The highest average temperature recorded in 2024 until November was in August, at 16.8 degrees Celsius. Since 2015, the highest average daily temperature in the UK was registered in July 2018, at 18.7 degrees Celsius. The summer of 2018 was the joint hottest since institutions began recording temperatures in 1910. One noticeable anomaly during this period was in December 2015, when the average daily temperature reached 9.5 degrees Celsius. This month also experienced the highest monthly rainfall in the UK since before 2014, with England, Wales, and Scotland suffering widespread flooding. Daily hours of sunshine Unsurprisingly, the heat wave that spread across the British Isles in 2018 was the result of particularly sunny weather. July 2018 saw an average of 8.7 daily sun hours in the United Kingdom. This was more hours of sun than was recorded in July 2024, which only saw 5.8 hours of sun. Temperatures are on the rise Since the 1960s, there has been an increase in regional temperatures across the UK. Between 1961 and 1990, temperatures in England averaged nine degrees Celsius, and from 2013 to 2022, average temperatures in the country had increased to 10.3 degrees Celsius. Due to its relatively southern location, England continues to rank as the warmest country in the UK.
The annual mean temperature in the United Kingdom has fluctuated greatly since 1990. Temperatures during this period were at their highest in 2022, surpassing 10 degrees Celsius. In 2010, the mean annual temperature stood at 7.94 degrees, the lowest recorded during this time. Daily temperatures Average daily temperatures have remained stable since the turn of the century, rarely dropping below 10 degrees Celsius. In 2010, they dropped to a low of nine degrees Celsius. The peak average daily temperature was recorded in 2022 when it reached 11.2 degrees. This was an increase of one degree Celsius compared to the long-term mean, and the most positive deviation during the period of consideration. Highs and lows The maximum average temperature recorded across the UK since 2015 was in July 2018. This month saw a maximum temperature of 22.6 degrees Celsius. In comparison, the lowest monthly minimum temperature was in February of the same year, at just minus 0.6 degrees. This was an especially cold February, as the previous year the minimum temperature for this month was 2.6 degrees.
The average temperature across the United Kingdom presented a trend of continuous growth since 1961. During the first period, from 1961 to 1990, the country recorded an average temperature of 8.3 degrees Celsius. In the next period, from 1991 to 2020, the UK's average temperature increased by 0.8 degrees Celsius and increased further by 0.5 degrees Celsius between 2014 and 2023. In the latter year, figures remained at 10 degrees Celsius, 1.7 degrees warmer than the average recorded between 1961 and 1990, illustrating the effects of climate change. Nevertheless, 2022 was the warmest year in the United Kingdom.
These statistics show quarterly and monthly weather trends for:
They provide contextual information for consumption patterns in energy, referenced in the Energy Trends chapters for each energy type.
Trends in wind speeds, sun hours and rainfall provide contextual information for trends in renewable electricity generation.
All these tables are published monthly, on the last Thursday of each month. The data is 1 month in arrears.
If you have questions about this content, please email: energy.stats@energysecurity.gov.uk.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The UK daily temperature data contain maximum and minimum temperatures (air, grass and concrete slab) measured over a period of up to 24 hours. The measurements were recorded by observation stations operated by the Met Office across the UK and transmitted within NCM, DLY3208 or AWSDLY messages. The data span from 1853 to 2023. For details on measurement techniques, including calibration information and changes in measurements, see section 5.2 of the MIDAS User Guide linked to from this record. Soil temperature data may be found in the UK soil temperature datasets linked from this record.
This version supersedes the previous version of this dataset and a change log is available in the archive, and in the linked documentation for this record, detailing the differences between this version and the previous version. The change logs detail new, replaced and removed data. These include the addition of data for calendar year 2023.
This dataset is part of the Midas-open dataset collection made available by the Met Office under the UK Open Government Licence, containing only UK mainland land surface observations owned or operated by the Met Office. It is a subset of the fuller, restricted Met Office Integrated Data Archive System (MIDAS) Land and Marine Surface Stations dataset, also available through the Centre for Environmental Data Analysis - see the related dataset section on this record. Currently this represents approximately 95% of available daily temperature observations within the full MIDAS collection.
England's highest monthly mean air temperatures are typically recorded in July and August of each year. Since 2015, the warmest mean temperature was measured in July 2018 at 18.8 degrees Celsius. On the other hand, February of that same year registered the coolest temperature, at 2.6 degrees Celsius. In February 2025, the mean air temperature was five degrees Celsius, 50 percent lower than the same month the previous year. The English weather England is the warmest region in the United Kingdom and the driest. In 2024, the average annual temperature in England amounted to 10.73 degrees Celsius – around 1.1 degrees above the national mean. That same year, precipitation in England stood at about 1,020 millimeters. By contrast, Scotland – the wettest region in the UK – recorded over 1,500 millimeters of rainfall in 2024. Temperatures on the rise Throughout the last decades, the average temperature in the United Kingdom has seen an upward trend, reaching a record high in 2022. Global temperatures have experienced a similar pattern over the same period. This gradual increase in the Earth's average temperature is primarily due to various human activities, such as burning fossil fuels and deforestation, which lead to the emission of greenhouse gases. This phenomenon has severe consequences, including more frequent and intense weather events, rising sea levels, and adverse effects on human health and the environment.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Temperature in the United Kingdom increased to 10.14 celsius in 2023 from 10.13 celsius in 2022. This dataset includes a chart with historical data for the United Kingdom Average Temperature.
Monthly temperature deviations from the long-term mean in the United Kingdom have varied greatly in recent years. In January 2025, average temperatures were 1.2 degrees Celsius cooler than the long-term mean. In comparison, temperatures in January 2024 were 0.1 degrees Celsius warmer than the long-term mean. The most notable deviation during this period was in December 2015, when temperatures were 4.3 degrees warmer than normal.
[Updated 28/01/25 to fix an issue in the ‘Lower’ values, which were not fully representing the range of uncertainty. ‘Median’ and ‘Higher’ values remain unchanged. The size of the change varies by grid cell and fixed period/global warming levels but the average percentage change between the 'lower' values before and after this update is -1%.]What does the data show? A Heating Degree Day (HDD) is a day in which the average temperature is below 15.5°C. It is the number of degrees above this threshold that counts as a Heating Degree Day. For example if the average temperature for a specific day is 15°C, this would contribute 0.5 Heating Degree Days to the annual sum, alternatively an average temperature of 10.5°C would contribute 5 Heating Degree Days. Given the data shows the annual sum of Heating Degree Days, this value can be above 365 in some parts of the UK.Annual Heating Degree Days is calculated for two baseline (historical) periods 1981-2000 (corresponding to 0.51°C warming) and 2001-2020 (corresponding to 0.87°C warming) and for global warming levels of 1.5°C, 2.0°C, 2.5°C, 3.0°C, 4.0°C above the pre-industrial (1850-1900) period. This enables users to compare the future number of HDD to previous values.What are the possible societal impacts?Heating Degree Days indicate the energy demand for heating due to cold days. A higher number of HDD means an increase in power consumption for heating, therefore this index is useful for predicting future changes in energy demand for heating.What is a global warming level?Annual Heating Degree Days are calculated from the UKCP18 regional climate projections using the high emissions scenario (RCP 8.5) where greenhouse gas emissions continue to grow. Instead of considering future climate change during specific time periods (e.g. decades) for this scenario, the dataset is calculated at various levels of global warming relative to the pre-industrial (1850-1900) period. The world has already warmed by around 1.1°C (between 1850–1900 and 2011–2020), whilst this dataset allows for the exploration of greater levels of warming. The global warming levels available in this dataset are 1.5°C, 2°C, 2.5°C, 3°C and 4°C. The data at each warming level was calculated using a 21 year period. These 21 year periods are calculated by taking 10 years either side of the first year at which the global warming level is reached. This time will be different for different model ensemble members. To calculate the value for the Annual Heating Degree Days, an average is taken across the 21 year period. Therefore, the Annual Heating Degree Days show the number of heating degree days that could occur each year, for each given level of warming. We cannot provide a precise likelihood for particular emission scenarios being followed in the real world future. However, we do note that RCP8.5 corresponds to emissions considerably above those expected with current international policy agreements. The results are also expressed for several global warming levels because we do not yet know which level will be reached in the real climate as it will depend on future greenhouse emission choices and the sensitivity of the climate system, which is uncertain. Estimates based on the assumption of current international agreements on greenhouse gas emissions suggest a median warming level in the region of 2.4-2.8°C, but it could either be higher or lower than this level.What are the naming conventions and how do I explore the data?This data contains a field for each warming level and two baselines. They are named ‘HDD’ (Heating Degree Days), the warming level or baseline, and 'upper' 'median' or 'lower' as per the description below. E.g. 'HDD 2.5 median' is the median value for the 2.5°C projection. Decimal points are included in field aliases but not field names e.g. 'HDD 2.5 median' is 'HDD_25_median'. To understand how to explore the data, see this page: https://storymaps.arcgis.com/stories/457e7a2bc73e40b089fac0e47c63a578Please note, if viewing in ArcGIS Map Viewer, the map will default to ‘HDD 2.0°C median’ values.What do the ‘median’, ‘upper’, and ‘lower’ values mean?Climate models are numerical representations of the climate system. To capture uncertainty in projections for the future, an ensemble, or group, of climate models are run. Each ensemble member has slightly different starting conditions or model set-ups. Considering all of the model outcomes gives users a range of plausible conditions which could occur in the future. For this dataset, the model projections consist of 12 separate ensemble members. To select which ensemble members to use, Annual Heating Degree Days were calculated for each ensemble member and they were then ranked in order from lowest to highest for each location. The ‘lower’ fields are the second lowest ranked ensemble member. The ‘upper’ fields are the second highest ranked ensemble member. The ‘median’ field is the central value of the ensemble.This gives a median value, and a spread of the ensemble members indicating the range of possible outcomes in the projections. This spread of outputs can be used to infer the uncertainty in the projections. The larger the difference between the lower and upper fields, the greater the uncertainty.‘Lower’, ‘median’ and ‘upper’ are also given for the baseline periods as these values also come from the model that was used to produce the projections. This allows a fair comparison between the model projections and recent past. Useful linksThis dataset was calculated following the methodology in the ‘Future Changes to high impact weather in the UK’ report and uses the same temperature thresholds as the 'State of the UK Climate' report.Further information on the UK Climate Projections (UKCP).Further information on understanding climate data within the Met Office Climate Data Portal.
The daily average temperature in the United Kingdom (UK) has remained relatively stable since 2001, with temperatures rarely straying below 10 degrees Celsius. In 2023, the UK had an average daily temperature of 11.1 degrees Celsius. This was the second-highest average daily temperature recorded since the turn of the century.
British summertime
Britain is not known for its blisteringly hot summer months, with the average temperatures in this season varying greatly since 1990. In 1993, the average summer temperature was as low as 13.39 degrees Celsius, whilst 2018 saw a peak of 15.8 degrees Celsius. In that same year, the highest mean temperature occurred in July at 17.2 degrees Celsius.
Variable weather
Due to its location and the fact that it is an island, the United Kingdom experiences a diverse range of weather, sometimes in the same day. It is in an area where five air masses meet, creating a weather front. Each brings different weather conditions, such as hot, dry air from North Africa and wet and cold air from the Arctic. Temperatures across the UK tend to be warmest in England.
[Updated 28/01/25 to fix an issue in the ‘Lower’ values, which were not fully representing the range of uncertainty. ‘Median’ and ‘Higher’ values remain unchanged. The size of the change varies by grid cell and fixed period/global warming levels but the average difference between the 'lower' values before and after this update is 0.0.]What does the data show? The Annual Count of Extreme Summer Days is the number of days per year where the maximum daily temperature is above 35°C. It measures how many times the threshold is exceeded (not by how much) in a year. Note, the term ‘extreme summer days’ is used to refer to the threshold and temperatures above 35°C outside the summer months also contribute to the annual count. The results should be interpreted as an approximation of the projected number of days when the threshold is exceeded as there will be many factors such as natural variability and local scale processes that the climate model is unable to represent.The Annual Count of Extreme Summer Days is calculated for two baseline (historical) periods 1981-2000 (corresponding to 0.51°C warming) and 2001-2020 (corresponding to 0.87°C warming) and for global warming levels of 1.5°C, 2.0°C, 2.5°C, 3.0°C, 4.0°C above the pre-industrial (1850-1900) period. This enables users to compare the future number of extreme summer days to previous values.What are the possible societal impacts?The Annual Count of Extreme Summer Days indicates increased health risks, transport disruption and damage to infrastructure from high temperatures. It is based on exceeding a maximum daily temperature of 35°C. Impacts include:Increased heat related illnesses, hospital admissions or death affecting not just the vulnerable. Transport disruption due to overheating of road and railway infrastructure.Other metrics such as the Annual Count of Summer Days (days above 25°C), Annual Count of Hot Summer Days (days above 30°C) and the Annual Count of Tropical Nights (where the minimum temperature does not fall below 20°C) also indicate impacts from high temperatures, however they use different temperature thresholds.What is a global warming level?The Annual Count of Extreme Summer Days is calculated from the UKCP18 regional climate projections using the high emissions scenario (RCP 8.5) where greenhouse gas emissions continue to grow. Instead of considering future climate change during specific time periods (e.g. decades) for this scenario, the dataset is calculated at various levels of global warming relative to the pre-industrial (1850-1900) period. The world has already warmed by around 1.1°C (between 1850–1900 and 2011–2020), whilst this dataset allows for the exploration of greater levels of warming. The global warming levels available in this dataset are 1.5°C, 2°C, 2.5°C, 3°C and 4°C. The data at each warming level was calculated using a 21 year period. These 21 year periods are calculated by taking 10 years either side of the first year at which the global warming level is reached. This time will be different for different model ensemble members. To calculate the value for the Annual Count of Extreme Summer Days, an average is taken across the 21 year period. Therefore, the Annual Count of Extreme Summer Days show the number of extreme summer days that could occur each year, for each given level of warming. We cannot provide a precise likelihood for particular emission scenarios being followed in the real world future. However, we do note that RCP8.5 corresponds to emissions considerably above those expected with current international policy agreements. The results are also expressed for several global warming levels because we do not yet know which level will be reached in the real climate as it will depend on future greenhouse emission choices and the sensitivity of the climate system, which is uncertain. Estimates based on the assumption of current international agreements on greenhouse gas emissions suggest a median warming level in the region of 2.4-2.8°C, but it could either be higher or lower than this level.What are the naming conventions and how do I explore the data?This data contains a field for each global warming level and two baselines. They are named ‘ESD’ (where ESD means Extreme Summer Days, the warming level or baseline, and ‘upper’ ‘median’ or ‘lower’ as per the description below. E.g. ‘Extreme Summer Days 2.5 median’ is the median value for the 2.5°C warming level. Decimal points are included in field aliases but not field names e.g. ‘Extreme Summer Days 2.5 median’ is ‘ExtremeSummerDays_25_median’. To understand how to explore the data, see this page: https://storymaps.arcgis.com/stories/457e7a2bc73e40b089fac0e47c63a578Please note, if viewing in ArcGIS Map Viewer, the map will default to ‘ESD 2.0°C median’ values.What do the ‘median’, ‘upper’, and ‘lower’ values mean?Climate models are numerical representations of the climate system. To capture uncertainty in projections for the future, an ensemble, or group, of climate models are run. Each ensemble member has slightly different starting conditions or model set-ups. Considering all of the model outcomes gives users a range of plausible conditions which could occur in the future. For this dataset, the model projections consist of 12 separate ensemble members. To select which ensemble members to use, the Annual Count of Extreme Summer Days was calculated for each ensemble member and they were then ranked in order from lowest to highest for each location. The ‘lower’ fields are the second lowest ranked ensemble member. The ‘upper’ fields are the second highest ranked ensemble member. The ‘median’ field is the central value of the ensemble.This gives a median value, and a spread of the ensemble members indicating the range of possible outcomes in the projections. This spread of outputs can be used to infer the uncertainty in the projections. The larger the difference between the lower and upper fields, the greater the uncertainty.‘Lower’, ‘median’ and ‘upper’ are also given for the baseline periods as these values also come from the model that was used to produce the projections. This allows a fair comparison between the model projections and recent past. Useful linksThis dataset was calculated following the methodology in the ‘Future Changes to high impact weather in the UK’ report and uses the same temperature thresholds as the 'State of the UK Climate' report.Further information on the UK Climate Projections (UKCP).Further information on understanding climate data within the Met Office Climate Data Portal.
[Updated 28/01/25 to fix an issue in the ‘Lower’ values, which were not fully representing the range of uncertainty. ‘Median’ and ‘Higher’ values remain unchanged. The size of the change varies by grid cell and fixed period/global warming levels but the average difference between the 'lower' values before and after this update is 0.26°C.]What does the data show? This dataset shows the change in summer maximum air temperature for a range of global warming levels, including the recent past (2001-2020), compared to the 1981-2000 baseline period. Here, summer is defined as June-July-August. The dataset uses projections of daily maximum air temperature from UKCP18. For each year, the highest daily maximum temperature from the summer period is found. These are then averaged to give values for the 1981-2000 baseline, recent past (2001-2020) and global warming levels. The warming levels available are 1.5°C, 2.0°C, 2.5°C, 3.0°C and 4.0°C above the pre-industrial (1850-1900) period. The recent past value and global warming level values are stated as a change (in °C) relative to the 1981-2000 value. This enables users to compare summer maximum temperature trends for the different periods. In addition to the change values, values for the 1981-2000 baseline (corresponding to 0.51°C warming) and recent past (2001-2020, corresponding to 0.87°C warming) are also provided. This is summarised in the table below.PeriodDescription1981-2000 baselineAverage temperature (°C) for the period2001-2020 (recent past)Average temperature (°C) for the period2001-2020 (recent past) changeTemperature change (°C) relative to 1981-20001.5°C global warming level changeTemperature change (°C) relative to 1981-20002°C global warming level changeTemperature change (°C) relative to 1981-20002.5°C global warming level changeTemperature change (°C) relative to 1981-20003°C global warming level changeTemperature change (°C) relative to 1981-20004°C global warming level changeTemperature change (°C) relative to 1981-2000What is a global warming level?The Summer Maximum Temperature Change is calculated from the UKCP18 regional climate projections using the high emissions scenario (RCP 8.5) where greenhouse gas emissions continue to grow. Instead of considering future climate change during specific time periods (e.g. decades) for this scenario, the dataset is calculated at various levels of global warming relative to the pre-industrial (1850-1900) period. The world has already warmed by around 1.1°C (between 1850–1900 and 2011–2020), whilst this dataset allows for the exploration of greater levels of warming. The global warming levels available in this dataset are 1.5°C, 2°C, 2.5°C, 3°C and 4°C. The data at each warming level was calculated using a 21 year period. These 21 year periods are calculated by taking 10 years either side of the first year at which the global warming level is reached. This time will be different for different model ensemble members. To calculate the value for the Summer Maximum Temperature Change an average is taken across the 21 year period.We cannot provide a precise likelihood for particular emission scenarios being followed in the real world future. However, we do note that RCP8.5 corresponds to emissions considerably above those expected with current international policy agreements. The results are also expressed for several global warming levels because we do not yet know which level will be reached in the real climate as it will depend on future greenhouse emission choices and the sensitivity of the climate system, which is uncertain. Estimates based on the assumption of current international agreements on greenhouse gas emissions suggest a median warming level in the region of 2.4-2.8°C, but it could either be higher or lower than this level.What are the naming conventions and how do I explore the data?These data contain a field for each warming level and the 1981-2000 baseline. They are named 'tasmax summer change' (change in air 'temperature at surface'), the warming level or baseline, and 'upper' 'median' or 'lower' as per the description below. e.g. 'tasmax summer change 2.0 median' is the median value for summer for the 2.0°C warming level. Decimal points are included in field aliases but not in field names, e.g. 'tasmax summer change 2.0 median' is named 'tasmax_summer_change_20_median'. To understand how to explore the data, refer to the New Users ESRI Storymap. Please note, if viewing in ArcGIS Map Viewer, the map will default to ‘tasmax summer change 2.0°C median’ values.What do the 'median', 'upper', and 'lower' values mean?Climate models are numerical representations of the climate system. To capture uncertainty in projections for the future, an ensemble, or group, of climate models are run. Each ensemble member has slightly different starting conditions or model set-ups. Considering all of the model outcomes gives users a range of plausible conditions which could occur in the future.For this dataset, the model projections consist of 12 separate ensemble members. To select which ensemble members to use, the Summer Maximum Temperature Change was calculated for each ensemble member and they were then ranked in order from lowest to highest for each location.The ‘lower’ fields are the second lowest ranked ensemble member. The ‘higher’ fields are the second highest ranked ensemble member. The ‘median’ field is the central value of the ensemble.This gives a median value, and a spread of the ensemble members indicating the range of possible outcomes in the projections. This spread of outputs can be used to infer the uncertainty in the projections. The larger the difference between the lower and higher fields, the greater the uncertainty.‘Lower’, ‘median’ and ‘upper’ are also given for the baseline period as these values also come from the model that was used to produce the projections. This allows a fair comparison between the model projections and recent past. Useful linksFor further information on the UK Climate Projections (UKCP).Further information on understanding climate data within the Met Office Climate Data Portal.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
HadUK-Grid is a collection of gridded climate variables derived from the network of UK land surface observations. The data have been interpolated from meteorological station data onto a uniform grid to provide complete and consistent coverage across the UK. The dataset at 12 km resolution is derived from the associated 1 km x 1 km resolution to allow for comparison to data from climate projections. The dataset spans the period from 1836 to 2022, but the start time is dependent on climate variable and temporal resolution.
The gridded data are produced for daily, monthly, seasonal and annual timescales, as well as long term averages for a set of climatological reference periods. Variables include air temperature (maximum, minimum and mean), precipitation, sunshine, mean sea level pressure, wind speed, relative humidity, vapour pressure, days of snow lying, and days of ground frost.
This data set supersedes the previous versions of this dataset which also superseded UKCP09 gridded observations. Subsequent versions may be released in due course and will follow the version numbering as outlined by Hollis et al. (2018, see linked documentation).
The changes for v1.2.0.ceda HadUK-Grid datasets are as follows:
Added data for calendar year 2022
Added newly digitised data for monthly sunshine 1910-1918
Added Rainfall Rescue version 2 doi:10.5281/zenodo.7554242
Updated shapefiles used for production of area average statistics https://github.com/ukcp-data/ukcp- spatial-files
Updated controlled vocabulary for metadata assignment https://github.com/ukcp-data/UKCP18_CVs
Updated assignment of timepoint for some periods so that the datetime is the middle of the period (e.g. season) rather than a fixed offset from the period start.
Updated ordering of regions within regional values files. Alphabetical ordering.
Files use netcdf level 4 compression using gzip https://www.unidata.ucar.edu/blogs/developer/entry/netcdf_compression
Net changes to the input station data used to generate this dataset:
Total of 125601744 observations
122621050 (97.6%) unchanged
26700 (0.02%) modified for this version
2953994 (2.35%) added in this version
16315 (0.01%) deleted from this version
Changes to monthly rainfall 1836-1960
Total of 4823973 observations
3315657 (68.7%) unchanged
21029 (0.4%) modified for this version
1487287 (30.8%) added in this version
11155 (0.2%) deleted from this version
The primary purpose of these data are to facilitate monitoring of UK climate and research into climate change, impacts and adaptation. The datasets have been created by the Met Office with financial support from the Department for Business, Energy and Industrial Strategy (BEIS) and Department for Environment, Food and Rural Affairs (DEFRA) in order to support the Public Weather Service Customer Group (PWSCG), the Hadley Centre Climate Programme, and the UK Climate Projections (UKCP18) project. The output from a number of data recovery activities relating to 19th and early 20th Century data have been used in the creation of this dataset, these activities were supported by: the Met Office Hadley Centre Climate Programme; the Natural Environment Research Council project "Analysis of historic drought and water scarcity in the UK"; the UK Research & Innovation (UKRI) Strategic Priorities Fund UK Climate Resilience programme; The UK Natural Environment Research Council (NERC) Public Engagement programme; the National Centre for Atmospheric Science; National Centre for Atmospheric Science and the NERC GloSAT project; and the contribution of many thousands of public volunteers. The dataset is provided under Open Government Licence.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
HadUK-Grid is a collection of gridded climate variables derived from the network of UK land surface observations. The data have been interpolated from meteorological station data onto a uniform grid to provide complete and consistent coverage across the UK. These data at 1 km resolution have been averaged across a set of discrete geographies defining UK river basins consistent with data from UKCP18 climate projections. The dataset spans the period from 1836 to 2022, but the start time is dependent on climate variable and temporal resolution.
The gridded data are produced for daily, monthly, seasonal and annual timescales, as well as long term averages for a set of climatological reference periods. Variables include air temperature (maximum, minimum and mean), precipitation, sunshine, mean sea level pressure, wind speed, relative humidity, vapour pressure, days of snow lying, and days of ground frost.
This data set supersedes the previous versions of this dataset which also superseded UKCP09 gridded observations. Subsequent versions may be released in due course and will follow the version numbering as outlined by Hollis et al. (2018, see linked documentation).
The changes for v1.2.0.ceda HadUK-Grid datasets are as follows:
Added data for calendar year 2022
Added newly digitised data for monthly sunshine 1910-1918
Added Rainfall Rescue version 2 doi:10.5281/zenodo.7554242
Updated shapefiles used for production of area average statistics https://github.com/ukcp-data/ukcp-spatial-files
Updated controlled vocabulary for metadata assignment https://github.com/ukcp-data/UKCP18_CVs
Updated assignment of timepoint for some periods so that the datetime is the middle of the period (e.g. season) rather than a fixed offset from the period start.
Updated ordering of regions within regional values files. Alphabetical ordering.
Files use netcdf level 4 compression using gzip https://www.unidata.ucar.edu/blogs/developer/entry/netcdf_compression
Net changes to the input station data used to generate this dataset:
Total of 125601744 observations
122621050 (97.6%) unchanged
26700 (0.02%) modified for this version
2953994 (2.35%) added in this version
16315 (0.01%) deleted from this version
Changes to monthly rainfall 1836-1960
Total of 4823973 observations
3315657 (68.7%) unchanged
21029 (0.4%) modified for this version
1487287 (30.8%) added in this version
11155 (0.2%) deleted from this version
The primary purpose of these data are to facilitate monitoring of UK climate and research into climate change, impacts and adaptation. The datasets have been created by the Met Office with financial support from the Department for Business, Energy and Industrial Strategy (BEIS) and Department for Environment, Food and Rural Affairs (DEFRA) in order to support the Public Weather Service Customer Group (PWSCG), the Hadley Centre Climate Programme, and the UK Climate Projections (UKCP18) project. The output from a number of data recovery activities relating to 19th and early 20th Century data have been used in the creation of this dataset, these activities were supported by: the Met Office Hadley Centre Climate Programme; the Natural Environment Research Council project "Analysis of historic drought and water scarcity in the UK"; the UK Research & Innovation (UKRI) Strategic Priorities Fund UK Climate Resilience programme; The UK Natural Environment Research Council (NERC) Public Engagement programme; the National Centre for Atmospheric Science; National Centre for Atmospheric Science and the NERC GloSAT project; and the contribution of many thousands of public volunteers. The dataset is provided under Open Government Licence.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
1999-2017 - London SWT Weather data
Header Row:Date and Time,Battery Voltage,CR10 Temperature,Wind Direction 10 Minutes,Wind Speed 10 Minutes,Wind Gust 10 Minutes,Hourly AverageDirection,Hourly Average Speed,Hourly Maximum Gust,Hourly Gust Time,Hourly Gust Direction,Last Minute Average Temperature,Total Hourly Rain,Average RH over previous minute,Maximum Hourly Air Temperature,Minimum Hourly Air Temperature,MaximumHourly Rainfall Rate,Time of Rainfall
The highest average temperatures in the United Kingdom are typically recorded in the third quarter of the year. Since 2010, the highest quarterly temperature was recorded in the third quarter of 2022, at 17 degrees Celsius.
What does the data show?
This data shows the monthly averages of surface temperature (°C) for 2070-2099 using a combination of the CRU TS (v. 4.06) and UKCP18 global RCP2.6 datasets. The RCP2.6 scenario is an aggressive mitigation scenario where greenhouse gas emissions are strongly reduced.
The data combines a baseline (1981-2010) value from CRU TS (v. 4.06) with an anomaly from UKCP18 global. Where the anomaly is the change in temperature at 2070-2099 relative to 1981-2010.
The data is provided on the WGS84 grid which measures approximately 60km x 60km (latitude x longitude) at the equator.
Limitations of the data
We recommend the use of multiple grid cells or an average of grid cells around a point of interest to help users get a sense of the variability in the area. This will provide a more robust set of values for informing decisions based on the data.
What are the naming conventions and how do I explore the data?
This data contains a field for each month’s average over the period. They are named 'tas' (temperature at surface), the month and ‘upper’ ‘median’ or ‘lower’. E.g. ‘tas Mar Lower’ is the average of the daily average temperatures in March throughout 2070-2099, in the second lowest ensemble member.
To understand how to explore the data, see this page: https://storymaps.arcgis.com/stories/457e7a2bc73e40b089fac0e47c63a578
Please note, if viewing in ArcGIS Map Viewer, the map will default to ‘tas Jan Median’ values.
What do the ‘median’, ‘upper’, and ‘lower’ values mean?
Climate models are numerical representations of the climate system. To capture uncertainty in projections for the future, an ensemble, or group, of climate models are run. Each ensemble member has slightly different starting conditions or model set-ups. Considering all of the model outcomes gives users a range of plausible conditions which could occur in the future.
To select which ensemble members to use, the monthly averages of surface temperature for the period 2070-2099 were calculated for each ensemble member and they were then ranked in order from lowest to highest for each location.
The ‘lower’ fields are the second lowest ranked ensemble member. The ‘upper’ fields are the second highest ranked ensemble member. The ‘median’ field is the central value of the ensemble.
This gives a median value, and a spread of the ensemble members indicating the range of possible outcomes in the projections. This spread of outputs can be used to infer the uncertainty in the projections. The larger the difference between the lower and upper fields, the greater the uncertainty.
Data source
CRU TS v. 4.06 - (downloaded 12/07/22)
UKCP18 v.20200110 (downloaded 17/08/22)
Useful links
Further information on CRU TS Further information on the UK Climate Projections (UKCP) Further information on understanding climate data within the Met Office Climate Data Portal
HadUK-Grid is a collection of gridded climate variables derived from the network of UK land surface observations. The data have been interpolated from meteorological station data onto a uniform grid to provide complete and consistent coverage across the UK. The dataset at 12 km resolution is derived from the associated 1 km x 1 km resolution to allow for comparison to data from climate projections. The dataset spans the period from 1862 to 2019, but the start time is dependent on climate variable and temporal resolution. The gridded data are produced for daily, monthly, seasonal and annual timescales, as well as long term averages for a set of climatological reference periods. Variables include air temperature (maximum, minimum and mean), precipitation, sunshine, mean sea level pressure, wind speed, relative humidity, vapour pressure, days of snow lying, and days of ground frost. This data set supersedes the previous versions of this dataset which also superseded UKCP09 gridded observations. Subsequent versions may be released in due course and will follow the version numbering as outlined by Hollis et al. (2018, see linked documentation). For this version of note is that historical data recovery has improved monthly rainfall 1862-1910, daily rainfall 1883-1910, monthly temperature 1900-1909, and additional sunshine grids for 1919-1928 have been added. Additionally, this version has corrected the grid definition used for the 12 km grid product to match UKCP18 climate model products. The primary purpose of these data are to facilitate monitoring of UK climate and research into climate change, impacts and adaptation. The datasets have been created by the Met Office with financial support from the Department for Business, Energy and Industrial Strategy (BEIS) and Department for Environment, Food and Rural Affairs (DEFRA) in order to support the Public Weather Service Customer Group (PWSCG), the Hadley Centre Climate Programme, and the UK Climate Projections (UKCP18) project. The data recovery activity to supplement 19th and early 20th Century data availability has also been funded by the Natural Environment Research Council (NERC grant ref: NE/L01016X/1) project "Analysis of historic drought and water scarcity in the UK". The dataset is provided under Open Government Licence.
What does the data show?
This data shows annual averages of precipitation (mm/day) for 2050-2079 from the UKCP18 regional climate projections. The data is for the high emissions scenario (RCP8.5).
Limitations of the data
We recommend the use of multiple grid cells or an average of grid cells around a point of interest to help users get a sense of the variability in the area. This will provide a more robust set of values for informing decisions based on the data.
What are the naming conventions and how do I explore the data?
This data contains a field for the average over the period. They are named 'pr' (precipitation), the month, and 'upper' 'median' or 'lower'. E.g. 'pr Median' is the median value.
To understand how to explore the data, see this page: https://storymaps.arcgis.com/stories/457e7a2bc73e40b089fac0e47c63a578
Please note, if viewing in ArcGIS Map Viewer, the map will default to ‘pr January Median’ values.
What do the ‘median’, ‘upper’, and ‘lower’ values mean?
Climate models are numerical representations of the climate system. To capture uncertainty in projections for the future, an ensemble, or group, of climate models are run. Each ensemble member has slightly different starting conditions or model set-ups. Considering all of the model outcomes gives users a range of plausible conditions which could occur in the future.
For this dataset, the model projections consist of 12 separate ensemble members. To select which ensemble members to use, the annual averages of precipitation for 2050-2079 were calculated for each ensemble member and they were then ranked in order from lowest to highest for each location.
The ‘lower’ fields are the second lowest ranked ensemble member. The ‘upper’ fields are the second highest ranked ensemble member. The ‘median’ field is the central value of the ensemble.
This gives a median value, and a spread of the ensemble members indicating the range of possible outcomes in the projections. This spread of outputs can be used to infer the uncertainty in the projections. The larger the difference between the lower and upper fields, the greater the uncertainty.
Data source
pr_rcp85_land-rcm_uk_12km_12_ann-30y_200912-207911.nc (median)
pr_rcp85_land-rcm_uk_12km_05_ann-30y_200912-207911.nc (lower)
pr_rcp85_land-rcm_uk_12km_04_ann-30y_200912-207911.nc (upper)
UKCP18 v20190731 (downloaded 04/11/2021)
Useful links
Further information on the UK Climate Projections (UKCP). Further information on understanding climate data within the Met Office Climate Data Portal
[Updated 28/01/25 to fix an issue in the ‘Lower’ values, which were not fully representing the range of uncertainty. ‘Median’ and ‘Higher’ values remain unchanged. The size of the change varies by grid cell and fixed period/global warming levels but the average difference between the 'lower' values before and after this update is 1.2.]What does the data show? The Annual Count of Frost Days is the number of days per year where the minimum daily temperature is below 0°C. It measures how many times the threshold is exceeded (not by how much) in a year. The results should be interpreted as an approximation of the projected number of days when the threshold is exceeded as there will be many factors such as natural variability and local scale processes that the climate model is unable to represent.The Annual Count of Frost Days is calculated for two baseline (historical) periods 1981-2000 (corresponding to 0.51°C warming) and 2001-2020 (corresponding to 0.87°C warming) and for global warming levels of 1.5°C, 2.0°C, 2.5°C, 3.0°C, 4.0°C above the pre-industrial (1850-1900) period. This enables users to compare the future number of frost days to previous values. What are the possible societal impacts?The Annual Count of Frost Days indicates increased cold weather disruption due to a higher than normal chance of ice and snow. It is based on the minimum daily temperature being below 0°C. Impacts include:Damage to crops.Transport disruption.Increased energy demand.The Annual Count of Icing Days, is a similar metric measuring impacts from cold temperatures, it indicates more severe cold weather impacts.What is a global warming level?The Annual Count of Frost Days is calculated from the UKCP18 regional climate projections using the high emissions scenario (RCP 8.5) where greenhouse gas emissions continue to grow. Instead of considering future climate change during specific time periods (e.g. decades) for this scenario, the dataset is calculated at various levels of global warming relative to the pre-industrial (1850-1900) period. The world has already warmed by around 1.1°C (between 1850–1900 and 2011–2020), whilst this dataset allows for the exploration of greater levels of warming. The global warming levels available in this dataset are 1.5°C, 2°C, 2.5°C, 3°C and 4°C. The data at each warming level was calculated using a 21 year period. These 21 year periods are calculated by taking 10 years either side of the first year at which the global warming level is reached. This time will be different for different model ensemble members. To calculate the value for the Annual Count of Frost Days, an average is taken across the 21 year period. Therefore, the Annual Count of Frost Days show the number of frost days that could occur each year, for each given level of warming. We cannot provide a precise likelihood for particular emission scenarios being followed in the real world future. However, we do note that RCP8.5 corresponds to emissions considerably above those expected with current international policy agreements. The results are also expressed for several global warming levels because we do not yet know which level will be reached in the real climate as it will depend on future greenhouse emission choices and the sensitivity of the climate system, which is uncertain. Estimates based on the assumption of current international agreements on greenhouse gas emissions suggest a median warming level in the region of 2.4-2.8°C, but it could either be higher or lower than this level.What are the naming conventions and how do I explore the data?This data contains a field for each global warming level and two baselines. They are named ‘Frost Days’, the warming level or baseline, and ‘upper’ ‘median’ or ‘lower’ as per the description below. E.g. ‘Frost Days 2.5 median’ is the median value for the 2.5°C warming level. Decimal points are included in field aliases but not field names e.g. ‘Frost Days 2.5 median’ is ‘FrostDays_25_median’. To understand how to explore the data, see this page: https://storymaps.arcgis.com/stories/457e7a2bc73e40b089fac0e47c63a578Please note, if viewing in ArcGIS Map Viewer, the map will default to ‘Frost Days 2.0°C median’ values.What do the ‘median’, ‘upper’, and ‘lower’ values mean?Climate models are numerical representations of the climate system. To capture uncertainty in projections for the future, an ensemble, or group, of climate models are run. Each ensemble member has slightly different starting conditions or model set-ups. Considering all of the model outcomes gives users a range of plausible conditions which could occur in the future. For this dataset, the model projections consist of 12 separate ensemble members. To select which ensemble members to use, the Annual Count of Frost Days was calculated for each ensemble member and they were then ranked in order from lowest to highest for each location. The ‘lower’ fields are the second lowest ranked ensemble member. The ‘upper’ fields are the second highest ranked ensemble member. The ‘median’ field is the central value of the ensemble.This gives a median value, and a spread of the ensemble members indicating the range of possible outcomes in the projections. This spread of outputs can be used to infer the uncertainty in the projections. The larger the difference between the lower and upper fields, the greater the uncertainty.‘Lower’, ‘median’ and ‘upper’ are also given for the baseline periods as these values also come from the model that was used to produce the projections. This allows a fair comparison between the model projections and recent past. Useful linksThis dataset was calculated following the methodology in the ‘Future Changes to high impact weather in the UK’ report and uses the same temperature thresholds as the 'State of the UK Climate' report.Further information on the UK Climate Projections (UKCP).Further information on understanding climate data within the Met Office Climate Data Portal.
The highest average temperature recorded in 2024 until November was in August, at 16.8 degrees Celsius. Since 2015, the highest average daily temperature in the UK was registered in July 2018, at 18.7 degrees Celsius. The summer of 2018 was the joint hottest since institutions began recording temperatures in 1910. One noticeable anomaly during this period was in December 2015, when the average daily temperature reached 9.5 degrees Celsius. This month also experienced the highest monthly rainfall in the UK since before 2014, with England, Wales, and Scotland suffering widespread flooding. Daily hours of sunshine Unsurprisingly, the heat wave that spread across the British Isles in 2018 was the result of particularly sunny weather. July 2018 saw an average of 8.7 daily sun hours in the United Kingdom. This was more hours of sun than was recorded in July 2024, which only saw 5.8 hours of sun. Temperatures are on the rise Since the 1960s, there has been an increase in regional temperatures across the UK. Between 1961 and 1990, temperatures in England averaged nine degrees Celsius, and from 2013 to 2022, average temperatures in the country had increased to 10.3 degrees Celsius. Due to its relatively southern location, England continues to rank as the warmest country in the UK.