In 2023, 25 million people in the United States had no health insurance. The share of Americans without health insurance saw a steady increase from 2015 to 2019 before starting to decline in 2020 to 2023. Factors like the implementation of Medicaid expansion in additional states and growth in private health insurance coverage led to the decline in uninsured population, despite the economic challenges due to the pandemic in 2020. Positive impact of Affordable Care Act In the U.S. there are public and private forms of health insurance, as well as social welfare programs such as Medicaid and programs just for veterans such as CHAMPVA. The Affordable Care Act (ACA) was enacted in 2010, which dramatically reduced the share of uninsured Americans, though there’s still room for improvement. In spite of its success in providing more Americans with health insurance, ACA has had an almost equal number of proponents and opponents since its introduction, though the share of Americans in favor of it has risen since mid-2017 to the majority. Persistent disparity among ethnic groups The share of uninsured people is higher in certain demographic groups. For instance, Hispanics continue to be the ethnic group with the highest rate of uninsured people, even after ACA. Meanwhile the share of uninsured White and Asian people is lower than the national average.
In 2023, approximately ******** percent of the Hispanic population in the United States did not have health insurance, a historical low since 2010. In 2023, the national average was *** percent. White Americans had a below-average rate of just *** percent, whereas *** percent of Black Americans had no health insurance.Impact of the Affordable Care ActThe Affordable Care Act (ACA), also known as Obamacare, was enacted in March 2010, which expanded the Medicaid program, made affordable health insurance available to more people and aimed to lower health care costs by supporting innovative medical care delivery methods. Though it was enacted in 2010, the full effects of it weren’t seen until 2013, when government-run insurance marketplaces such as HealthCare.gov were opened. The number of Americans without health insurance fell significantly between 2010 and 2015, but began to rise again after 2016. What caused the change?The Tax Cuts and Jobs Act of 2017 has played a role in decreasing the number of Americans with health insurance, because the individual mandate was repealed. The aim of the individual mandate (part of the ACA) was to ensure that all Americans had health coverage and thus spread the costs over the young, old, sick and healthy by imposing a large tax fine on those without coverage.
This statistic displays a projection of the number of less uninsured in the United States due to the Affordable Care Act (ACA) from 2015 to 2025. By 2018, there will be some 26 million less uninsured nonelderly people due to the implementation of the ACA.
This dataset shows the statistics of United States uninsured persons with no health coverage under age 65 by selected characteristics. Data are based on household interviews of a sample of the civilian noninstitutionalized population.
This map shows where children have no health insurance coverage in the US. Children are defined as those under age 19. The map shows the percentage of all children who are uninsured, but also shows the total count of uninsured children. The map shows uninsured children by states, counties, and tracts, and the map can be customized and saved into a new map for anywhere in the US. The pattern can be seen throughout the US by searching for an area of interest. The data comes from the most current American Community Survey (ACS) estimates from the U.S. Census Bureau. The metadata, vintage, and source information about the data layer used in this map can be found here. The data layer is updated automatically each year when the Census releases their new estimates, so this map always contains the newest data values.To find more US health-related layers and maps to use in your projects, visit the ArcGIS Living Atlas Health subcategory.
This layer shows health insurance coverage sex and race by age group. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. Sums may add to more than the total, as people can be in multiple race groups (for example, Hispanic and Black)This layer is symbolized to show the percent of population with no health insurance coverage. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B27010, C27001B, C27001C, C27001D, C27001E, C27001F, C27001G, C27001H, C27001I (Not all lines of these tables are available in this layer.)Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.
This layer shows health insurance coverage sex and race by age group. This is shown by tract, county, and state centroids. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. Sums may add to more than the total, as people can be in multiple race groups (for example, Hispanic and Black)This layer is symbolized to show the count and percent of population with no health insurance coverage. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B27010, C27001B, C27001C, C27001D, C27001E, C27001F, C27001G, C27001H, C27001I (Not all lines of these tables are available in this layer.)Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.
In 2023, **** percent of people aged 18 to 64 in the United States didn't have health insurance, the lowest in the provided time interval. This statistic contains data on the percentage of U.S. Americans without health insurance coverage from 1997 to 2023, by age.
This dataset contains estimates of health insured and uninsured population for 2020 at county and state level based on US Census Bureau program, The Small Area Health Insurance Estimates (SAHIE) program. For every state and county for each demographic group, defined by age, gender, race/ethnicity and income relative to poverty, the estimated number of persons insured and uninsured is given along with the margin of error.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Health Insurance Coverage: Total Number of People in the United States (DISCONTINUED) (USHICTOTAL) from 1999 to 2012 about health, insurance, persons, and USA.
[Disclaimer: This application is a DRAFT and is still under development. Your feedback is welcome.]Data Use: This map highlights the distribution of health insurance coverage across different neighborhoods in Dallas. It identifies areas with high rates of uninsured residents, providing critical insights into healthcare accessibility and potential public health risks. This information is essential for public health planning, enabling stakeholders to allocate resources effectively, design targeted health interventions, and improve overall health outcomes by increasing insurance coverage and access to healthcare services.Data Source: U.S. Census Bureau, "Selected Characteristics of Health Insurance Coverage in the United States," American Community Survey, ACS 5-Year Estimates Subject Tables, Table S2701, 2022.Variables:S2701_C05_001E: Estimate Percent Uninsured Civilian noninstitutionalized populationS2701_C03_017E: Estimate Percent Insured Black or African American aloneS2701_C03_018E: Estimate Percent Insured American Indian and Alaska Native aloneS2701_C03_019E: Estimate Percent Insured Asian aloneS2701_C03_020E: Estimate Percent Insured Native Hawaiian and Other Pacific Islander aloneS2701_C03_021E: Estimate Percent Insured Some other race aloneS2701_C03_022E: Estimate Percent Insured Two or more racesS2701_C03_023E: Estimate Percent Insured Hispanic or Latino (of any race)S2701_C03_024E: Estimate Percent Insured White alone, not Hispanic or LatinoInsurance_Rank: Insurance RankRank Scoring Process: Census tracts were grouped into quintiles based on the percentage of insured individuals (S2701_C03_001E).The scoring process categorizes each tract as follows:Score of 1: 0% - 7% (lowest uninsured rates)Score of 2: 7% - 15.2%Score of 3: 15.3% - 25%Score of 4: 25.1% - 32.2%Score of 5: 32.3% - 66.2% (highest uninsured rates)Year: 2022Provider: U.S. Census Bureau
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This data is pulled from the U.S. Census website. This data is for years Calendar Years 2009-2014.
Product: SAHIE File Layout Overview
Small Area Health Insurance Estimates Program - SAHIE
Filenames: SAHIE Text and SAHIE CSV files 2009 – 2014
Source: Small Area Health Insurance Estimates Program, U.S. Census Bureau.
Internet Release Date: May 2016
Description: Model‐based Small Area Health Insurance Estimates (SAHIE) for Counties and States File Layout and Definitions
The Small Area Health Insurance Estimates (SAHIE) program was created to develop model-based estimates of health insurance coverage for counties and states. This program builds on the work of the Small Area Income and Poverty Estimates (SAIPE) program. SAHIE is only source of single-year health insurance coverage estimates for all U.S. counties.
For 2008-2014, SAHIE publishes STATE and COUNTY estimates of population with and without health insurance coverage, along with measures of uncertainty, for the full cross-classification of:
•5 age categories: 0-64, 18-64, 21-64, 40-64, and 50-64
•3 sex categories: both sexes, male, and female
•6 income categories: all incomes, as well as income-to-poverty ratio (IPR) categories 0-138%, 0-200%, 0-250%, 0-400%, and 138-400% of the poverty threshold
•4 races/ethnicities (for states only): all races/ethnicities, White not Hispanic, Black not Hispanic, and Hispanic (any race).
In addition, estimates for age category 0-18 by the income categories listed above are published.
Each year’s estimates are adjusted so that, before rounding, the county estimates sum to their respective state totals and for key demographics the state estimates sum to the national ACS numbers insured and uninsured.
This program is partially funded by the Centers for Disease Control and Prevention's (CDC), National Breast and Cervical Cancer Early Detection ProgramLink to a non-federal Web site (NBCCEDP). The CDC have a congressional mandate to provide screening services for breast and cervical cancer to low-income, uninsured, and underserved women through the NBCCEDP. Most state NBCCEDP programs define low-income as 200 or 250 percent of the poverty threshold. Also included are IPR categories relevant to the Affordable Care Act (ACA). In 2014, the ACA will help families gain access to health care by allowing Medicaid to cover families with incomes less than or equal to 138 percent of the poverty line. Families with incomes above the level needed to qualify for Medicaid, but less than or equal to 400 percent of the poverty line can receive tax credits that will help them pay for health coverage in the new health insurance exchanges.
We welcome your feedback as we continue to research and improve our estimation methods. The SAHIE program's age model methodology and estimates have undergone internal U.S. Census Bureau review as well as external review. See the SAHIE Methodological Review page for more details and a summary of the comments and our response.
The SAHIE program models health insurance coverage by combining survey data from several sources, including:
•The American Community Survey (ACS)
•Demographic population estimates
•Aggregated federal tax returns
•Participation records for the Supplemental Nutrition Assistance Program (SNAP), formerly known as the Food Stamp program
•County Business Patterns
•Medicaid
•Children's Health Insurance Program (CHIP) participation records
•Census 2010
Margin of error (MOE). Some ACS products provide
an MOE instead of confidence intervals. An MOE is the
difference between an estimate and its upper or lower
confidence bounds. Confidence bounds can be created
by adding the margin of error to the estimate (for the
upper bound) and subtracting the margin of error from
the estimate (for the lower bound). All published ACS
margins of error are based on a 90-percent confidence
level.
Splitgraph serves as an HTTP API that lets you run SQL queries directly on this data to power Web applications. For example:
See the Splitgraph documentation for more information.
In 2022, around****** percent of the total population of the United States was uninsured. Texas was the state with the highest percentage of uninsured among its population, while Massachusetts reported the lowest share of uninsured This statistic presents the percentage of the total population in the United States without health insurance in 2022, by state.
This layer shows the percentage of people without health insurance in the U.S. by state and county, from American Community Survey 5-year estimates: 2011-2015 (Table GCT2701). The map switches from state data to county data as the map zooms in. The national average was 13.0%, down from approximately 20% in 2005.A person’s ability to access health services has a profound effect on every aspect of his or her health. Many Americans do not have a primary care provider (PCP) or health center where they can receive regular medical services. People without medical insurance are more likely to lack a usual source of medical care, such as a PCP, and are more likely to skip routine medical care due to costs, increasing their risk for serious and disabling health conditions. When they do access health services, they are often burdened with large medical bills and out-of-pocket expenses. Increasing access to both routine medical care and medical insurance are vital steps in improving the health of all Americans.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The American Community Survey (ACS) helps local officials, community leaders, and businesses understand the changes taking place in their communities. It is the premier source for detailed population and housing information about our nation. This dataset provides estimates by county for Health Insurance Coverage and is summarized from summary table S2701: SELECTED CHARACTERISTICS OF HEALTH INSURANCE COVERAGE IN THE UNITED STATES. The 5-year estimates are used to provide detail on every county in Pennsylvania and includes breakouts by Age, Gender, Race, Ethnicity, Household Income, and the Ratio of Income to Poverty.
An blank cell within the dataset indicates that either no sample observations or too few sample observations were available to compute the statistic for that area.
Margin of error (MOE). Some ACS products provide an MOE instead of confidence intervals. An MOE is the difference between an estimate and its upper or lower confidence bounds. Confidence bounds can be created by adding the margin of error to the estimate (for the upper bound) and subtracting the margin of error from the estimate (for the lower bound). All published ACS margins of error are based on a 90-percent confidence level.
While an ACS 1-year estimate includes information collected over a 12-month period, an ACS 5-year estimate includes data collected over a 60-month period. In the case of ACS 1-year estimates, the period is the calendar year (e.g., the 2015 ACS covers the period from January 2015 through December 2015).
In the case of ACS multiyear estimates, the period is 5 calendar years (e.g., the 2011–2015 ACS estimates cover the period from January 2011 through December 2015). Therefore, ACS estimates based on data collected from 2011–2015 should not be labeled “2013,” even though that is the midpoint of the 5-year period.
Multiyear estimates should be labeled to indicate clearly the full period of time (e.g., “The child poverty rate in 2011–2015 was X percent.”). They do not describe any specific day, month, or year within that time period.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Technical Documentation section...Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, it is the Census Bureau''s Population Estimates Program that produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units for states and counties..Explanation of Symbols:An ''**'' entry in the margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate..An ''-'' entry in the estimate column indicates that either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution..An ''-'' following a median estimate means the median falls in the lowest interval of an open-ended distribution..An ''+'' following a median estimate means the median falls in the upper interval of an open-ended distribution..An ''***'' entry in the margin of error column indicates that the median falls in the lowest interval or upper interval of an open-ended distribution. A statistical test is not appropriate..An ''*****'' entry in the margin of error column indicates that the estimate is controlled. A statistical test for sampling variability is not appropriate. .An ''N'' entry in the estimate and margin of error columns indicates that data for this geographic area cannot be displayed because the number of sample cases is too small..An ''(X)'' means that the estimate is not applicable or not available..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on Census 2010 data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..While the 2017 American Community Survey (ACS) data generally reflect the July 2015 Office of Management and Budget (OMB) delineations of metropolitan and micropolitan statistical areas, in certain instances the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB delineations due to differences in the effective dates of the geographic entities..Beginning in 2017, selected variable categories were updated, including age-categories, income-to-poverty ratio (IPR) categories, and the age universe for certain employment and education variables. See user note entitled "Health Insurance Table Updates" for further details..Logical coverage edits applying a rules-based assignment of Medicaid, Medicare and military health coverage were added as of 2009 -- please see https://www.census.gov/library/working-papers/2010/demo/coverage_edits_final.html for more details. The 2008 data table in American FactFinder does not incorporate these edits. Therefore, the estimates that appear in these tables are not comparable to the estimates in the 2009 and later tables. Select geographies of 2008 data comparable to the 2009 and later tables are available at https://www.census.gov/data/tables/time-series/acs/1-year-re-run-health-insurance.html. The health insurance coverage category names were modified in 2010. See https://www.census.gov/topics/health/health-insurance/about/glossary.html#par_textimage_18 for a list of the insurance type definitions..Occupation codes are 4-digit codes and are based on Standard Occupational Classification 2010..Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables..Source: U.S. Census Bureau, 2017 American Community Survey 1-Year Estimates
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The Census Bureau's Small Area Health Insurance Estimates (SAHIE) program produces estimates of health insurance coverage for states and all counties. These data are 2014 estimates of health insurance coverage by age, sex, race, Hispanic orgin, and income categories at the state level and by age, sex, and income categories at the county level. SAHIE is only source of single-year health insurance coverage estimates for all U.S. counties.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the .Technical Documentation.. section......Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the .Methodology.. section..Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, it is the Census Bureau's Population Estimates Program that produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units for states and counties..Explanation of Symbols:..An "**" entry in the margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate..An "-" entry in the estimate column indicates that either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution..An "-" following a median estimate means the median falls in the lowest interval of an open-ended distribution..An "+" following a median estimate means the median falls in the upper interval of an open-ended distribution..An "***" entry in the margin of error column indicates that the median falls in the lowest interval or upper interval of an open-ended distribution. A statistical test is not appropriate..An "*****" entry in the margin of error column indicates that the estimate is controlled. A statistical test for sampling variability is not appropriate. .An "N" entry in the estimate and margin of error columns indicates that data for this geographic area cannot be displayed because the number of sample cases is too small..An "(X)" means that the estimate is not applicable or not available...Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on Census 2010 data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..While the 2013-2017 American Community Survey (ACS) data generally reflect the February 2013 Office of Management and Budget (OMB) definitions of metropolitan and micropolitan statistical areas; in certain instances the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB definitions due to differences in the effective dates of the geographic entities..Beginning in 2017, selected variable categories were updated, including age-categories, income-to-poverty ratio (IPR) categories, and the age universe for certain employment and education variables. See user note entitled ."Health Insurance Table Updates".. for further details..Logical coverage edits applying a rules-based assignment of Medicaid, Medicare and military health coverage were added as of 2009 -- please see .https://www.census.gov/library/working-papers/2010/demo/coverage_edits_final.html.. for more details. The 2008 data table in American FactFinder does not incorporate these edits. Therefore, the estimates that appear in these tables are not comparable to the estimates in the 2009 and later tables. Select geographies of 2008 data comparable to the 2009 and later tables are available at .https://www.census.gov/data/tables/time-series/acs/1-year-re-run-health-insurance.html... The health insurance coverage category names were modified in 2010. See .https://www.census.gov/topics/health/health-insurance/about/glossary.html#par_textimage_18.. for a list of the insurance type definitions..Occupation codes are 4-digit codes and are based on Standard Occupational Classification 2010..Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see .Accuracy of the Data..). The effect of nonsampling error is not represented in these tables..Source: U.S. Census Bureau, 2013-2017 American Community Survey 5-Year Estimates
This data file indicates the estimated number of uninsured individuals ages 19-25 in each U.S. county. These individuals may be eligible to join their parents health plan if that plan offers dependent coverage. The data is based on the 2007 Small Area Health Insurance Estimates (SAHIE) and March 2008 Current Population Survey Annual Social and Economic Supplement (CPS-ASEC).
https://www.icpsr.umich.edu/web/ICPSR/studies/38372/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/38372/terms
This catalog record includes detailed variable-level descriptions, enabling data discovery and comparison. The data are not archived at ICPSR. Users should consult the data owners (via the Roper Center for Public Opinion Research) directly for details on obtaining the data. This collection includes variable-level metadata of Health Priorities Survey 1--The Medical System and The Uninsured, a survey from the Harvard School of Public Health and the Robert Wood Johnson Foundation conducted by International Communications Research (ICR). Topics covered in this survey include: Quality of medical care Health care system problem severity Problems paying medical bills Health insurance Personal health The data and documentation files for this survey are available through the Roper Center for Public Opinion Research [Roper #31092335]. Frequencies and summary statistics for the 82 variables from this survey are available through the ICPSR social science variable database and can be accessed from the Variables tab.
In 2023, 25 million people in the United States had no health insurance. The share of Americans without health insurance saw a steady increase from 2015 to 2019 before starting to decline in 2020 to 2023. Factors like the implementation of Medicaid expansion in additional states and growth in private health insurance coverage led to the decline in uninsured population, despite the economic challenges due to the pandemic in 2020. Positive impact of Affordable Care Act In the U.S. there are public and private forms of health insurance, as well as social welfare programs such as Medicaid and programs just for veterans such as CHAMPVA. The Affordable Care Act (ACA) was enacted in 2010, which dramatically reduced the share of uninsured Americans, though there’s still room for improvement. In spite of its success in providing more Americans with health insurance, ACA has had an almost equal number of proponents and opponents since its introduction, though the share of Americans in favor of it has risen since mid-2017 to the majority. Persistent disparity among ethnic groups The share of uninsured people is higher in certain demographic groups. For instance, Hispanics continue to be the ethnic group with the highest rate of uninsured people, even after ACA. Meanwhile the share of uninsured White and Asian people is lower than the national average.