8 datasets found
  1. H

    Digital Equity Covered Populations - ID

    • opendata.hawaii.gov
    • catalog.data.gov
    csv
    Updated Mar 14, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hawaii Broadband and Digital Equity Office (2024). Digital Equity Covered Populations - ID [Dataset]. https://opendata.hawaii.gov/dataset/digital-equity-covered-populations-id
    Explore at:
    csv(540)Available download formats
    Dataset updated
    Mar 14, 2024
    Dataset authored and provided by
    Hawaii Broadband and Digital Equity Office
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Covered populations based on NTIA definition with associated id.

  2. GRSG Population Areas

    • gis-fws.opendata.arcgis.com
    Updated Jan 31, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GRSG Population Areas [Dataset]. https://gis-fws.opendata.arcgis.com/datasets/fws::ced-base-layers?layer=0
    Explore at:
    Dataset updated
    Jan 31, 2017
    Dataset provided by
    U.S. Fish and Wildlife Servicehttp://www.fws.gov/
    Authors
    U.S. Fish & Wildlife Service
    Area covered
    Description

    This data set represents greater sage-grouse populations to be used in work for the USFWS 2015 Status Review for the greater sage-grouse. Boundaries taken from BLM/WAFWA revised population boundaries (‘COT_SG_Populations_2014_WAFWA_UT’ data layer). The original data layer was slightly modified for the USFWS 2015 Status Review. Modifications include dissolving populations across State boundaries and merging several polygons together. Five additional polygons were added to the data set including four polygons in Utah and one polygon in Canada. These additional polygons were added from the original WAFWA Sage-Grouse Populations layer and covered important areas for GRSG missed in the original data set. Other modifications made to incorporate updated information and data. This data set provides population base data needed for USFWS analysis while remaining consistent with work being done by BLM and other agencies/groups. More detailed information on modifications can be found in the Supplemental Information.

  3. Forest proximate people - 5km cutoff distance (Global - 100m)

    • data.amerigeoss.org
    http, wmts
    Updated Oct 24, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Food and Agriculture Organization (2022). Forest proximate people - 5km cutoff distance (Global - 100m) [Dataset]. https://data.amerigeoss.org/dataset/8ed893bd-842a-4866-a655-a0a0c02b79b5
    Explore at:
    http, wmtsAvailable download formats
    Dataset updated
    Oct 24, 2022
    Dataset provided by
    Food and Agriculture Organizationhttp://fao.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The "Forest Proximate People" (FPP) dataset is one of the data layers contributing to the development of indicator #13, “number of forest-dependent people in extreme poverty,” of the Collaborative Partnership on Forests (CPF) Global Core Set of forest-related indicators (GCS). The FPP dataset provides an estimate of the number of people living in or within 5 kilometers of forests (forest-proximate people) for the year 2019 with a spatial resolution of 100 meters at a global level.

    For more detail, such as the theory behind this indicator and the definition of parameters, and to cite this data, see: Newton, P., Castle, S.E., Kinzer, A.T., Miller, D.C., Oldekop, J.A., Linhares-Juvenal, T., Pina, L. Madrid, M., & de Lamo, J. 2022. The number of forest- and tree-proximate people: A new methodology and global estimates. Background Paper to The State of the World’s Forests 2022 report. Rome, FAO.

    Contact points:

    Maintainer: Leticia Pina

    Maintainer: Sarah E., Castle

    Data lineage:

    The FPP data are generated using Google Earth Engine. Forests are defined by the Copernicus Global Land Cover (CGLC) (Buchhorn et al. 2020) classification system’s definition of forests: tree cover ranging from 15-100%, with or without understory of shrubs and grassland, and including both open and closed forests. Any area classified as forest sized ≥ 1 ha in 2019 was included in this definition. Population density was defined by the WorldPop global population data for 2019 (WorldPop 2018). High density urban populations were excluded from the analysis. High density urban areas were defined as any contiguous area with a total population (using 2019 WorldPop data for population) of at least 50,000 people and comprised of pixels all of which met at least one of two criteria: either the pixel a) had at least 1,500 people per square km, or b) was classified as “built-up” land use by the CGLC dataset (where “built-up” was defined as land covered by buildings and other manmade structures) (Dijkstra et al. 2020). Using these datasets, any rural people living in or within 5 kilometers of forests in 2019 were classified as forest proximate people. Euclidean distance was used as the measure to create a 5-kilometer buffer zone around each forest cover pixel. The scripts for generating the forest-proximate people and the rural-urban datasets using different parameters or for different years are published and available to users. For more detail, such as the theory behind this indicator and the definition of parameters, and to cite this data, see: Newton, P., Castle, S.E., Kinzer, A.T., Miller, D.C., Oldekop, J.A., Linhares-Juvenal, T., Pina, L., Madrid, M., & de Lamo, J. 2022. The number of forest- and tree-proximate people: a new methodology and global estimates. Background Paper to The State of the World’s Forests 2022. Rome, FAO.

    References:

    Buchhorn, M., Smets, B., Bertels, L., De Roo, B., Lesiv, M., Tsendbazar, N.E., Herold, M., Fritz, S., 2020. Copernicus Global Land Service: Land Cover 100m: collection 3 epoch 2019. Globe.

    Dijkstra, L., Florczyk, A.J., Freire, S., Kemper, T., Melchiorri, M., Pesaresi, M. and Schiavina, M., 2020. Applying the degree of urbanisation to the globe: A new harmonised definition reveals a different picture of global urbanisation. Journal of Urban Economics, p.103312.

    WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University, 2018. Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00645

    Online resources:

    GEE asset for "Forest proximate people - 5km cutoff distance"

  4. o

    Collection of global datasets for the study of floods, droughts and their...

    • explore.openaire.eu
    • zenodo.org
    Updated Aug 16, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sara Lindersson; Luigia Brandimarte; Johanna Mård; Giuliano Di Baldassarre (2019). Collection of global datasets for the study of floods, droughts and their interactions with human societies [Dataset]. http://doi.org/10.5281/zenodo.3608634
    Explore at:
    Dataset updated
    Aug 16, 2019
    Authors
    Sara Lindersson; Luigia Brandimarte; Johanna Mård; Giuliano Di Baldassarre
    Description

    This is a collection of 124 global and free datasets allowing for spatial (and temporal) analyses of floods, droughts and their interactions with human societies. We have structured the datasets into seven categories: hydrographic baseline, hydrological dynamics, hydrological extremes, land cover & agriculture, human presence, water management, and vulnerability. Please refer to Lindersson et al. (accepted february 2020 in WIREs Water) for further information about review methodology. The collection is a descriptive list, holding the following information for each dataset: Category - as structured in Lindersson et al. (in preparation). Sub-category- as structured in Lindersson et al. (in preparation). Abbreviation - official or as specified in Lindersson et al. (in preparation). Title - full title of dataset. Product(s) - type of product(s) offered by the dataset. Period - time period covered by the dataset, not defined for all datasets. Temporal resolution - not defined for static datasets. Angular spatial resolution - only defined for gridded datasets. Metric spatial resolution - only defined for gridded datasets. Map scale Extent - geographic coverage of dataset given in latitude limits. Description Creating institute(s) Data type - raster, vector or tabular. File format Primary EO type - specifies if the product primarily is based on remote sensing, ground-based data, or a hybrid between remote sensing and ground-based data. Data sources - lists the data sources behind the dataset, to the extent this is feasible. Data sources also in this table - data sources that are also included as datasets in this collection. Intentionally compatible with - defines other datasets in this collection that the dataset is intentinoally compatible with. Citation - dataset reference or credit. Documentation - dataset documentation. Web address - dataset access link. NOTE: Carefully consult the data usage licenses as given by the data providers, to assure that the exact permissions and restrictions are followed.

  5. 2020 Census Tracts

    • catalog.data.gov
    • data.oregon.gov
    • +2more
    Updated Jan 31, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Commerce, U.S. Census Bureau, Geography Division, Spatial Data Collection and Products Branch (2025). 2020 Census Tracts [Dataset]. https://catalog.data.gov/dataset/census-tracts
    Explore at:
    Dataset updated
    Jan 31, 2025
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Description

    This data layer is an element of the Oregon GIS Framework. The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2020 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some States and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census and beyond, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.

  6. Core Based Statistical Areas

    • catalog.data.gov
    • data-usdot.opendata.arcgis.com
    • +1more
    Updated Aug 21, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States Census Bureau (USCB) (Point of Contact) (2024). Core Based Statistical Areas [Dataset]. https://catalog.data.gov/dataset/core-based-statistical-areas1
    Explore at:
    Dataset updated
    Aug 21, 2024
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Description

    The Core Based Statistical Areas boundaries were defined by OMB based on the 2010 Census, and the dataset was updated on August 09, 2019 from the United States Census Bureau (USCB) and is part of the U.S. Department of Transportation (USDOT)/Bureau of Transportation Statistics (BTS) National Transportation Atlas Database (NTAD). The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Metropolitan and Micropolitan Statistical Areas are together termed Core Based Statistical Areas (CBSAs) and are defined by the Office of Management and Budget (OMB) and consist of the county or counties or equivalent entities associated with at least one urban core (urbanized area or urban cluster) of at least 10,000 population, plus adjacent counties having a high degree of social and economic integration with the core as measured through commuting ties with the counties containing the core. Categories of CBSAs are: Metropolitan Statistical Areas, based on urbanized areas of 50,000 or more population; and Micropolitan Statistical Areas, based on urban clusters of at least 10,000 population but less than 50,000 population. The CBSA boundaries are those defined by OMB based on the 2010 Census, published in 2013, and updated in 2018.

  7. d

    Data from: Population dynamics of an invasive forest insect and associated...

    • catalog.data.gov
    • datadiscoverystudio.org
    • +3more
    Updated Apr 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Agricultural Research Service (2025). Data from: Population dynamics of an invasive forest insect and associated natural enemies in the aftermath of invasion [Dataset]. https://catalog.data.gov/dataset/data-from-population-dynamics-of-an-invasive-forest-insect-and-associated-natural-enemies--cb1db
    Explore at:
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    Agricultural Research Service
    Description

    Datasets archived here consist of all data analyzed in Duan et al. 2015 from Journal of Applied Ecology. Specifically, these data were collected from annual sampling of emerald ash borer (Agrilus planipennis) immature stages and associated parasitoids on infested ash trees (Fraxinus) in Southern Michigan, where three introduced biological control agents had been released between 2007 - 2010. Detailed data collection procedures can be found in Duan et al. 2012, 2013, and 2015. Resources in this dataset:Resource Title: Duan J Data on EAB larval density-bird predation and unknown factor from Journal of Applied Ecology. File Name: Duan J Data on EAB larval density-bird predation and unknown factor from Journal of Applied Ecology.xlsxResource Description: This data set is used to calculate mean EAB density (per m2 of ash phloem area), bird predation rate and mortality rate caused by unknown factors and analyzed with JMP (10.2) scripts for mixed effect linear models in Duan et al. 2015 (Journal of Applied Ecology).Resource Title: DUAN J Data on Parasitism L1-L2 Excluded from Journal of Applied Ecology. File Name: DUAN J Data on Parasitism L1-L2 Excluded from Journal of Applied Ecology.xlsxResource Description: This data set is used to construct life tables and calculation of net population growth rate of emerald ash borer for each site. The net population growth rates were then analyzed with JMP (10.2) scripts for mixed effect linear models in Duan et al. 2015 (Journal of Applied Ecology).Resource Title: DUAN J Data on EAB Life Tables Calculation from Journal of Applied Ecology. File Name: DUAN J Data on EAB Life Tables Calculation from Journal of Applied Ecology.xlsxResource Description: This data set is used to calculate parasitism rate of EAB larvae for each tree and then analyzed with JMP (10.2) scripts for mixed effect linear models on in Duan et al. 2015 (Journal of Applied Ecology).Resource Title: READ ME for Emerald Ash Borer Biocontrol Study from Journal of Applied Ecology. File Name: READ_ME_for_Emerald_Ash_Borer_Biocontrol_Study_from_Journal_of_Applied_Ecology.docxResource Description: Additional information and definitions for the variables/content in the three Emerald Ash Borer Biocontrol Study tables: Data on EAB Life Tables Calculation Data on EAB larval density-bird predation and unknown factor Data on Parasitism L1-L2 Excluded from Journal of Applied Ecology Resource Title: Data Dictionary for Emerald Ash Borer Biocontrol Study from Journal of Applied Ecology. File Name: AshBorerAnd Parasitoids_DataDictionary.csvResource Description: CSV data dictionary for the variables/content in the three Emerald Ash Borer Biocontrol Study tables: Data on EAB Life Tables Calculation Data on EAB larval density-bird predation and unknown factor Data on Parasitism L1-L2 Excluded from Journal of Applied Ecology Fore more information see the related READ ME file.

  8. Quantitative assessment of cell population diversity in single-cell...

    • plos.figshare.com
    tiff
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Qi Liu; Charles A. Herring; Quanhu Sheng; Jie Ping; Alan J. Simmons; Bob Chen; Amrita Banerjee; Wei Li; Guoqiang Gu; Robert J. Coffey; Yu Shyr; Ken S. Lau (2023). Quantitative assessment of cell population diversity in single-cell landscapes [Dataset]. http://doi.org/10.1371/journal.pbio.2006687
    Explore at:
    tiffAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Qi Liu; Charles A. Herring; Quanhu Sheng; Jie Ping; Alan J. Simmons; Bob Chen; Amrita Banerjee; Wei Li; Guoqiang Gu; Robert J. Coffey; Yu Shyr; Ken S. Lau
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Single-cell RNA sequencing (scRNA-seq) has become a powerful tool for the systematic investigation of cellular diversity. As a number of computational tools have been developed to identify and visualize cell populations within a single scRNA-seq dataset, there is a need for methods to quantitatively and statistically define proportional shifts in cell population structures across datasets, such as expansion or shrinkage or emergence or disappearance of cell populations. Here we present sc-UniFrac, a framework to statistically quantify compositional diversity in cell populations between single-cell transcriptome landscapes. sc-UniFrac enables sensitive and robust quantification in simulated and experimental datasets in terms of both population identity and quantity. We have demonstrated the utility of sc-UniFrac in multiple applications, including assessment of biological and technical replicates, classification of tissue phenotypes and regional specification, identification and definition of altered cell infiltrates in tumorigenesis, and benchmarking batch-correction tools. sc-UniFrac provides a framework for quantifying diversity or alterations in cell populations across conditions and has broad utility for gaining insight into tissue-level perturbations at the single-cell resolution.

  9. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Hawaii Broadband and Digital Equity Office (2024). Digital Equity Covered Populations - ID [Dataset]. https://opendata.hawaii.gov/dataset/digital-equity-covered-populations-id

Digital Equity Covered Populations - ID

Explore at:
csv(540)Available download formats
Dataset updated
Mar 14, 2024
Dataset authored and provided by
Hawaii Broadband and Digital Equity Office
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

Covered populations based on NTIA definition with associated id.

Search
Clear search
Close search
Google apps
Main menu