The overall wealth of households in the United Kingdom was **** trillion British pounds in the period between 2020 and 2022. Of this overall wealth, the top ten percent of households had over *** trillion pounds of wealth, compared with **** billion owned by the lowest wealth decile.
At the turn of the twentieth century, the wealthiest one percent of people in the United Kingdom controlled 71 percent of net personal wealth, while the top ten percent controlled 93 percent. The share of wealth controlled by the rich in the United Kingdom fell throughout the twentieth century, and by 1990 the richest one percent controlled 16 percent of wealth, and the richest ten percent just over half of it.
In the 2022/23 financial year, various measures of inequality in the United Kingdom decreased when compared with 2021/22. The S80/20 ratio fell from *** to ***, the P90/10 ratio from *** to ***, and the Palma ratio between *** and ***.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
75% of households from the Bangladeshi ethnic group were in the 2 lowest income quintiles (after housing costs were deducted) between April 2021 and March 2024.
Official statistics are produced impartially and free from political influence.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Individual-level estimates of total wealth (July 2010 to March 2020) and regression estimates for the latest survey period.
These tables only cover individuals with some liability to tax.
These statistics are classified as accredited official statistics.
You can find more information about these statistics and collated tables for the latest and previous tax years on the Statistics about personal incomes page.
Supporting documentation on the methodology used to produce these statistics is available in the release for each tax year.
Note: comparisons over time may be affected by changes in methodology. Notably, there was a revision to the grossing factors in the 2018 to 2019 publication, which is discussed in the commentary and supporting documentation for that tax year. Further details, including a summary of significant methodological changes over time, data suitability and coverage, are included in the Background Quality Report.
This statistic presents the wealth distribution among households in the United Kingdom (UK) in 2018. Approximately **** percent adults in the United Kingdom found themselves in the bracket of between 100 thousand and *********** U.S. dollars as their household private wealth.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
In the 3 years to March 2021, black households were most likely out of all ethnic groups to have a weekly income of under £600.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Three datasets, all carried out by YouGov and the WEALTHPOL team, are included. The first was conducted in Summer 2021, the second in Summer 2022, and the third in October 2022. CSVs, codebooks, and data construction files are included (note the latter include references to other files but show the coding).
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Data on household wealth in Great Britain by ethnic group. Includes total, property, financial, physical and private pension wealth by age, region, household composition and housing tenure.
The table only covers individuals who have some liability to Income Tax. The percentile points have been independently calculated on total income before tax and after tax.
These statistics are classified as accredited official statistics.
You can find more information about these statistics and collated tables for the latest and previous tax years on the Statistics about personal incomes page.
Supporting documentation on the methodology used to produce these statistics is available in the release for each tax year.
Note: comparisons over time may be affected by changes in methodology. Notably, there was a revision to the grossing factors in the 2018 to 2019 publication, which is discussed in the commentary and supporting documentation for that tax year. Further details, including a summary of significant methodological changes over time, data suitability and coverage, are included in the Background Quality Report.
This GLA Intelligence Update takes a brief look at evidence around the wealth gap in London and examines how this has changed in recent years. Key Findings There is a significant gap between the rich and poor in London, both in terms of their wealth and their income. A higher proportion of the wealthiest households are in the South East of England than in London. Pension wealth accounts for more than half the wealth of the richest ten per cent of the population. In London, the tenth of the population with the highest income have weekly income after housing costs of over £1,000 while people in the lowest tenth have under £94 per week. The gap between rich and poor is growing, with the difference between the average income for the second highest tenth and second lowest tenth growing around 14 per cent more than inflation since 2003.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Historical dataset showing U.K. income inequality - gini coefficient by year from N/A to N/A.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The value of any pension pots already accrued that are not state basic retirement or state earning related. This includes occupational pensions, personal pensions, retained rights in previous pensions and pensions in payment.
This dataset encompasses the foundations and findings of a study titled "Housing Wealth Distribution, Inequality, and Residential Satisfaction," highlighting the evolution of residential properties from mere consumption goods to significant assets for wealth accumulation. Since the 1980s, with financial market deregulation in the UK, there has been a noticeable shift in homeownership patterns and housing wealth's role. The liberalisation of the banking sector, particularly mortgage lending, facilitated a significant rise in homeownership rates from around 50% in the 1970s to over 70% in the early 2000s, stabilizing at 65% in recent years. Concurrently, housing wealth relative to household annual gross disposable income has seen a considerable increase, underscoring the growing importance of residential properties as investment goods. The study explores the multifaceted impact of housing wealth on various aspects of life, including retirement financing, intergenerational wealth transfer, health, consumption, energy conservation, and education. Residential satisfaction, defined as the overall experience and contentment with housing, emerges as a critical factor influencing subjective well-being and labor mobility. Despite the evident influence of housing characteristics, social environment, and demographic factors on residential satisfaction, the relationship between housing wealth and satisfaction remains underexplored. To bridge this gap, the research meticulously assembles data from different surveys across the UK and the USA spanning 1970 to 2019, despite challenges such as data compatibility and measurement errors. Initial findings reveal no straightforward correlation between rising house prices and residential satisfaction, mirroring the Easterlin Paradox, which suggests that happiness levels do not necessarily increase with income growth. This paradox is dissected through the lenses of social comparison and adaptation, theorizing that relative income and the human tendency to adapt to changes might explain the stagnant satisfaction levels despite increased housing wealth. Further analysis within the UK context supports the social comparison hypothesis, suggesting that disparities in housing wealth distribution can lead to varied satisfaction levels, potentially exacerbating societal inequality. This phenomenon is not isolated to developed nations but is also pertinent to developing countries experiencing rapid economic growth alongside widening income and wealth gaps. The study concludes by emphasizing the significance of considering housing wealth inequality in policy-making, aiming to mitigate its far-reaching implications on societal well-being.Although China has almost eliminated urban poverty, the total number of Chinese citizens in poverty remains at 82 million, most of which are rural residents. The development of rural finance is essential to preventing the country from undergoing further polarization because of the significant potential of such development to facilitate resource interflows between rural and urban markets and to support sustainable development in the agricultural sector. However, rural finance is the weakest point in China's financial systems. Rural households are more constrained than their urban counterparts in terms of financial product availability, consumer protection, and asset accumulation. The development of the rural financial system faces resistance from both the demand and the supply sides. The proposed project addresses this challenge by investigating the applications of a proven behavioural approach, namely, Libertarian Paternalism, in the development of rural financial systems in China. This approach promotes choice architectures to nudge people into optimal decisions without interfering with the freedom of choice. It has been rigorously tested and warmly received in the UK public policy domain. This approach also fits the political and cultural background in China, in which the central government needs to maintain a firm control over financial systems as the general public increasingly demands more freedom. Existing behavioural studies have been heavily reliant on laboratory experiments. Although the use of field studies has been increasing, empirical evidence from the developing world is limited. Meanwhile, the applications of behavioural insights in rural economic development in China remains an uncharted territory. Rural finance studies on the household level are limited; evidence on the role of psychological and social factors in rural households' financial decisions is scarce. The proposed project will bridge this gap in the literature. The overarching research question of this project is whether and how behavioural insights can be used to help rural residents in China make sound financial decisions, which will ultimately contribute to the sustainable economic development in China. The research will be conducted through field experiments in rural China. By relying on field evidences, the project team will develop policy tools and checklists for policy makers to help rural households make sound financial decisions. Two types of tools will be developed for policy makers, namely, "push" tools that aim to achieve short-term policy compliance among rural households so that they can break out of the persistent poverty cycle and "pull" tools that can reduce fraud, error, and debt among rural households to prevent them from falling back into poverty. Finally, the project team will also use the research activities and findings as vehicles to engage and educate rural residents, local governments, regulators, and financial institutions. Standard and good practice will be proposed to interested parties for the designs of good behavioural interventions; ethical guidelines will be provided to encourage good practice. This important step ensures that the findings of this project will benefit academia and practice, with long-lasting, positive impacts. The findings will benefit researchers in behavioural finance and economics, rural economics, development economics, political sciences, and psychology. The findings of and the engagement in this project will help policy makers to develop cost-effective behavioural change policies. Rural households will benefit by being nudged into sound financial decisions and healthy financial habits. The project will provide insights on how to leverage behavioural insights to overcome persistent poverty in the developing world. Therefore, the research will be of interest to communities in China and internationally. The data were retrived from the British Household Panel Survey (BHPS) between 1997 and 2008, when both residential satisfaction scores and home valuations are available.
The Wealth and Assets Survey (WAS) is a longitudinal survey, which aims to address gaps identified in data about the economic well-being of households by gathering information on level of assets, savings and debt; saving for retirement; how wealth is distributed among households or individuals; and factors that affect financial planning. Private households in Great Britain were sampled for the survey (meaning that people in residential institutions, such as retirement homes, nursing homes, prisons, barracks or university halls of residence, and also homeless people were not included).
The WAS commenced in July 2006, with a first wave of interviews carried out over two years, to June 2008. Interviews were achieved with 30,595 households at Wave 1. Those households were approached again for a Wave 2 interview between July 2008 and June 2010, and 20,170 households took part. Wave 3 covered July 2010 - June 2012, Wave 4 covered July 2012 - June 2014 and Wave 5 covered July 2014 - June 2016. Revisions to previous waves' data mean that small differences may occur between originally published estimates and estimates from the datasets held by the UK Data Service. Data are revised on a wave by wave basis, as a result of backwards imputation from the current wave's data. These revisions are due to improvements in the imputation methodology.
Note from the WAS team - November 2023:
“The Office for National Statistics has identified a very small number of outlier cases present in the seventh round of the Wealth and Assets Survey covering the period April 2018 to March 2020. Our current approach is to treat cases where we have reasonable evidence to suggest the values provided for specific variables are outliers. This approach did not occur for two individuals for several variables involved in the estimation of their pension wealth. While we estimate any impacts are very small overall and median pension wealth and median total wealth estimates are unaffected, this will affect the accuracy of the breakdowns of the pension wealth within the wealthiest decile, and data derived from them. We are urging caution in the interpretation of more detailed estimates.”
Survey Periodicity - "Waves" to "Rounds"
Due to the survey periodicity moving from “Waves” (July, ending in June two years later) to “Rounds” (April, ending in March two years later), interviews using the ‘Wave 6’ questionnaire started in July 2016 and were conducted for 21 months, finishing in March 2018. Data for round 6 covers the period April 2016 to March 2018. This comprises of the last three months of Wave 5 (April to June 2016) and 21 months of Wave 6 (July 2016 to March 2018). Round 5 and Round 6 datasets are based on a mixture of original wave-based datasets. Each wave of the survey has a unique questionnaire and therefore each of these round-based datasets are based on two questionnaires. While there may be some changes in the questionnaires, the derived variables for the key wealth estimates have not changed over this period. The aim is to collect the same data, though in some cases the exact questions asked may differ slightly. Detailed information on Moving the Wealth and Assets Survey onto a financial years’ basis was published on the ONS website in July 2019.
A Secure Access version of the WAS, subject to more stringent access conditions, is available under SN 6709; it contains more detailed geographic variables than the EUL version. Users are advised to download the EUL version first (SN 7215) to see if it is suitable for their needs, before considering making an application for the Secure Access version.
Further information and documentation may be found on the ONS "https://www.ons.gov.uk/economy/nationalaccounts/uksectoraccounts/methodologies/wealthandassetssurveywas" title="Wealth and Assets Survey"> Wealth and Assets Survey webpage. Users are advised to the check the page for updates before commencing analysis.
Occupation data for 2021 and 2022 data files
The ONS have identified an issue with the collection of some occupational data in 2021 and 2022 data files in a number of their surveys. While they estimate any impacts will be small overall, this will affect the accuracy of the breakdowns of some detailed (four-digit Standard Occupational Classification (SOC)) occupations, and data derived from them. None of ONS' headline statistics, other than those directly sourced from occupational data, are affected and you can continue to rely on their accuracy. For further information on this issue, please see: https://www.ons.gov.uk/news/statementsandletters/occupationaldatainonssurveys.
The data dictionary for round 8 person file is not available.
Latest edition information
For the 20th edition (May 2025), the Round 8 data files were updated to include variables personr7, nounitsr8 and porage1tar8, and derived binary versions of multi-choice questions, their collected equivalents and imputed binary versions of these variables. Also, variables that were only collected for part of the round have been removed. Additional documentation for Round 8 was also added to the study, including an updated variable list and derived variable specifications.
Official statistics are produced impartially and free from political influence.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The values of any financial assets held including both formal investments, such as bank or building society current or saving accounts, investment vehicles such as Individual Savings Accounts, endowments, stocks and shares, and informal savings.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Dataset of long-run data on wealth inequality drawn from existing sources and compiled into a single country-year dataset.
The overall wealth of households in the United Kingdom was **** trillion British pounds in the period between 2020 and 2022. Of this overall wealth, the top ten percent of households had over *** trillion pounds of wealth, compared with **** billion owned by the lowest wealth decile.