5 degrees Celsius between 2014 and 2023. In the latter year, figures remained at 10 degrees Celsius, 1.7 degrees warmer than the average recorded between 1961 and 1990, illustrating the effects of climate change. Nevertheless, 2022 was the warmest year in the United Kingdom.
HadUK-Grid is a collection of gridded climate variables derived from the network of UK land surface observations. The data have been interpolated from meteorological station data onto a uniform grid to provide complete and consistent coverage across the UK. The dataset at 12 km resolution is derived from the associated 1 km x 1 km resolution to allow for comparison to data from climate projections. The dataset spans the period from 1862 to 2019, but the start time is dependent on climate variable and temporal resolution. The gridded data are produced for daily, monthly, seasonal and annual timescales, as well as long term averages for a set of climatological reference periods. Variables include air temperature (maximum, minimum and mean), precipitation, sunshine, mean sea level pressure, wind speed, relative humidity, vapour pressure, days of snow lying, and days of ground frost. This data set supersedes the previous versions of this dataset which also superseded UKCP09 gridded observations. Subsequent versions may be released in due course and will follow the version numbering as outlined by Hollis et al. (2018, see linked documentation). For this version of note is that historical data recovery has improved monthly rainfall 1862-1910, daily rainfall 1883-1910, monthly temperature 1900-1909, and additional sunshine grids for 1919-1928 have been added. Additionally, this version has corrected the grid definition used for the 12 km grid product to match UKCP18 climate model products. The primary purpose of these data are to facilitate monitoring of UK climate and research into climate change, impacts and adaptation. The datasets have been created by the Met Office with financial support from the Department for Business, Energy and Industrial Strategy (BEIS) and Department for Environment, Food and Rural Affairs (DEFRA) in order to support the Public Weather Service Customer Group (PWSCG), the Hadley Centre Climate Programme, and the UK Climate Projections (UKCP18) project. The data recovery activity to supplement 19th and early 20th Century data availability has also been funded by the Natural Environment Research Council (NERC grant ref: NE/L01016X/1) project "Analysis of historic drought and water scarcity in the UK". The dataset is provided under Open Government Licence.
Site specific (293 individual stations) monthly average (1981 - 2010)
The data consists of:
Max Temp (degrees C)
Min Temp (degrees C)
Sunshine (hours)
Rainfall (mm)
Raindays >=1.0mm (days)
Days of Air Frost (days)
Monthly mean wind speeds at 10m (knots)
District and Region monthly average (1961-1990, 1971-2000, 1981-2010)
The data consists of:
Max Temp (degrees C)
Min Temp (degrees C)
Sunshine (hours)
Rainfall (mm)
Raindays >=1.0mm (days)
Days of Air Frost (days)
UK monthly average (1961-1990, 1971-2000, 1981-2010)
The data consists of:
Max Temp (degrees C)
Min Temp (degrees C)
Sunshine (hours)
Rainfall (mm)
Raindays >=1.0mm (days)
Days of Air Frost (days)
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
HadUK-Grid is a collection of gridded climate variables derived from the network of UK land surface observations. The data have been interpolated from meteorological station data onto a uniform grid to provide complete and consistent coverage across the UK. The dataset at 12 km resolution is derived from the associated 1 km x 1 km resolution to allow for comparison to data from climate projections. The dataset spans the period from 1836 to 2022, but the start time is dependent on climate variable and temporal resolution.
The gridded data are produced for daily, monthly, seasonal and annual timescales, as well as long term averages for a set of climatological reference periods. Variables include air temperature (maximum, minimum and mean), precipitation, sunshine, mean sea level pressure, wind speed, relative humidity, vapour pressure, days of snow lying, and days of ground frost.
This data set supersedes the previous versions of this dataset which also superseded UKCP09 gridded observations. Subsequent versions may be released in due course and will follow the version numbering as outlined by Hollis et al. (2018, see linked documentation).
The changes for v1.2.0.ceda HadUK-Grid datasets are as follows:
Added data for calendar year 2022
Added newly digitised data for monthly sunshine 1910-1918
Added Rainfall Rescue version 2 doi:10.5281/zenodo.7554242
Updated shapefiles used for production of area average statistics https://github.com/ukcp-data/ukcp- spatial-files
Updated controlled vocabulary for metadata assignment https://github.com/ukcp-data/UKCP18_CVs
Updated assignment of timepoint for some periods so that the datetime is the middle of the period (e.g. season) rather than a fixed offset from the period start.
Updated ordering of regions within regional values files. Alphabetical ordering.
Files use netcdf level 4 compression using gzip https://www.unidata.ucar.edu/blogs/developer/entry/netcdf_compression
Net changes to the input station data used to generate this dataset:
Total of 125601744 observations
122621050 (97.6%) unchanged
26700 (0.02%) modified for this version
2953994 (2.35%) added in this version
16315 (0.01%) deleted from this version
Changes to monthly rainfall 1836-1960
Total of 4823973 observations
3315657 (68.7%) unchanged
21029 (0.4%) modified for this version
1487287 (30.8%) added in this version
11155 (0.2%) deleted from this version
The primary purpose of these data are to facilitate monitoring of UK climate and research into climate change, impacts and adaptation. The datasets have been created by the Met Office with financial support from the Department for Business, Energy and Industrial Strategy (BEIS) and Department for Environment, Food and Rural Affairs (DEFRA) in order to support the Public Weather Service Customer Group (PWSCG), the Hadley Centre Climate Programme, and the UK Climate Projections (UKCP18) project. The output from a number of data recovery activities relating to 19th and early 20th Century data have been used in the creation of this dataset, these activities were supported by: the Met Office Hadley Centre Climate Programme; the Natural Environment Research Council project "Analysis of historic drought and water scarcity in the UK"; the UK Research & Innovation (UKRI) Strategic Priorities Fund UK Climate Resilience programme; The UK Natural Environment Research Council (NERC) Public Engagement programme; the National Centre for Atmospheric Science; National Centre for Atmospheric Science and the NERC GloSAT project; and the contribution of many thousands of public volunteers. The dataset is provided under Open Government Licence.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Derived climate model projections data produced as part of the UK Climate Projections 2018 (UKCP18) project. The data produced by the UK Met Office Hadley Centre provides information on changes in 21st century climate for the UK helping to inform adaptation to a changing climate.
The derived climate model projections are estimated using a methodology based on time shift and other statistical approaches applied to a set of 28 projections comprising of 15 coupled simulations produced by the Met Office Hadley Centre, and 13 coupled simulations from CMIP5. The derived climate model projections exist for the RCP2.6 emissions scenario and for 2°C and 4°C global warming above pre-industrial levels.
The derived climate model projections are provided on a 60km spatial grid for the UK region and the projections consist of time series for the RCP2.6 emissions scenario that cover 1900-2100 and a 50 year time series for each of the global warming levels.
This dataset contains realisations scenario with global warming stabilised at 4°C
[Updated 28/01/25 to fix an issue in the ‘Lower’ values, which were not fully representing the range of uncertainty. ‘Median’ and ‘Higher’ values remain unchanged. The size of the change varies by grid cell and fixed period/global warming levels but the average percentage change between the 'lower' values before and after this update is -1%.]What does the data show? A Heating Degree Day (HDD) is a day in which the average temperature is below 15.5°C. It is the number of degrees above this threshold that counts as a Heating Degree Day. For example if the average temperature for a specific day is 15°C, this would contribute 0.5 Heating Degree Days to the annual sum, alternatively an average temperature of 10.5°C would contribute 5 Heating Degree Days. Given the data shows the annual sum of Heating Degree Days, this value can be above 365 in some parts of the UK.Annual Heating Degree Days is calculated for two baseline (historical) periods 1981-2000 (corresponding to 0.51°C warming) and 2001-2020 (corresponding to 0.87°C warming) and for global warming levels of 1.5°C, 2.0°C, 2.5°C, 3.0°C, 4.0°C above the pre-industrial (1850-1900) period. This enables users to compare the future number of HDD to previous values.What are the possible societal impacts?Heating Degree Days indicate the energy demand for heating due to cold days. A higher number of HDD means an increase in power consumption for heating, therefore this index is useful for predicting future changes in energy demand for heating.What is a global warming level?Annual Heating Degree Days are calculated from the UKCP18 regional climate projections using the high emissions scenario (RCP 8.5) where greenhouse gas emissions continue to grow. Instead of considering future climate change during specific time periods (e.g. decades) for this scenario, the dataset is calculated at various levels of global warming relative to the pre-industrial (1850-1900) period. The world has already warmed by around 1.1°C (between 1850–1900 and 2011–2020), whilst this dataset allows for the exploration of greater levels of warming. The global warming levels available in this dataset are 1.5°C, 2°C, 2.5°C, 3°C and 4°C. The data at each warming level was calculated using a 21 year period. These 21 year periods are calculated by taking 10 years either side of the first year at which the global warming level is reached. This time will be different for different model ensemble members. To calculate the value for the Annual Heating Degree Days, an average is taken across the 21 year period. Therefore, the Annual Heating Degree Days show the number of heating degree days that could occur each year, for each given level of warming. We cannot provide a precise likelihood for particular emission scenarios being followed in the real world future. However, we do note that RCP8.5 corresponds to emissions considerably above those expected with current international policy agreements. The results are also expressed for several global warming levels because we do not yet know which level will be reached in the real climate as it will depend on future greenhouse emission choices and the sensitivity of the climate system, which is uncertain. Estimates based on the assumption of current international agreements on greenhouse gas emissions suggest a median warming level in the region of 2.4-2.8°C, but it could either be higher or lower than this level.What are the naming conventions and how do I explore the data?This data contains a field for each warming level and two baselines. They are named ‘HDD’ (Heating Degree Days), the warming level or baseline, and 'upper' 'median' or 'lower' as per the description below. E.g. 'HDD 2.5 median' is the median value for the 2.5°C projection. Decimal points are included in field aliases but not field names e.g. 'HDD 2.5 median' is 'HDD_25_median'. To understand how to explore the data, see this page: https://storymaps.arcgis.com/stories/457e7a2bc73e40b089fac0e47c63a578Please note, if viewing in ArcGIS Map Viewer, the map will default to ‘HDD 2.0°C median’ values.What do the ‘median’, ‘upper’, and ‘lower’ values mean?Climate models are numerical representations of the climate system. To capture uncertainty in projections for the future, an ensemble, or group, of climate models are run. Each ensemble member has slightly different starting conditions or model set-ups. Considering all of the model outcomes gives users a range of plausible conditions which could occur in the future. For this dataset, the model projections consist of 12 separate ensemble members. To select which ensemble members to use, Annual Heating Degree Days were calculated for each ensemble member and they were then ranked in order from lowest to highest for each location. The ‘lower’ fields are the second lowest ranked ensemble member. The ‘upper’ fields are the second highest ranked ensemble member. The ‘median’ field is the central value of the ensemble.This gives a median value, and a spread of the ensemble members indicating the range of possible outcomes in the projections. This spread of outputs can be used to infer the uncertainty in the projections. The larger the difference between the lower and upper fields, the greater the uncertainty.‘Lower’, ‘median’ and ‘upper’ are also given for the baseline periods as these values also come from the model that was used to produce the projections. This allows a fair comparison between the model projections and recent past. Useful linksThis dataset was calculated following the methodology in the ‘Future Changes to high impact weather in the UK’ report and uses the same temperature thresholds as the 'State of the UK Climate' report.Further information on the UK Climate Projections (UKCP).Further information on understanding climate data within the Met Office Climate Data Portal.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Gridded daily meteorological variables over the United Kingdom at 1 km resolution for the years 1980-2080. This dataset is an ensemble of four different realisations of future climate for each of four different representative concentration pathway scenarios (RCP2.6, RCP4.5, RCP6.0 and RCP8.5), provided both with and without bias correction. This dataset contains time series of daily mean values of air temperature (K), specific humidity (kg kg-1), relative humidity (%), wind speed (m s-1), downward longwave radiation (W m-2), downward shortwave radiation (W m-2), precipitation (kg m-2 s-2) and surface air pressure (Pa). It also contains time series of daily minimum air temperature (K), daily maximum air temperature (K) and daily temperature range (K). The data are provided in gridded netCDF files at 1 km resolution aligned to the Ordnance Survey / British National Grid. There is one file for each variable for each month of the daily data. Also provided are monthly, seasonal and annual means, for which there is one file for each variable for each time resolution. Additionally twenty year mean-monthly (Jan-Dec) climatologies at ten year intervals are provided, for which there is one file for each variable for each twenty year time slice. The projections use a 360-day calendar, where each month consists of 30 days.
The UK Climate Projections (UKCP09) probabilistic climate projections of climate change over land. These data consist of various meteorological parameters such as temperature, precipitation, surface pressure, humidity. The projections of future absolute climate that assign a probability level to different climate possibilities, the absolute values, percentage change relative to the observed climate (1961-1990) and percentiles of the parameter projections are provided over 30 year time periods over the projection period 2010-2099. The averaging periods provided are: 2010-2039, 2020-2049, 2030-2059, 2040-2069, 2050-2079, 2060-2089, 2070-2099. Data are provided over three aggregated areas, (1) a 25km grid over the UK, (2) administrative regions that are areas of the UK based on administrative boundaries and (3) river basins that are based on a division of the UK land area based on the Water Framework Directive River Basin Districts. In 2009 the first version of the UK probabilistic projections of climate change over land were provided. In 2013 an update was made to some of the files (version 2). Both versions of this data are made available here with the version 2 data being the most recent. These projections provides an absolute value for the future climate (as opposed to giving values that are relative to a baseline period). A probabilistic climate projection is a measure of strength of evidence in different future climate change outcomes. This measure is dependent on the method used, is based on the current available evidence and encapsulates some, but not all, of the uncertainty associated with projecting future climate. The climate projections report contains further details.
[Updated 28/01/25 to fix an issue in the ‘Lower’ values, which were not fully representing the range of uncertainty. ‘Median’ and ‘Higher’ values remain unchanged. The size of the change varies by grid cell and fixed period/global warming levels but the average difference between the 'lower' values before and after this update is 0.26°C.]What does the data show? This dataset shows the change in summer maximum air temperature for a range of global warming levels, including the recent past (2001-2020), compared to the 1981-2000 baseline period. Here, summer is defined as June-July-August. The dataset uses projections of daily maximum air temperature from UKCP18. For each year, the highest daily maximum temperature from the summer period is found. These are then averaged to give values for the 1981-2000 baseline, recent past (2001-2020) and global warming levels. The warming levels available are 1.5°C, 2.0°C, 2.5°C, 3.0°C and 4.0°C above the pre-industrial (1850-1900) period. The recent past value and global warming level values are stated as a change (in °C) relative to the 1981-2000 value. This enables users to compare summer maximum temperature trends for the different periods. In addition to the change values, values for the 1981-2000 baseline (corresponding to 0.51°C warming) and recent past (2001-2020, corresponding to 0.87°C warming) are also provided. This is summarised in the table below.PeriodDescription1981-2000 baselineAverage temperature (°C) for the period2001-2020 (recent past)Average temperature (°C) for the period2001-2020 (recent past) changeTemperature change (°C) relative to 1981-20001.5°C global warming level changeTemperature change (°C) relative to 1981-20002°C global warming level changeTemperature change (°C) relative to 1981-20002.5°C global warming level changeTemperature change (°C) relative to 1981-20003°C global warming level changeTemperature change (°C) relative to 1981-20004°C global warming level changeTemperature change (°C) relative to 1981-2000What is a global warming level?The Summer Maximum Temperature Change is calculated from the UKCP18 regional climate projections using the high emissions scenario (RCP 8.5) where greenhouse gas emissions continue to grow. Instead of considering future climate change during specific time periods (e.g. decades) for this scenario, the dataset is calculated at various levels of global warming relative to the pre-industrial (1850-1900) period. The world has already warmed by around 1.1°C (between 1850–1900 and 2011–2020), whilst this dataset allows for the exploration of greater levels of warming. The global warming levels available in this dataset are 1.5°C, 2°C, 2.5°C, 3°C and 4°C. The data at each warming level was calculated using a 21 year period. These 21 year periods are calculated by taking 10 years either side of the first year at which the global warming level is reached. This time will be different for different model ensemble members. To calculate the value for the Summer Maximum Temperature Change an average is taken across the 21 year period.We cannot provide a precise likelihood for particular emission scenarios being followed in the real world future. However, we do note that RCP8.5 corresponds to emissions considerably above those expected with current international policy agreements. The results are also expressed for several global warming levels because we do not yet know which level will be reached in the real climate as it will depend on future greenhouse emission choices and the sensitivity of the climate system, which is uncertain. Estimates based on the assumption of current international agreements on greenhouse gas emissions suggest a median warming level in the region of 2.4-2.8°C, but it could either be higher or lower than this level.What are the naming conventions and how do I explore the data?These data contain a field for each warming level and the 1981-2000 baseline. They are named 'tasmax summer change' (change in air 'temperature at surface'), the warming level or baseline, and 'upper' 'median' or 'lower' as per the description below. e.g. 'tasmax summer change 2.0 median' is the median value for summer for the 2.0°C warming level. Decimal points are included in field aliases but not in field names, e.g. 'tasmax summer change 2.0 median' is named 'tasmax_summer_change_20_median'. To understand how to explore the data, refer to the New Users ESRI Storymap. Please note, if viewing in ArcGIS Map Viewer, the map will default to ‘tasmax summer change 2.0°C median’ values.What do the 'median', 'upper', and 'lower' values mean?Climate models are numerical representations of the climate system. To capture uncertainty in projections for the future, an ensemble, or group, of climate models are run. Each ensemble member has slightly different starting conditions or model set-ups. Considering all of the model outcomes gives users a range of plausible conditions which could occur in the future.For this dataset, the model projections consist of 12 separate ensemble members. To select which ensemble members to use, the Summer Maximum Temperature Change was calculated for each ensemble member and they were then ranked in order from lowest to highest for each location.The ‘lower’ fields are the second lowest ranked ensemble member. The ‘higher’ fields are the second highest ranked ensemble member. The ‘median’ field is the central value of the ensemble.This gives a median value, and a spread of the ensemble members indicating the range of possible outcomes in the projections. This spread of outputs can be used to infer the uncertainty in the projections. The larger the difference between the lower and higher fields, the greater the uncertainty.‘Lower’, ‘median’ and ‘upper’ are also given for the baseline period as these values also come from the model that was used to produce the projections. This allows a fair comparison between the model projections and recent past. Useful linksFor further information on the UK Climate Projections (UKCP).Further information on understanding climate data within the Met Office Climate Data Portal.
The highest average temperature recorded in 2024 until November was in August, at 16.8 degrees Celsius. Since 2015, the highest average daily temperature in the UK was registered in July 2018, at 18.7 degrees Celsius. The summer of 2018 was the joint hottest since institutions began recording temperatures in 1910. One noticeable anomaly during this period was in December 2015, when the average daily temperature reached 9.5 degrees Celsius. This month also experienced the highest monthly rainfall in the UK since before 2014, with England, Wales, and Scotland suffering widespread flooding. Daily hours of sunshine Unsurprisingly, the heat wave that spread across the British Isles in 2018 was the result of particularly sunny weather. July 2018 saw an average of 8.7 daily sun hours in the United Kingdom. This was more hours of sun than was recorded in July 2024, which only saw 5.8 hours of sun. Temperatures are on the rise Since the 1960s, there has been an increase in regional temperatures across the UK. Between 1961 and 1990, temperatures in England averaged nine degrees Celsius, and from 2013 to 2022, average temperatures in the country had increased to 10.3 degrees Celsius. Due to its relatively southern location, England continues to rank as the warmest country in the UK.