Based on a comparison of coronavirus deaths in 210 countries relative to their population, Peru had the most losses to COVID-19 up until July 13, 2022. As of the same date, the virus had infected over 557.8 million people worldwide, and the number of deaths had totaled more than 6.3 million. Note, however, that COVID-19 test rates can vary per country. Additionally, big differences show up between countries when combining the number of deaths against confirmed COVID-19 cases. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.
The difficulties of death figures
This table aims to provide a complete picture on the topic, but it very much relies on data that has become more difficult to compare. As the coronavirus pandemic developed across the world, countries already used different methods to count fatalities, and they sometimes changed them during the course of the pandemic. On April 16, for example, the Chinese city of Wuhan added a 50 percent increase in their death figures to account for community deaths. These deaths occurred outside of hospitals and went unaccounted for so far. The state of New York did something similar two days before, revising their figures with 3,700 new deaths as they started to include “assumed” coronavirus victims. The United Kingdom started counting deaths in care homes and private households on April 29, adjusting their number with about 5,000 new deaths (which were corrected lowered again by the same amount on August 18). This makes an already difficult comparison even more difficult. Belgium, for example, counts suspected coronavirus deaths in their figures, whereas other countries have not done that (yet). This means two things. First, it could have a big impact on both current as well as future figures. On April 16 already, UK health experts stated that if their numbers were corrected for community deaths like in Wuhan, the UK number would change from 205 to “above 300”. This is exactly what happened two weeks later. Second, it is difficult to pinpoint exactly which countries already have “revised” numbers (like Belgium, Wuhan or New York) and which ones do not. One work-around could be to look at (freely accessible) timelines that track the reported daily increase of deaths in certain countries. Several of these are available on our platform, such as for Belgium, Italy and Sweden. A sudden large increase might be an indicator that the domestic sources changed their methodology.
Where are these numbers coming from?
The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.
As of January 13, 2023, Bulgaria had the highest rate of COVID-19 deaths among its population in Europe at 548.6 deaths per 100,000 population. Hungary had recorded 496.4 deaths from COVID-19 per 100,000. Furthermore, Russia had the highest number of confirmed COVID-19 deaths in Europe, at over 394 thousand.
Number of cases in Europe During the same period, across the whole of Europe, there have been over 270 million confirmed cases of COVID-19. France has been Europe's worst affected country with around 38.3 million cases, this translates to an incidence rate of approximately 58,945 cases per 100,000 population. Germany and Italy had approximately 37.6 million and 25.3 million cases respectively.
Current situation In March 2023, the rate of cases in Austria over the last seven days was 224 per 100,000 which was the highest in Europe. Luxembourg and Slovenia both followed with seven day rates of infections at 122 and 108 respectively.
The data includes:
case rate per 100,000 population
case rate per 100,000 population aged 60 years and over
percentage change in case rate per 100,000 from previous week
number of people tested and weekly positivity
NHS pressures by Sustainability and Transformation Partnership (STP)
More detailed epidemiological charts and graphs are presented for areas in very high and high local COVID alert level areas.
See the https://www.england.nhs.uk/statistics/statistical-work-areas/covid-19-hospital-activity/" class="govuk-link">detailed data on hospital activity.
See the detailed data on the https://coronavirus.data.gov.uk/?_ga=2.59248237.1996501647.1611741463-1961839927.1610968060" class="govuk-link">progress of the coronavirus pandemic.
Published 28 January 2021
Data for each local authority is listed by:
These reports summarise epidemiological data at lower-tier local authority (LTLA) level for England as at 9 June 2021.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Age-standardised mortality rates for deaths involving coronavirus (COVID-19), non-COVID-19 deaths and all deaths by vaccination status, broken down by age group.
This dataset contains daily data trackers for the COVID-19 pandemic, aggregated by month and starting 18.3.20. The first release of COVID-19 data on this platform was on 1.6.20. Updates have been provided on a quarterly basis throughout 2023/24. No updates are currently scheduled for 2024/25 as case rates remain low. The data is accurate as at 8.00 a.m. on 8.4.24. Some narrative for the data covering the latest period is provided here below: Diagnosed cases / episodes • As at 3.4.24 CYC residents have had a total 75,556 covid episodes since the start of the pandemic, a rate of 37,465 per 100,000 of population (using 2021 Mid-Year Population estimates). The cumulative rate in York is similar to the national (37,305) and regional (37,059) averages. • The latest rate of new Covid cases per 100,000 of population for the period 28.3.24 to 3.4.24 in York was 1.49 (3 cases). The national and regional averages at this date were 1.67 and 2.19 respectively (using data published on Gov.uk on 5.4.24).
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Due to changes in the collection and availability of data on COVID-19, this dataset is no longer updated. Latest information about COVID-19 is available via the UKHSA data dashboard. The UK government publish daily data, updated weekly, on COVID-19 cases, vaccinations, hospital admissions and deaths. This note provides a summary of the key data for London from this release. Data are published through the UK Coronavirus Dashboard, last updated on 23 March 2023. This update contains: Data on the number of cases identified daily through Pillar 1 and Pillar 2 testing at the national, regional and local authority level Data on the number of people who have been vaccinated against COVID-19 Data on the number of COVID-19 patients in Hospital Data on the number of people who have died within 28 days of a COVID-19 diagnosis Data for London and London boroughs and data disaggregated by age group Data on weekly deaths related to COVID-19, published by the Office for National Statistics and NHS, is also available. Key Points On 23 March 2023 the daily number of people tested positive for COVID-19 in London was reported as 2,775 On 23 March 2023 it was newly reported that 94 people in London died within 28 days of a positive COVID-19 test The total number of COVID-19 cases identified in London to date is 3,146,752 comprising 15.2 percent of the England total of 20,714,868 cases In the most recent week of complete data (12 March 2023 - 18 March 2023) 2,951 new cases were identified in London, a rate of 33 cases per 100,000 population. This compares with 2,883 cases and a rate of 32 for the previous week In England as a whole, 29,426 new cases were identified in the most recent week of data, a rate of 52 cases per 100,000 population. This compares with 26,368 cases and a rate of 47 for the previous week Up to and including 22 March 2023 6,452,895 people in London had received the first dose of a COVID-19 vaccine and 6,068,578 had received two doses Up to and including 22 March 2023 4,435,586 people in London had received either a third vaccine dose or a booster dose On 22 March 2023 there were 1,370 COVID-19 patients in London hospitals. This compares with 1,426 patients on 15 March 2023. On 22 March 2023 there were 70 COVID-19 patients in mechanical ventilation beds in London hospitals. This compares with 72 patients on 15 March 2023. Update: From 1st July updates are weekly From Friday 1 July 2022, this page will be updated weekly rather than daily. This change results from a change to the UK government COVID-19 Dashboard which will move to weekly reporting. Weekly updates will be published every Thursday. Daily data up to the most recent available will continue to be added in each weekly update. Data summary 리소스 CSV phe_vaccines_age_london_boroughs.csv CSV 다운로드 phe_vaccines_age_london_boroughs.csv CSV phe_healthcare_admissions_age.csv CSV 다운로드
The data includes:
See the detailed data on the https://coronavirus.data.gov.uk/?_ga=2.3556087.692429653.1632134992-1536954384.1620657761" class="govuk-link">progress of the coronavirus pandemic. This includes the number of people testing positive, case rates and deaths within 28 days of positive test by lower tier local authority.
Also see guidance on COVID-19 restrictions.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Trends in Covid total deaths per million. The latest data for over 100 countries around the world.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Covid-19 positive tests: rolling 7-day rate per 100,000 population and number by age band.Please note automatic updates to this dataset was discontinued on the 8th December 2023.
Men working in working-class jobs were at a higher risk of dying from Coronavirus in England and Wales, when compared their counterparts working in white-collar professions, as of April 2020. The death rate was highest for men working occupations classified as elementary trades at 27.8 per 100,000 population, compared with just 3.9 for those working in scientific research.
For further information about the coronavirus (COVID-19) pandemic, please visit our dedicated Facts and Figures page.
https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions
Update 2 March 2023: Following the merger of NHS Digital and NHS England on 1st February 2023 we are reviewing the future presentation of the NHS Outcomes Framework indicators. As part of this review, the annual publication which was due to be released in March 2023 has been delayed. Further announcements about this dataset will be made on this page in due course. Directly standardised mortality rate from cardiovascular disease for people aged under 75, per 100,000 population. To ensure that the NHS is held to account for doing all that it can to prevent deaths from cardiovascular disease in people under 75. Some different patterns have been observed in the 2020 mortality data which are likely to have been impacted by the coronavirus (COVID-19) pandemic. Statistics from this period should also be interpreted with care. Legacy unique identifier: P01730
https://www.pioneerdatahub.co.uk/data/data-request-process/https://www.pioneerdatahub.co.uk/data/data-request-process/
PIONEER: Deeply-phenotyped hospital COVID patients: severity, acuity, therapies, outcomes Dataset number 4.0
Coronavirus disease 2019 (COVID-19) was identified in January 2020. Currently, there have been more than 6 million cases& more than 1.5 million deaths worldwide. Some individuals experience severe manifestations of infection, including viral pneumonia, adult respiratory distress syndrome (ARDS)& death. There is a pressing need for tools to stratify patients, to identify those at greatest risk. Acuity scores are composite scores which help identify patients who are more unwell to support & prioritise clinical care. There are no validated acuity scores for COVID-19 & it is unclear whether standard tools are accurate enough to provide this support. This secondary care COVID dataset contains granular demographic, morbidity, serial acuity and outcome data to inform risk prediction tools in COVID-19.
PIONEER geography The West Midlands (WM) has a population of 5.9 million & includes a diverse ethnic & socio-economic mix. There is a higher than average percentage of minority ethnic groups. WM has a large number of elderly residents but is the youngest population in the UK. Each day >100,000 people are treated in hospital, see their GP or are cared for by the NHS. The West Midlands was one of the hardest hit regions for COVID admissions in both wave 1 & 2.
EHR. University Hospitals Birmingham NHS Foundation Trust (UHB) is one of the largest NHS Trusts in England, providing direct acute services & specialist care across four hospital sites, with 2.2 million patient episodes per year, 2750 beds & 100 ITU beds. UHB runs a fully electronic healthcare record (EHR) (PICS; Birmingham Systems), a shared primary & secondary care record (Your Care Connected) & a patient portal “My Health”. UHB has cared for >5000 COVID admissions to date.
Scope: All COVID swab confirmed hospitalised patients to UHB from January – May 2020. The dataset includes highly granular patient demographics & co-morbidities taken from ICD-10 & SNOMED-CT codes but also primary care records& clinic letters. Serial, structured data pertaining to care process (timings, staff grades, specialty review, wards), presenting complaint, acuity, all physiology readings (pulse, blood pressure, respiratory rate, oxygen saturations), all blood results, microbiology, all prescribed & administered treatments (fluids, antibiotics, inotropes, vasopressors, organ support), all outcomes. Linked images available (radiographs, CT, MRI, ultrasound).
Available supplementary data: Health data preceding & following admission event. Matched “non-COVID” controls; ambulance, 111, 999 data, synthetic data.
Available supplementary support: Analytics, Model build, validation & refinement; A.I.; Data partner support for ETL (extract, transform & load) process, Clinical expertise, Patient & end-user access, Purchaser access, Regulatory requirements, Data-driven trials, “fast screen” services.
https://www.pioneerdatahub.co.uk/data/data-request-process/https://www.pioneerdatahub.co.uk/data/data-request-process/
Background. Chronic obstructive pulmonary disease (COPD) is a debilitating lung condition characterised by progressive lung function limitation. COPD is an umbrella term and encompasses a spectrum of pathophysiologies including chronic bronchitis, small airways disease and emphysema. COPD caused an estimated 3 million deaths worldwide in 2016, and is estimated to be the third leading cause of death worldwide. The British Lung Foundation (BLF) estimates that the disease costs the NHS around £1.9 billion per year. COPD is therefore a significant public health challenge. This dataset explores the impact of hospitalisation in patients with COPD during the COVID pandemic.
PIONEER geography The West Midlands (WM) has a population of 5.9 million & includes a diverse ethnic & socio-economic mix. There is a higher than average percentage of minority ethnic groups. WM has a large number of elderly residents but is the youngest population in the UK. There are particularly high rates of physical inactivity, obesity, smoking & diabetes. The West Midlands has a high prevalence of COPD, reflecting the high rates of smoking and industrial exposure. Each day >100,000 people are treated in hospital, see their GP or are cared for by the NHS.
EHR. University Hospitals Birmingham NHS Foundation Trust (UHB) is one of the largest NHS Trusts in England, providing direct acute services & specialist care across four hospital sites, with 2.2 million patient episodes per year, 2750 beds & 100 ITU beds. UHB runs a fully electronic healthcare record (EHR) (PICS; Birmingham Systems), a shared primary & secondary care record (Your Care Connected) & a patient portal “My Health”.
Scope: All hospitalised patients admitted to UHB during the COVID-19 pandemic first wave, curated to focus on COPD. Longitudinal & individually linked, so that the preceding & subsequent health journey can be mapped & healthcare utilisation prior to & after admission understood. The dataset includes ICD-10 & SNOMED-CT codes pertaining to COPD and COPD exacerbations, as well as all co-morbid conditions. Serial, structured data pertaining to process of care (timings, staff grades, specialty review, wards), presenting complaint, all physiology readings (pulse, blood pressure, respiratory rate, oxygen saturations), all blood results, microbiology, all prescribed & administered treatments (fluids, nebulisers, antibiotics, inotropes, vasopressors, organ support), all outcomes. Linked images available (radiographs, CT).
Available supplementary data: More extensive data including wave 2 patients in non-OMOP form. Ambulance, 111, 999 data, synthetic data.
Available supplementary support: Analytics, Model build, validation & refinement; A.I.; Data partner support for ETL (extract, transform & load) process, Clinical expertise, Patient & end-user access, Purchaser access, Regulatory requirements, Data-driven trials, “fast screen” services.
According to a survey conducted in the United Kingdom (UK) in April 2022, 4.13 percent of all people aged between 35 and 49 years reported to be suffering from long COVID symptoms, the highest share across all age groups. Furthermore, around 3.7 percent of the population aged 50 to 69 years were estimated to suffer from long COVID. Overall, around 863 thousand people in the UK reported their ability to undertake daily activities and routines was affected a little by long COVID symptoms.
Present state of COVID-19 As of May 2022, over 22 million COVID-19 cases had been reported in the UK. The largest surge of cases was noted over the winter period 2021/22. The incidence of cases in the county since the pandemic began stood at around 32,624 per 100,000 population. Cyprus had the highest incidence of COVID-19 cases among its population in Europe at 75,798 per 100,000 people, followed by a rate of 51,573 in Iceland. Over 175 thousand COVID-19 deaths have been reported in the UK. The deadliest day on record was January 20, 2021, when 1,820 deaths were recorded. In the UK, a COVID-19 death is defined as a person who died within 28 days of a positive test.
Preventing long COVID through vaccination According to the WHO, being fully vaccinated alongside a significant proportion of the population also vaccinated is the best way to avoid the spread of COVID-19 or serious symptoms associated with the virus. It is therefore regarded that receiving a vaccine course as well as subsequent booster vaccines limits the chance of developing long COVID symptoms. As of April 27, 2022, around 53.2 million first doses, 49.7 million second doses, and 39.2 booster doses had been administered in the UK.
https://www.pioneerdatahub.co.uk/data/data-request-process/https://www.pioneerdatahub.co.uk/data/data-request-process/
OMOP dataset: Hospital COVID patients: severity, acuity, therapies, outcomes Dataset number 2.0
Coronavirus disease 2019 (COVID-19) was identified in January 2020. Currently, there have been more than 6 million cases & more than 1.5 million deaths worldwide. Some individuals experience severe manifestations of infection, including viral pneumonia, adult respiratory distress syndrome (ARDS) & death. There is a pressing need for tools to stratify patients, to identify those at greatest risk. Acuity scores are composite scores which help identify patients who are more unwell to support & prioritise clinical care. There are no validated acuity scores for COVID-19 & it is unclear whether standard tools are accurate enough to provide this support. This secondary care COVID OMOP dataset contains granular demographic, morbidity, serial acuity and outcome data to inform risk prediction tools in COVID-19.
PIONEER geography The West Midlands (WM) has a population of 5.9 million & includes a diverse ethnic & socio-economic mix. There is a higher than average percentage of minority ethnic groups. WM has a large number of elderly residents but is the youngest population in the UK. Each day >100,000 people are treated in hospital, see their GP or are cared for by the NHS. The West Midlands was one of the hardest hit regions for COVID admissions in both wave 1 & 2.
EHR. University Hospitals Birmingham NHS Foundation Trust (UHB) is one of the largest NHS Trusts in England, providing direct acute services & specialist care across four hospital sites, with 2.2 million patient episodes per year, 2750 beds & 100 ITU beds. UHB runs a fully electronic healthcare record (EHR) (PICS; Birmingham Systems), a shared primary & secondary care record (Your Care Connected) & a patient portal “My Health”. UHB has cared for >5000 COVID admissions to date. This is a subset of data in OMOP format.
Scope: All COVID swab confirmed hospitalised patients to UHB from January – August 2020. The dataset includes highly granular patient demographics & co-morbidities taken from ICD-10 & SNOMED-CT codes. Serial, structured data pertaining to care process (timings, staff grades, specialty review, wards), presenting complaint, acuity, all physiology readings (pulse, blood pressure, respiratory rate, oxygen saturations), all blood results, microbiology, all prescribed & administered treatments (fluids, antibiotics, inotropes, vasopressors, organ support), all outcomes.
Available supplementary data: Health data preceding & following admission event. Matched “non-COVID” controls; ambulance, 111, 999 data, synthetic data. Further OMOP data available as an additional service.
Available supplementary support: Analytics, Model build, validation & refinement; A.I.; Data partner support for ETL (extract, transform & load) process, Clinical expertise, Patient & end-user access, Purchaser access, Regulatory requirements, Data-driven trials, “fast screen” services.
Women working in jobs classified as elementary trade professions were at a higher risk of dying from Coronavirus in England and Wales, when compared other jobs, as of April 2020. Corporate managers and directors had a death rate of 2.6 per 100 thousand women compared with 12.5 for women working in elementary trades.
For further information about the coronavirus (COVID-19) pandemic, please visit our dedicated Facts and Figures page.
Between 1953 and 2021, the death rate of the United Kingdom fluctuated between a high of 12.2 deaths per 1,000 people in 1962 and a low of 8.7 in 2011. From 2011 onwards, the death rate creeped up slightly and, in 2020, reached 10.3 deaths per 1,000 people. In 2021, the most recent year provided here, the death rate was ten, a decline from 2020 but still higher than in almost every year in the twenty-first century. The recent spike in the death rate corresponds to the emergence of the COVID-19 pandemic in the UK, with the first cases recorded in early 2020. Most deaths since 1918 in 2020 In 2020, there were 689,629 deaths in the United Kingdom, the highest in more than a century. Although there were fewer deaths in 2021, at 667,479, this was still far higher than in recent years. When looking at the weekly deaths in England and Wales for this time period, two periods stand out for reporting far more deaths than usual. The first period was between weeks 13 and 22 of 2020, which saw two weeks in late April report more than 20,000 deaths. Excess deaths for the week ending April 17, 2020, were 11,854, and 11,539 for the following week. Another wave of deaths occurred in January 2021, when there were more than 18,000 deaths per week between weeks three and five of that year. Improvements to life expectancy slowing Between 2020 and 2022, life expectancy in the United Kingdom was approximately 82.57 years for women and 78.57 years for men. Compared with life expectancy in 1980/82 this marked an increase of around six years for women and almost eight years for men. Despite these long-term developments, improvements to life expectancy have been slowing in recent years, and have declined since 2017/19. As of 2022, the country with the highest life expectancy in the World was Japan, which was 84.5 years, followed by South Korea, at 83.6 years.
The data includes:
These reports summarise epidemiological data at lower-tier local authority (LTLA) level for England as at 10 December 2020 at 10am.
More detailed epidemiological charts and graphs are presented for areas in very high and high local COVID alert level areas.
These reports were used to give MPs an update on the status of COVID within their region for population case rate, hospital admissions and bed status, and COVID-related mortality.
See the detailed data on the https://coronavirus.data.gov.uk/" class="govuk-link">progress of the coronavirus pandemic.
In 2023/24, there were approximately 33.7 million working days lost in Great Britain due to work-related injury or illness, compared with the previous year, which had 37 million working days lost. The amount of working days lost in 2019/20 was the highest in this provided time period, with 2010/11 having the fewest in this time period, at 25,950. In terms of overall sickness absence in the UK labor market, there were approximately 185.6 million working days lost in 2022, compared with 149.8 million in the previous year. Over 2.8 million on long-term sick leave in late 2023 In the fourth quarter of 2023, the number of people economically inactive in the UK due to being on long-term sick leave reached over 2.84 million, declining only slightly to 2.77 million a year later. It is thought that Long COVID is one of the main factors behind this increase, with an estimated 1.8 million people suffering from the condition in April 2022. There has also been a rise in the number of people taking sick leave due to mental health conditions, with approximately 313,000 on long-term sick leave in 2022 due to this reason, and a further 282,000 for depression, bad nerves, or anxiety. Where most workplace injuries happen The water supply and waste management industry had the highest rate of workplace injuries reported in Great Britain in 2023/24 at 804 injuries per 100,000 workers. During the 2022/23 reporting year, the industry with the highest number of fatal accidents in the workplace was construction, which had 51. When adjusted for the size of the workforce, however, construction was second to Agriculture, which had 7.51 fatal accidents per 100,00 workers. Overall, however, the number of people getting injured at work has fallen significantly in recent years. In 2000/01 for example, there were more than a million accidents, with this falling to just 604,000 in 2023/24.
Based on a comparison of coronavirus deaths in 210 countries relative to their population, Peru had the most losses to COVID-19 up until July 13, 2022. As of the same date, the virus had infected over 557.8 million people worldwide, and the number of deaths had totaled more than 6.3 million. Note, however, that COVID-19 test rates can vary per country. Additionally, big differences show up between countries when combining the number of deaths against confirmed COVID-19 cases. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.
The difficulties of death figures
This table aims to provide a complete picture on the topic, but it very much relies on data that has become more difficult to compare. As the coronavirus pandemic developed across the world, countries already used different methods to count fatalities, and they sometimes changed them during the course of the pandemic. On April 16, for example, the Chinese city of Wuhan added a 50 percent increase in their death figures to account for community deaths. These deaths occurred outside of hospitals and went unaccounted for so far. The state of New York did something similar two days before, revising their figures with 3,700 new deaths as they started to include “assumed” coronavirus victims. The United Kingdom started counting deaths in care homes and private households on April 29, adjusting their number with about 5,000 new deaths (which were corrected lowered again by the same amount on August 18). This makes an already difficult comparison even more difficult. Belgium, for example, counts suspected coronavirus deaths in their figures, whereas other countries have not done that (yet). This means two things. First, it could have a big impact on both current as well as future figures. On April 16 already, UK health experts stated that if their numbers were corrected for community deaths like in Wuhan, the UK number would change from 205 to “above 300”. This is exactly what happened two weeks later. Second, it is difficult to pinpoint exactly which countries already have “revised” numbers (like Belgium, Wuhan or New York) and which ones do not. One work-around could be to look at (freely accessible) timelines that track the reported daily increase of deaths in certain countries. Several of these are available on our platform, such as for Belgium, Italy and Sweden. A sudden large increase might be an indicator that the domestic sources changed their methodology.
Where are these numbers coming from?
The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.