Facebook
TwitterAs of February 4, 2022, in the age group 75 to 84 years old COVID-19 was involved in the deaths of 32,780 males and 23,390 females in the United Kingdom. Furthermore, since the pandemic started over 72 thousand deaths in the UK among those aged 85 years and above involved COVID-19. For further information about the COVID-19 pandemic, please visit our dedicated Facts and Figures page.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The number of deaths registered in England and Wales due to and involving coronavirus (COVID-19). Breakdowns include age, sex, region, local authority, Middle-layer Super Output Area (MSOA), indices of deprivation and place of death. Includes age-specific and age-standardised mortality rates.
Facebook
TwitterAs of February 17, 2022, there had been approximately 139.5 thousand deaths due to COVID-19 recorded in England. When broken down by age, almost 37 percent of these deaths occurred in the age group 80 to 89 years, while a further fifth of deaths were recorded among over 90 year olds. For further information about the COVID-19 pandemic, please visit our dedicated Facts and Figures page.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Provisional data on death registrations and death occurrences in England and Wales, broken down by sex and age. Includes deaths due to coronavirus (COVID-19) and leading causes of death.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Provisional counts of the number of deaths and age-standardised mortality rates involving the coronavirus (COVID-19), by occupational groups, for deaths registered between 9 March and 28 December 2020 in England and Wales. Figures are provided for males and females.
Facebook
TwitterThis analysis is no longer being updated. This is because the methodology and data for baseline measurements is no longer applicable.
From February 2024, excess mortality reporting is available at: Excess mortality in England.
Measuring excess mortality: a guide to the main reports details the different analysis available and how and when they should be used for the UK and England.
The data in these reports is from 20 March 2020 to 29 December 2023. The first 2 reports on this page provide an estimate of excess mortality during and after the COVID-19 pandemic in:
‘Excess mortality’ in these analyses is defined as the number of deaths that are above the estimated number expected. The expected number of deaths is modelled using 5 years of data from preceding years to estimate the number of death registrations expected in each week.
In both reports, excess deaths are broken down by age, sex, upper tier local authority, ethnic group, level of deprivation, cause of death and place of death. The England report also includes a breakdown by region.
For previous reports, see:
If you have any comments, questions or feedback, contact us at pha-ohid@dhsc.gov.uk.
We also publish a set of bespoke analyses using the same excess mortality methodology and data but cut in ways that are not included in the England and English regions reports on this page.
Facebook
TwitterBetween January 1, 2021 and May 31, 2022, there were approximately 30.6 thousand deaths involving COVID-19 among 80 to 89 year olds in England, with over 14 thousand deaths occurring among unvaccinated people in this age group. Across all the age groups in the provided time interval, deaths involving COVID-19 among the unvaccinated population was around double the amount of people who received at least two doses of a vaccine. For further information about the COVID-19 pandemic, please visit our dedicated Facts and Figures page.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Estimates of the risk of hospital admission for coronavirus (COVID-19) and death involving COVID-19 by vaccination status, overall and by age group, using anonymised linked data from Census 2021. Experimental Statistics.
Outcome definitions
For this analysis, we define a death as involving COVID-19 if either of the ICD-10 codes U07.1 (COVID-19, virus identified) or U07.2 (COVID-19, virus not identified) is mentioned on the death certificate. Information on cause of death coding is available in the User Guide to Mortality Statistics. We use date of occurrance rather than date of registration to give the date of the death.
We define COVID-109 hospitalisation as an inpatient episode in Hospital Episode Statistics where the primary diagnosis was COVID-19, identified by the ICD-19 codes (COVID-19, virus identified) or U07.2 (COVID-19, virus not identified). Where an individual had experienced more than one COVID-19 hospitalisation, the earliest that occurred within the study period was used. We define the date of COVID-19 hospitalisation as the start of the hospital episode.
ICD-10 code
U07.1 :
COVID-19, virus identified
U07.2:
COVID-19, virus not identified
Vaccination status is defined by the dose and the time since the last dose received
Unvaccinated:
no vaccination to less than 21 days post first dose
First dose 21 days to 3 months:
more than or equal to 21 days post second dose to earliest of less than 91 days post first dose or less than 21 days post second dose
First dose 3+ months:
more than or equal to 91 days post first dose to less than 21 days post second dose
Second dose 21 days to 3 months:
more than or equal to 21 days post second dose to earliest of less than 91 days post second dose or less than 21 days post third dose
Second dose 3-6 months:
more than or equal to 91 days post second dose to earliest of less than 182 days post second dose or less than 21 days post third dose
Second dose 6+ months:
more than or equal to 182 days post second dose to less than 21 days post third dose
Third dose 21 days to 3 months:
more than or equal to 21 days post third dose to less than 91 days post third dose
Third dose 3+ months:
more than or equal to 91 days post third dose
Model adjustments
Three sets of model adjustments were used
Age adjusted:
age (as a natural spline)
Age, socio-demographics adjusted:
age (as a natural spline), plus socio-demographic characteristics (sex, region, ethnicity, religion, IMD decile, NSSEC category, highest qualification, English language proficiency, key worker status)
Fully adjusted:
age (as a natural spline), plus socio-demographic characteristics (sex, region, ethnicity, religion, IMD decile, NSSEC category, highest qualification, English language proficiency, key worker status), plus health-related characteristics (disability, self-reported health, care home residency, number of QCovid comorbidities (grouped), BMI category, frailty flag and hospitalisation within the last 21 days.
Age
Age in years is defined on the Census day 2021 (21 March 2021). Age is included in the model as a natural spline with boundary knots at the 10th and 90th centiles and internal knots at the 25th, 50th and 75th centiles. The positions of the knots are calculated separately for the overall model and for each age group for the stratified model.
Facebook
TwitterBased on a comparison of coronavirus deaths in 210 countries relative to their population, Peru had the most losses to COVID-19 up until July 13, 2022. As of the same date, the virus had infected over 557.8 million people worldwide, and the number of deaths had totaled more than 6.3 million. Note, however, that COVID-19 test rates can vary per country. Additionally, big differences show up between countries when combining the number of deaths against confirmed COVID-19 cases. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.
The difficulties of death figures
This table aims to provide a complete picture on the topic, but it very much relies on data that has become more difficult to compare. As the coronavirus pandemic developed across the world, countries already used different methods to count fatalities, and they sometimes changed them during the course of the pandemic. On April 16, for example, the Chinese city of Wuhan added a 50 percent increase in their death figures to account for community deaths. These deaths occurred outside of hospitals and went unaccounted for so far. The state of New York did something similar two days before, revising their figures with 3,700 new deaths as they started to include “assumed” coronavirus victims. The United Kingdom started counting deaths in care homes and private households on April 29, adjusting their number with about 5,000 new deaths (which were corrected lowered again by the same amount on August 18). This makes an already difficult comparison even more difficult. Belgium, for example, counts suspected coronavirus deaths in their figures, whereas other countries have not done that (yet). This means two things. First, it could have a big impact on both current as well as future figures. On April 16 already, UK health experts stated that if their numbers were corrected for community deaths like in Wuhan, the UK number would change from 205 to “above 300”. This is exactly what happened two weeks later. Second, it is difficult to pinpoint exactly which countries already have “revised” numbers (like Belgium, Wuhan or New York) and which ones do not. One work-around could be to look at (freely accessible) timelines that track the reported daily increase of deaths in certain countries. Several of these are available on our platform, such as for Belgium, Italy and Sweden. A sudden large increase might be an indicator that the domestic sources changed their methodology.
Where are these numbers coming from?
The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Provisional age-standardised mortality rates for deaths due to COVID-19 by sex, local authority and deprivation indices, and numbers of deaths by middle-layer super output area.
Facebook
TwitterOfficial statistics are produced impartially and free from political influence.
Facebook
TwitterOfficial statistics are produced impartially and free from political influence.
Facebook
TwitterOn March 4, 2020, the first death as a result of coronavirus (COVID-19) was recorded in the United Kingdom (UK). The number of deaths in the UK has increased significantly since then. As of January 13, 2023, the number of confirmed deaths due to coronavirus in the UK amounted to 202,157. On January 21, 2021, 1,370 deaths were recorded, which was the highest total in single day in the UK since the outbreak began.
Number of deaths among highest in Europe
The UK has had the highest number of deaths from coronavirus in western Europe. In terms of rate of coronavirus deaths, the UK has recorded 297.8 deaths per 100,000 population.
Cases in the UK The number of confirmed cases of coronavirus in the UK was 24,243,393 as of January 13, 2023. The South East has the highest number of first-episode confirmed cases of the virus in the UK with 3,123,050 cases, while London and the North West have 2,912,859 and 2,580,090 confirmed cases respectively. As of January 16, the UK has had 50 new cases per 100,000 in the last seven days.
For further information about the coronavirus (COVID-19) pandemic, please visit our dedicated Facts and Figures page.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
NHS UK - COVID-19 Daily Deaths
This section contains information on deaths of patients who have died in hospitals in England and had tested positive for COVID-19 at time of death. All deaths are recorded against the date of death rather than the date the deaths were announced. Interpretation of the figures should take into account the fact that totals by date of death, particularly for most recent days, are likely to be updated in future releases. For example as deaths are confirmed as testing positive for COVID-19, as more post-mortem tests are processed and data from them are validated. Any changes are made clear in the daily files.
These figures do not include deaths outside hospital, such as those in care homes. This approach makes it possible to compile deaths data on a daily basis using up to date figures.
Dataset Content
These figures will be updated at 2pm each day and include confirmed cases reported at 5pm the previous day. Confirmation of COVID-19 diagnosis, death notification and reporting in central figures can take up to several days and the hospitals providing the data are under significant operational pressure. This means that the totals reported at 5pm on each day may not include all deaths that occurred on that day or on recent prior days.
The original dataset is sourced directly from the NHS source site, this original dataset is then cleaned and converted to a csv format available for inclusion into a Kaggle notebook.
There are 3 files considered within the data :- 1. Fatalities_by_age_uk 2.Fatalities_by_region_uk 3.Fatalities_by_trust_uk
Data runs from March 1st up to the current day. Any discrepancies will be outlined. The first is cumulative for any previous days leading up to of relevance. The following days are not cumulative and represent the updated value for the date under consideration.
A start kernel is provided to demonstrate using the dataset.
Citations
This dataset is sourced from the NHS statistical work areas:- https://www.england.nhs.uk/statistics/statistical-work-areas/
This dataset has been sourced and provided to aid in the following competition:- https://www.kaggle.com/c/covid19-global-forecasting-week-4
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Pre-existing conditions of people who died due to COVID-19, broken down by country, broad age group, and place of death occurrence, usual residents of England and Wales.
Facebook
TwitterThe UK Health Security Agency (UKHSA) weekly all-cause mortality surveillance helps to detect and report significant weekly excess mortality (deaths) above normal seasonal levels. This report does not assess general trends in death rates or link excess death figures to particular factors.
Excess mortality is defined as a significant number of deaths reported over that expected for a given week in the year, allowing for weekly variation in the number of deaths. UKHSA investigates any spikes seen which may inform public health actions.
Reports are currently published weekly. In previous years, reports ran from October to September. Since 2021, reports run from mid-July to mid-July each year. This change is to align with the reports for the national flu and COVID-19 weekly surveillance report.
This page includes reports published from 11 July 2024 to the present.
Reports are also available for:
Please direct any enquiries to enquiries@ukhsa.gov.uk
Our statistical practice is regulated by the Office for Statistics Regulation (OSR). The OSR sets the standards of trustworthiness, quality and value in the https://code.statisticsauthority.gov.uk">Code of Practice for Statistics that all producers of Official Statistics should adhere to.
Facebook
TwitterThe Office for Health Improvement and Disparities (OHID) has updated the mortality profile.
The profile brings together a selection of mortality indicators, including from other OHID data tools such as the https://fingertips.phe.org.uk/profile/public-health-outcomes-framework/data">Public Health Outcomes Framework, making it easier to assess outcomes across a range of causes of death.
For the January 2022 update, 2 new indicators have been added to the profile:
COVID-19 was the leading cause of death in England in 2020, but the pandemic had a much greater impact on mortality in some areas than others. These indicators have been included alongside other indicators for leading causes of death in the mortality profile to provide a more complete picture of mortality for local areas in 2020.
If you would like to send us feedback on the tool please contact profilefeedback@phe.gov.uk.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Title: Dataset for "Non-linear Relationships between COVID-19 and Non-COVID-19 Mortality by Vaccination Status within Age Groups" Author: Ir. A.J. Oostenbrink, Independent Researcher (ORCID: 0009-0003-3495-9519) Description: This dataset supports the study analyzing non-linear relationships between COVID-19 and non-COVID-19 mortality by vaccination status across age groups, using UK Office for National Statistics (ONS) data from January 2021 to May 2023. It includes age-standardized mortality rates for five vaccination statuses (unvaccinated, one dose, two doses, three doses, four or more doses) across six age groups (18–39, 40–49, 50–59, 60–69, 70–79, 80–89, 90+ years). The dataset covers monthly data on COVID-19 mortality, non-COVID-19 mortality, and all-cause mortality, enabling the examination of selection bias and concentration effects. Key variables include relative risks (RRcov, RRnoncov), vaccine effectiveness (VE) curves, and concentration factors, modeled using a power function (RRcov ∝ (RRnoncov)a). Data were sourced from ONS publications (2022, 2023) and processed in Microsoft Excel. The dataset includes appendices with person-years, mortality rates, and VE visualizations, supporting non-linear modeling and bias correction analyses. Raw data are available upon request, adhering to UK data protection regulations.Keywords: COVID-19, vaccine effectiveness, mortality rates, selection bias, non-linear modeling, ONS dataLicense: [CC BY 4.0]Files: Aggregated mortality data (Excel), Appendices I–VI (visualizations and tables)
Facebook
TwitterAccording to a survey conducted in the United Kingdom (UK) in April 2022, **** percent of all people aged between 35 and 49 years reported to be suffering from long COVID symptoms, the highest share across all age groups. Furthermore, around *** percent of the population aged 50 to 69 years were estimated to suffer from long COVID. Overall, around *** thousand people in the UK reported their ability to undertake daily activities and routines was affected a little by long COVID symptoms.
Present state of COVID-19 As of May 2022, over ** million COVID-19 cases had been reported in the UK. The largest surge of cases was noted over the winter period 2021/22. The incidence of cases in the county since the pandemic began stood at around ****** per 100,000 population. Cyprus had the highest incidence of COVID-19 cases among its population in Europe at ****** per 100,000 people, followed by a rate of ****** in Iceland. Over *** thousand COVID-19 deaths have been reported in the UK. The deadliest day on record was January 20, 2021, when ***** deaths were recorded. In the UK, a COVID-19 death is defined as a person who died within ** days of a positive test.
Preventing long COVID through vaccination According to the WHO, being fully vaccinated alongside a significant proportion of the population also vaccinated is the best way to avoid the spread of COVID-19 or serious symptoms associated with the virus. It is therefore regarded that receiving a vaccine course as well as subsequent booster vaccines limits the chance of developing long COVID symptoms. As of April 27, 2022, around **** million first doses, **** million second doses, and **** booster doses had been administered in the UK.
Facebook
TwitterAs of February 4, 2022, in the age group 75 to 84 years old COVID-19 was involved in the deaths of 32,780 males and 23,390 females in the United Kingdom. Furthermore, since the pandemic started over 72 thousand deaths in the UK among those aged 85 years and above involved COVID-19. For further information about the COVID-19 pandemic, please visit our dedicated Facts and Figures page.