25 datasets found
  1. Number of people in the U.S. without health insurance 1997-2024

    • statista.com
    Updated Sep 16, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Number of people in the U.S. without health insurance 1997-2024 [Dataset]. https://www.statista.com/statistics/200955/americans-without-health-insurance/
    Explore at:
    Dataset updated
    Sep 16, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In 2024, 27 million people in the United States had no health insurance. The share of Americans without health insurance saw a steady increase from 2015 to 2019 before starting to decline from 2020 to 2024. Factors like the implementation of Medicaid expansion in additional states and growth in private health insurance coverage led to the decline in the uninsured population, despite the economic challenges due to the pandemic in 2020. Positive impact of Affordable Care Act In the U.S. there are public and private forms of health insurance, as well as social welfare programs such as Medicaid and programs just for veterans such as CHAMPVA. The Affordable Care Act (ACA) was enacted in 2010, which dramatically reduced the share of uninsured Americans, though there’s still room for improvement. In spite of its success in providing more Americans with health insurance, ACA has had an almost equal number of proponents and opponents since its introduction, though the share of Americans in favor of it has risen since mid-2017 to the majority. Persistent disparity among ethnic groups The share of uninsured people is higher in certain demographic groups. For instance, Hispanics continue to be the ethnic group with the highest rate of uninsured people, even after ACA. Meanwhile the share of uninsured White and Asian people is lower than the national average.

  2. Percentage of U.S. population without health insurance coverage 1984-2019,...

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Percentage of U.S. population without health insurance coverage 1984-2019, by gender [Dataset]. https://www.statista.com/statistics/188166/percentage-of-us-population-without-health-insurance-coverage-by-gender/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    This statistic shows the percentage of the U.S. population under 65 years of age without health insurance coverage from 1984 to 2019, by gender. In 2019, around 13 percent of the male U.S. population under 65 years were without health insurance coverage.

  3. ACS Health Insurance by Age by Race Variables - Boundaries

    • hub.arcgis.com
    • mapdirect-fdep.opendata.arcgis.com
    Updated Nov 17, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2020). ACS Health Insurance by Age by Race Variables - Boundaries [Dataset]. https://hub.arcgis.com/maps/0bdb1479d3554ae59337a0eb47b17afb
    Explore at:
    Dataset updated
    Nov 17, 2020
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer shows health insurance coverage sex and race by age group. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. Sums may add to more than the total, as people can be in multiple race groups (for example, Hispanic and Black)This layer is symbolized to show the percent of population with no health insurance coverage. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B27010, C27001B, C27001C, C27001D, C27001E, C27001F, C27001G, C27001H, C27001I (Not all lines of these tables are available in this layer.)Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  4. Percentage of population without health insurance coverage in the U.S....

    • statista.com
    Updated May 9, 2010
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2010). Percentage of population without health insurance coverage in the U.S. 1984-2019 [Dataset]. https://www.statista.com/statistics/188158/percentage-of-us-population-under-65-without-health-insurance-since-1984/
    Explore at:
    Dataset updated
    May 9, 2010
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    This statistic shows the percentage of the U.S. population under 65 years of age without health insurance coverage from 1984 to 2019. In 2019, ** percent of the U.S. population under 65 years were without health insurance coverage.

  5. Percentage of U.S. population without health insurance coverage by ethnicity...

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Percentage of U.S. population without health insurance coverage by ethnicity 2019 [Dataset]. https://www.statista.com/statistics/188187/percentage-of-us-population-without-health-insurance-coverage-by-ethnicity/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    This statistic shows the percentage of the U.S. population under 65 years of age without health insurance coverage in 2010 and 2019, by ethnicity. In 2019, approximately ** percent of the white population under 65 years of age were without health insurance coverage.

  6. e

    ACS Health Insurance Coverage Variables - Centroids

    • coronavirus-resources.esri.com
    • covid-hub.gio.georgia.gov
    • +4more
    Updated Dec 7, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2018). ACS Health Insurance Coverage Variables - Centroids [Dataset]. https://coronavirus-resources.esri.com/maps/7c69956008bb4019bbbe67ed9fb05dbb
    Explore at:
    Dataset updated
    Dec 7, 2018
    Dataset authored and provided by
    Esri
    Area covered
    Description

    This layer shows health insurance coverage by type and by age group. This is shown by tract, county, and state centroids. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the count and percent uninsured. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B27010 (Not all lines of this ACS table are available in this feature layer.)Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  7. Share of U.S. adults without health insurance by poverty level 2019-2024

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Share of U.S. adults without health insurance by poverty level 2019-2024 [Dataset]. https://www.statista.com/statistics/1276696/percentage-of-us-adults-without-health-insurance-by-poverty-level/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States, North America
    Description

    In 2024, around ********* of U.S. adults with a family income of less than 100% Federal Poverty Level (FPL) did not have health insurance, the lowest in the provided time interval. This statistic shows the percentage of adults aged 18-64 years without health insurance in the United States from 2019 to 2024, by family income as a percentage of FPL.

  8. HHS Provider Relief Fund

    • data.cdc.gov
    • data.virginia.gov
    • +4more
    csv, xlsx, xml
    Updated Mar 28, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Health Resources & Services Administration (2025). HHS Provider Relief Fund [Dataset]. https://data.cdc.gov/widgets/kh8y-3es6
    Explore at:
    csv, xml, xlsxAvailable download formats
    Dataset updated
    Mar 28, 2025
    Dataset provided by
    Health Resources and Services Administrationhttps://www.hrsa.gov/
    Authors
    Health Resources & Services Administration
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Description

    HHS is providing support to healthcare providers fighting the coronavirus disease 2019 (COVID-19) pandemic through the bipartisan Coronavirus Aid, Relief, & Economic Security (CARES) Act; the Paycheck Protection Program and Health Care Enhancement Act (PPPHCEA); and the Coronavirus Response and Relief Supplemental Appropriations (CRRSA) Act, which provide a total of $178 billion for relief funds to hospitals and other healthcare providers on the front lines of the COVID-19 response. This funding supports healthcare-related expenses or lost revenue attributable to COVID-19 and ensures uninsured Americans can get treatment for COVID-19. HHS is distributing this Provider Relief Fund (PRF) money and these payments do not need to be repaid.

    The Department allocated $50 billion in PRF payments for general distribution to Medicare facilities and providers impacted by COVID-19, based on eligible providers' net reimbursement. HHS has made other PRF distributions to a wide array of health care providers and more information on those distributions can be found here: https://www.hhs.gov/coronavirus/cares-act-provider-relief-fund/data/index.html

  9. HHS Provider Relief Fund

    • catalog.data.gov
    Updated Jan 11, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2021). HHS Provider Relief Fund [Dataset]. https://catalog.data.gov/dataset/hhs-provider-relief-fund
    Explore at:
    Dataset updated
    Jan 11, 2021
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    President Trump is providing support to healthcare providers fighting the coronavirus disease 2019 (COVID-19) pandemic through the bipartisan Coronavirus Aid, Relief, & Economic Security Act and the Paycheck Protection Program and Health Care Enhancement Act, which provide a total of $175 billion for relief funds to hospitals and other healthcare providers on the front lines of the COVID-19 response. This funding supports healthcare-related expenses or lost revenue attributable to COVID-19 and ensures uninsured Americans can get treatment for COVID-19. HHS is distributing this Provider Relief Fund (PRF) money and these payments do not need to be repaid. The Department allocated $50 billion in PRF payments for general distribution to Medicare facilities and providers impacted by COVID-19, based on eligible providers' net reimbursement. HHS has made other PRF distributions to a wide array of health care providers and more information on those distributions can be found here: https://www.hhs.gov/coronavirus/cares-act-provider-relief-fund/data/inde...

  10. County

    • hub.arcgis.com
    Updated Nov 17, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2020). County [Dataset]. https://hub.arcgis.com/datasets/esri::county-82?uiVersion=content-views
    Explore at:
    Dataset updated
    Nov 17, 2020
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer shows health insurance coverage sex and race by age group. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. Sums may add to more than the total, as people can be in multiple race groups (for example, Hispanic and Black)This layer is symbolized to show the percent of population with no health insurance coverage. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B27010, C27001B, C27001C, C27001D, C27001E, C27001F, C27001G, C27001H, C27001I (Not all lines of these tables are available in this layer.)Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  11. Percentage of U.S. population without health insurance 1994-2019 by location...

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Percentage of U.S. population without health insurance 1994-2019 by location [Dataset]. https://www.statista.com/statistics/188172/percentage-of-us-population-without-health-insurance-coverage-by-location/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    This statistic shows the percentage of the U.S. population under 65 years of age without health insurance coverage from 1984 to 2019, by location of residence. In 2019, over 11 percent of the U.S. population within metropolitan statistical areas under 65 years of age were without health insurance coverage.

  12. V

    Provider Relief Fund & Accelerated and Advance Payments

    • data.virginia.gov
    • healthdata.gov
    • +4more
    csv, json, rdf, xsl
    Updated Jul 10, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2024). Provider Relief Fund & Accelerated and Advance Payments [Dataset]. https://data.virginia.gov/dataset/provider-relief-fund-accelerated-and-advance-payments
    Explore at:
    json, csv, xsl, rdfAvailable download formats
    Dataset updated
    Jul 10, 2024
    Dataset provided by
    Centers for Disease Control and Prevention
    Description

    We are releasing data that compares the HHS Provider Relief Fund and the CMS Accelerated and Advance Payments by State and provider as of May 15, 2020. This data is already available on other websites, but this chart brings the information together into one view for comparison. You can find additional information on the Accelerated and Advance Payments at the following links:

    Fact Sheet: https://www.cms.gov/files/document/Accelerated-and-Advanced-Payments-Fact-Sheet.pdf;

    Zip file on providers in each state: https://www.cms.gov/files/zip/accelerated-payment-provider-details-state.zip

    Medicare Accelerated and Advance Payments State-by-State information and by Provider Type: https://www.cms.gov/files/document/covid-accelerated-and-advance-payments-state.pdf.

    This file was assembled by HHS via CMS, HRSA and reviewed by leadership and compares the HHS Provider Relief Fund and the CMS Accelerated and Advance Payments by State and provider as of December 4, 2020.

    HHS Provider Relief Fund President Trump is providing support to healthcare providers fighting the coronavirus disease 2019 (COVID-19) pandemic through the bipartisan Coronavirus Aid, Relief, & Economic Security Act and the Paycheck Protection Program and Health Care Enhancement Act, which provide a total of $175 billion for relief funds to hospitals and other healthcare providers on the front lines of the COVID-19 response. This funding supports healthcare-related expenses or lost revenue attributable to COVID-19 and ensures uninsured Americans can get treatment for COVID-19. HHS is distributing this Provider Relief Fund money and these payments do not need to be repaid. The Department allocated $50 billion of the Provider Relief Fund for general distribution to Medicare facilities and providers impacted by COVID-19, based on eligible providers' net reimbursement. It allocated another $22 billion to providers in areas particularly impacted by the COVID-19 outbreak, rural providers, and providers who serve low-income populations and uninsured Americans. HHS will be allocating the remaining funds in the near future.

    As part of the Provider Relief Fund distribution, all providers have 45 days to attest that they meet certain criteria to keep the funding they received, including public disclosure. As of May 15, 2020, there has been a total of $34 billion in attested payments. The chart only includes those providers that have attested to the payments by that date. We will continue to update this information and add the additional providers and payments once their attestation is complete.

    CMS Accelerated and Advance Payments Program On March 28, 2020, to increase cash flow to providers of services and suppliers impacted by the coronavirus disease 2019 (COVID-19) pandemic, the Centers for Medicare & Medicaid Services (CMS) expanded the Accelerated and Advance Payment Program to a broader group of Medicare Part A providers and Part B suppliers. Beginning on April 26, 2020, CMS stopped accepting new applications for the Advance Payment Program, and CMS began reevaluating all pending and new applications for Accelerated Payments in light of the availability of direct payments made through HHS’s Provider Relief Fund.

    Since expanding the AAP program on March 28, 2020, CMS approved over 21,000 applications totaling $59.6 billion in payments to Part A providers, which includes hospitals, through May 18, 2020. For Part B suppliers—including doctors, non-physician practitioners and durable medical equipment suppliers— during the same time period, CMS approved almost 24,000 applications advancing $40.4 billion in payments. The AAP program is not a grant, and providers and suppliers are required to repay the loan.

    CMS has published AAP data, as required by the Continuing Appropriations and Other Extensions Act of 2021, on this website: https://www.cms.gov/files/document/covid-medicare-accelerated-and-advance-payments-program-covid-19-public-health-emergency-payment.pdf

  13. c

    Health Insurance

    • data.clevelandohio.gov
    • hub.arcgis.com
    • +1more
    Updated Aug 21, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cleveland | GIS (2023). Health Insurance [Dataset]. https://data.clevelandohio.gov/datasets/ClevelandGIS::demographic-profiles/explore?layer=12&showTable=true
    Explore at:
    Dataset updated
    Aug 21, 2023
    Dataset authored and provided by
    Cleveland | GIS
    License

    Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
    License information was derived automatically

    Area covered
    Description

    This layer shows health insurance coverage by type and by age group. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis.


    This layer is symbolized to show the percent uninsured. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right.

    Current Vintage: 2019-2023
    ACS Table(s): B27010 (Not all lines of this ACS table are available in this feature layer.)

    The United States Census Bureau's American Community Survey (ACS):
    This ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.

    Data Note from the Census:
    Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.

    Data Processing Notes:
    • This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.
    • Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2022 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).
    • The States layer contains 52 records - all US states, Washington D.C., and Puerto Rico
    • Census tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).
    • Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.
    • Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.
    • Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:
      • The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.
      • Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.
      • The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.
      • The estimate is controlled. A statistical test for sampling variability is not appropriate.
      • The data for this geographic area cannot be displayed because the number of sample cases is too small.

  14. w

    Global Reproductive Health Procedure Count Market Research Report: By...

    • wiseguyreports.com
    Updated Sep 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Global Reproductive Health Procedure Count Market Research Report: By Procedure Type (Contraceptive Procedures, Fertility Treatments, Abortions, Prenatal Care Procedures), By Patient Demographics (Women of Reproductive Age, Adolescent Girls, Couples Seeking Fertility Solutions, Postpartum Women), By Healthcare Settings (Hospitals, Clinics, Private Practices, Home Care Services), By Insurance Coverage (Public Insurance, Private Insurance, Uninsured) and By Regional (North America, Europe, South America, Asia Pacific, Middle East and Africa) - Forecast to 2035 [Dataset]. https://www.wiseguyreports.com/reports/reproductive-health-procedure-count-market
    Explore at:
    Dataset updated
    Sep 15, 2025
    License

    https://www.wiseguyreports.com/pages/privacy-policyhttps://www.wiseguyreports.com/pages/privacy-policy

    Time period covered
    Sep 25, 2025
    Area covered
    Global
    Description
    BASE YEAR2024
    HISTORICAL DATA2019 - 2023
    REGIONS COVEREDNorth America, Europe, APAC, South America, MEA
    REPORT COVERAGERevenue Forecast, Competitive Landscape, Growth Factors, and Trends
    MARKET SIZE 202419.5(USD Billion)
    MARKET SIZE 202520.3(USD Billion)
    MARKET SIZE 203529.8(USD Billion)
    SEGMENTS COVEREDProcedure Type, Patient Demographics, Healthcare Settings, Insurance Coverage, Regional
    COUNTRIES COVEREDUS, Canada, Germany, UK, France, Russia, Italy, Spain, Rest of Europe, China, India, Japan, South Korea, Malaysia, Thailand, Indonesia, Rest of APAC, Brazil, Mexico, Argentina, Rest of South America, GCC, South Africa, Rest of MEA
    KEY MARKET DYNAMICSRising infertility rates, Increasing contraceptive use, Advancements in healthcare technology, Growing awareness of reproductive health, Government funding and support
    MARKET FORECAST UNITSUSD Billion
    KEY COMPANIES PROFILEDJohnson & Johnson, Thermo Fisher Scientific, Bayer AG, Ipsen, HCA Healthcare, Medtronic, Merck & Co, GlaxoSmithKline, Sartorius AG, Ferring Pharmaceuticals, Merck KGaA, AbbVie Inc
    MARKET FORECAST PERIOD2025 - 2035
    KEY MARKET OPPORTUNITIESIncreased awareness of reproductive health, Growth in women’s healthcare services, Technological advancements in medical procedures, Rising fertility treatment demand, Expansion of telehealth platforms
    COMPOUND ANNUAL GROWTH RATE (CAGR) 3.9% (2025 - 2035)
  15. Percentage of people in the U.S. without health insurance by ethnicity...

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Percentage of people in the U.S. without health insurance by ethnicity 2010-2024 [Dataset]. https://www.statista.com/statistics/200970/percentage-of-americans-without-health-insurance-by-race-ethnicity/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In 2024, approximately ******** percent of the Hispanic population in the United States did not have health insurance, a historical low since 2010. In 2024, the national average was *** percent. White Americans had a below-average rate of just ***** percent, whereas *** percent of Black Americans had no health insurance.Impact of the Affordable Care ActThe Affordable Care Act (ACA), also known as Obamacare, was enacted in March 2010, which expanded the Medicaid program, made affordable health insurance available to more people and aimed to lower health care costs by supporting innovative medical care delivery methods. Though it was enacted in 2010, the full effects of it weren’t seen until 2013, when government-run insurance marketplaces such as HealthCare.gov were opened. The number of Americans without health insurance fell significantly between 2010 and 2015, but began to rise again after 2016. What caused the change?The Tax Cuts and Jobs Act of 2017 has played a role in decreasing the number of Americans with health insurance, because the individual mandate was repealed. The aim of the individual mandate (part of the ACA) was to ensure that all Americans had health coverage and thus spread the costs over the young, old, sick and healthy by imposing a large tax fine on those without coverage.

  16. l

    COVID-19 Vulnerability and Recovery Index

    • data.lacounty.gov
    • geohub.lacity.org
    • +2more
    Updated Aug 5, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    County of Los Angeles (2021). COVID-19 Vulnerability and Recovery Index [Dataset]. https://data.lacounty.gov/maps/covid-19-vulnerability-and-recovery-index
    Explore at:
    Dataset updated
    Aug 5, 2021
    Dataset authored and provided by
    County of Los Angeles
    Area covered
    Description

    The COVID-19 Vulnerability and Recovery Index uses Tract and ZIP Code-level data* to identify California communities most in need of immediate and long-term pandemic and economic relief. Specifically, the Index is comprised of three components — Risk, Severity, and Recovery Need with the last scoring the ability to recover from the health, economic, and social costs of the pandemic. Communities with higher Index scores face a higher risk of COVID-19 infection and death and a longer uphill economic recovery. Conversely, those with lower scores are less vulnerable.

    The Index includes one overarching Index score as well as a score for each of the individual components. Each component includes a set of indicators we found to be associated with COVID-19 risk, severity, or recovery in our review of existing indices and independent analysis. The Risk component includes indicators related to the risk of COVID-19 infection. The Severity component includes indicators designed to measure the risk of severe illness or death from COVID-19. The Recovery Need component includes indicators that measure community needs related to economic and social recovery. The overarching Index score is designed to show level of need from Highest to Lowest with ZIP Codes in the Highest or High need categories, or top 20th or 40th percentiles of the Index, having the greatest need for support.

    The Index was originally developed as a statewide tool but has been adapted to LA County for the purposes of the Board motion. To distinguish between the LA County Index and the original Statewide Index, we refer to the revised Index for LA County as the LA County ARPA Index.

    *Zip Code data has been crosswalked to Census Tract using HUD methodology

    Indicators within each component of the LA County ARPA Index are:Risk: Individuals without U.S. citizenship; Population Below 200% of the Federal Poverty Level (FPL); Overcrowded Housing Units; Essential Workers Severity: Asthma Hospitalizations (per 10,000); Population Below 200% FPL; Seniors 75 and over in Poverty; Uninsured Population; Heart Disease Hospitalizations (per 10,000); Diabetes Hospitalizations (per 10,000)Recovery Need: Single-Parent Households; Gun Injuries (per 10,000); Population Below 200% FPL; Essential Workers; Unemployment; Uninsured PopulationData are sourced from US Census American Communities Survey (ACS) and the OSHPD Patient Discharge Database. For ACS indicators, the tables and variables used are as follows:

    Indicator

    ACS Table/Years

    Numerator

    Denominator

    Non-US Citizen

    B05001, 2019-2023

    b05001_006e

    b05001_001e

    Below 200% FPL

    S1701, 2019-2023

    s1701_c01_042e

    s1701_c01_001e

    Overcrowded Housing Units

    B25014, 2019-2023

    b25014_006e + b25014_007e + b25014_012e + b25014_013e

    b25014_001e

    Essential Workers

    S2401, 2019-2023

    s2401_c01_005e + s2401_c01_011e + s2401_c01_013e + s2401_c01_015e + s2401_c01_019e + s2401_c01_020e + s2401_c01_023e + s2401_c01_024e + s2401_c01_029e + s2401_c01_033e

    s2401_c01_001

    Seniors 75+ in Poverty

    B17020, 2019-2023

    b17020_008e + b17020_009e

    b17020_008e + b17020_009e + b17020_016e + b17020_017e

    Uninsured

    S2701, 2019-2023

    s2701_c05_001e

    NA, rate published in source table

    Single-Parent Households

    S1101, 2019-2023

    s1101_c03_005e + s1101_c04_005e

    s1101_c01_001e

    Unemployment

    S2301, 2019-2023

    s2301_c04_001e

    NA, rate published in source table

    The remaining indicators are based data requested and received by Advancement Project CA from the OSHPD Patient Discharge database. Data are based on records aggregated at the ZIP Code level:

    Indicator

    Years

    Definition

    Denominator

    Asthma Hospitalizations

    2017-2019

    All ICD 10 codes under J45 (under Principal Diagnosis)

    American Community Survey, 2015-2019, 5-Year Estimates, Table DP05

    Gun Injuries

    2017-2019

    Principal/Other External Cause Code "Gun Injury" with a Disposition not "Died/Expired". ICD 10 Code Y38.4 and all codes under X94, W32, W33, W34, X72, X73, X74, X93, X95, Y22, Y23, Y35 [All listed codes with 7th digit "A" for initial encounter]

    American Community Survey, 2015-2019, 5-Year Estimates, Table DP05

    Heart Disease Hospitalizations

    2017-2019

    ICD 10 Code I46.2 and all ICD 10 codes under I21, I22, I24, I25, I42, I50 (under Principal Diagnosis)

    American Community Survey, 2015-2019, 5-Year Estimates, Table DP05

    Diabetes (Type 2) Hospitalizations

    2017-2019

    All ICD 10 codes under E11 (under Principal Diagnosis)

    American Community Survey, 2015-2019, 5-Year Estimates, Table DP05

    For more information about this dataset, please contact egis@isd.lacounty.gov.

  17. Uninsured U.S. children number by citizenship 2019

    • statista.com
    Updated Nov 15, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2020). Uninsured U.S. children number by citizenship 2019 [Dataset]. https://www.statista.com/statistics/498523/us-children-without-health-insurance-by-citizenship/
    Explore at:
    Dataset updated
    Nov 15, 2020
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2019
    Area covered
    United States
    Description

    This statistic depicts the number of children without health insurance in the U.S. in 2019, sorted by citizenship. The number of children with U.S. citizenship who were without health insurance stood at some 3.7 million in that year.

  18. Population without a medical insurance in Latin America 2011-2023

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Population without a medical insurance in Latin America 2011-2023 [Dataset]. https://www.statista.com/statistics/1419103/share-of-population-without-medical-insurance-in-latin-america/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Latin America
    Description

    The share of population without health insurance in Latin America stayed below ** percent from 2011 to 2023. The highest figure was observed in 2011, with **** percent, while an estimated **** of the population was uninsured in 2019, the lowest share observed during the period analyzed. As of 2023, Guatemala was the country with the highest out-of-pocket share of total health expenditure in Latin America.

  19. Health center, private physician and ED patients in U.S. by insurance 2019

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Health center, private physician and ED patients in U.S. by insurance 2019 [Dataset]. https://www.statista.com/statistics/755105/health-center-private-physician-and-ed-patients-in-us-by-insurance/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    North America, United States
    Description

    This statistic depicts a comparison of health center, private physician, and emergency department (ED) patients in the U.S. as of 2019, by insurance status. Some 23 percent of health center patients were uninsured, whereas the percentage of uninsured was significantly lower at private physicians and emergency departments.

  20. Population without a medical insurance in Paraguay 2011-2023

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Population without a medical insurance in Paraguay 2011-2023 [Dataset]. https://www.statista.com/statistics/1419094/share-of-population-without-medical-insurance-in-paraguay/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Paraguay
    Description

    The share of population without health insurance in Panama fluctuated between **** and **** percent from 2011 to 2023. The lowest share of uninsured population in the country was reported in 2014, 2019, and 2023, with **** percent. A high share of population without health insurance can be a result of economic inequality, high unemployment rates, and limited resources as well as government regulations. During the last year depicted, the share of population without medical insurance in Latin America was estimated at ** percent.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). Number of people in the U.S. without health insurance 1997-2024 [Dataset]. https://www.statista.com/statistics/200955/americans-without-health-insurance/
Organization logo

Number of people in the U.S. without health insurance 1997-2024

Explore at:
6 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Sep 16, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
United States
Description

In 2024, 27 million people in the United States had no health insurance. The share of Americans without health insurance saw a steady increase from 2015 to 2019 before starting to decline from 2020 to 2024. Factors like the implementation of Medicaid expansion in additional states and growth in private health insurance coverage led to the decline in the uninsured population, despite the economic challenges due to the pandemic in 2020. Positive impact of Affordable Care Act In the U.S. there are public and private forms of health insurance, as well as social welfare programs such as Medicaid and programs just for veterans such as CHAMPVA. The Affordable Care Act (ACA) was enacted in 2010, which dramatically reduced the share of uninsured Americans, though there’s still room for improvement. In spite of its success in providing more Americans with health insurance, ACA has had an almost equal number of proponents and opponents since its introduction, though the share of Americans in favor of it has risen since mid-2017 to the majority. Persistent disparity among ethnic groups The share of uninsured people is higher in certain demographic groups. For instance, Hispanics continue to be the ethnic group with the highest rate of uninsured people, even after ACA. Meanwhile the share of uninsured White and Asian people is lower than the national average.

Search
Clear search
Close search
Google apps
Main menu