86 datasets found
  1. Annual precipitation volume in the United States 1900-2024

    • statista.com
    • ai-chatbox.pro
    Updated Jul 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Annual precipitation volume in the United States 1900-2024 [Dataset]. https://www.statista.com/statistics/504400/volume-of-precipitation-in-the-us/
    Explore at:
    Dataset updated
    Jul 10, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In 2024, the United States saw some **** inches of precipitation. The main forms of precipitation include hail, drizzle, rain, sleet, and snow. Since the turn of the century, 2012 was the driest year on record with an annual precipitation of **** inches. Regional disparities in rainfall Louisiana emerged as the wettest state in the U.S. in 2024, recording a staggering ***** inches (*** meters) of precipitation—nearly **** inches (ca. ** centimeters) above its historical average. In stark contrast, Nevada received only **** inches (ca. ** centimeters), underscoring the vast differences in rainfall across the nation. These extremes illustrate the uneven distribution of precipitation, with the southwestern states experiencing increasingly dry conditions that experts predict will worsen in the coming years. Drought concerns persist Drought remains a significant concern in many parts of the country. The Palmer Drought Severity Index (PDSI) for the contiguous United States stood at ***** in December 2024, indicating moderate to severe drought conditions. This reading follows three years of generally negative PDSI values, with the most extreme drought recorded in December 2023 at *****.

  2. T

    United States Average Precipitation

    • tradingeconomics.com
    • it.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Dec 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2023). United States Average Precipitation [Dataset]. https://tradingeconomics.com/united-states/precipitation
    Explore at:
    json, xml, excel, csvAvailable download formats
    Dataset updated
    Dec 15, 2023
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 1901 - Dec 31, 2023
    Area covered
    United States
    Description

    Precipitation in the United States increased to 735.83 mm in 2023 from 707.98 mm in 2022. This dataset includes a chart with historical data for the United States Average Precipitation.

  3. a

    North America Annual Precipitation

    • hub.arcgis.com
    • climat.esri.ca
    • +1more
    Updated Apr 19, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CECAtlas (2023). North America Annual Precipitation [Dataset]. https://hub.arcgis.com/maps/d4b81cb2dc4f4b938964aa1eb9b4b9a9
    Explore at:
    Dataset updated
    Apr 19, 2023
    Dataset authored and provided by
    CECAtlas
    License
    Area covered
    Description

    The North America climate data were derived from WorldClim, a set of global climate layers developed by the Museum of Vertebrate Zoology at the University of California, Berkeley, USA, in collaboration with The International Center for Tropical Agriculture and Rainforest CRC with support from NatureServe.The global climate data layers were generated through interpolation of average monthly climate data from weather stations across North America. The result is a 30-arc-second-resolution (1-Km) grid of mean temperature values. The North American data were clipped from the global data and reprojected to a Lambert Azimuthal Equal Area projection. Background information on the WorldClim database is available in: Very High-Resolution Interpolated Climate Surfaces for Global Land Areas; Hijmans, R.J., S.E. Cameron, J.L. Parra, P.G. Jones and A. Jarvis; International Journal of Climatology 25: 1965-1978; 2005.Files Download

  4. U.S. cities with the highest annual precipitation 1981-2010

    • statista.com
    Updated Jan 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. cities with the highest annual precipitation 1981-2010 [Dataset]. https://www.statista.com/statistics/1039746/us-cities-with-the-most-precipitation/
    Explore at:
    Dataset updated
    Jan 16, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    1981 - 2010
    Area covered
    United States
    Description

    The majority of the wettest cities in the United States are located in the Southeast. The major city with the most precipitation is New Orleans, Louisiana, which receives an average of 1592 millimeters (62.7 inches) of precipitation every year, based on an average between 1981 and 2010.

  5. Historical annual precipitation (CONUS) (Image Service)

    • catalog.data.gov
    • agdatacommons.nal.usda.gov
    • +5more
    Updated Apr 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2025). Historical annual precipitation (CONUS) (Image Service) [Dataset]. https://catalog.data.gov/dataset/historical-annual-precipitation-conus-image-service-f2c16
    Explore at:
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    U.S. Department of Agriculture Forest Servicehttp://fs.fed.us/
    Description

    The National Forest Climate Change Maps project was developed by the Rocky Mountain Research Station (RMRS) and the Office of Sustainability and Climate to meet the needs of national forest managers for information on projected climate changes at a scale relevant to decision making processes, including forest plans. The maps use state-of-the-art science and are available for every national forest in the contiguous United States with relevant data coverage. Currently, the map sets include variables related to precipitation, air temperature, snow (including snow residence time and April 1 snow water equivalent), and stream flow.Historical (1975-2005) and future (2071-2090) precipitation and temperature data for the contiguous United States are ensemble mean values across 20 global climate models from the CMIP5 experiment (https://journals.ametsoc.org/doi/abs/10.1175/BAMS-D-11-00094.1), downscaled to a 4 km grid. For more information on the downscaling method and to access the data, please see Abatzoglou and Brown, 2012 (https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/joc.2312) and the Northwest Knowledge Network (https://climate.northwestknowledge.net/MACA/). We used the MACAv2- Metdata monthly dataset; monthly precipitation values (mm) were summed over the season of interest (annual, winter, or summer). Absolute and percent change were then calculated between the historical and future time periods.Raster data are also available for download from RMRS site (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/categories/us-raster-layers.html), along with pdf maps and detailed metadata (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/downloads/NationalForestClimateChangeMapsMetadata.pdf).

  6. Historical annual precipitation (Alaska) (Image Service)

    • agdatacommons.nal.usda.gov
    • catalog.data.gov
    • +3more
    bin
    Updated Oct 1, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2024). Historical annual precipitation (Alaska) (Image Service) [Dataset]. https://agdatacommons.nal.usda.gov/articles/dataset/Historical_annual_precipitation_Alaska_Image_Service_/25973239
    Explore at:
    binAvailable download formats
    Dataset updated
    Oct 1, 2024
    Dataset provided by
    U.S. Department of Agriculture Forest Servicehttp://fs.fed.us/
    Authors
    U.S. Forest Service
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Alaska
    Description

    The National Forest Climate Change Maps project was developed by the Rocky Mountain Research Station (RMRS) and the Office of Sustainability and Climate to meet the needs of national forest managers for information on projected climate changes at a scale relevant to decision making processes, including forest plans. The maps use state-of-the-art science and are available for every national forest in the contiguous United States with relevant data coverage. Currently, the map sets include variables related to precipitation, air temperature, snow (including snow residence time and April 1 snow water equivalent), and stream flow.Historical (1975-2005) and future (2071-2090) precipitation and temperature data for the state of Alaska were developed by the Scenarios Network for Alaska and Arctic Planning (SNAP) (https://snap.uaf.edu). Monthly precipitation values (mm) were summed over the season of interest (annual, winter, or summer). These datasets have several important differences from the MACAv2-Metdata (https://climate.northwestknowledge.net/MACA/) products, used in the contiguous U.S. They were developed using different global circulation models and different downscaling methods, and were downscaled to a different scale (771 m instead of 4 km). While these cover the same time periods and use broadly similar approaches, caution should be used when directly comparing values between Alaska and the contiguous United States.Raster data are also available for download from RMRS site (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/categories/us-raster-layers.html), along with pdf maps and detailed metadata (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/downloads/NationalForestClimateChangeMapsMetadata.pdf).This record was taken from the USDA Enterprise Data Inventory that feeds into the https://data.gov catalog. Data for this record includes the following resources: ISO-19139 metadata ArcGIS Hub Dataset ArcGIS GeoService For complete information, please visit https://data.gov.

  7. d

    Daily time series of surface water input from rainfall, rain on snow, and...

    • catalog.data.gov
    • data.usgs.gov
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Daily time series of surface water input from rainfall, rain on snow, and snowmelt for the Conterminous United States from 1990 to 2023, as well as annual series of input seasonality, precipitation seasonality, and average rainfall, rain on snow, and snowmelt rates [Dataset]. https://catalog.data.gov/dataset/daily-time-series-of-surface-water-input-from-rainfall-rain-on-snow-and-snowmelt-for-the-c
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    U.S. Geological Survey
    Area covered
    United States
    Description

    This data release contains daily gridded data reflecting surface water input from rainfall, rain on snow (mixed), and snowmelt for the conterminous United States for water years 1990 to 2023 (1990/10/01 to 2023/09/30). This release also contains annual estimates of gridded input seasonality (an index reflecting whether surface water input occurs within a concentrated period or is equally distributed throughout the year), precipitation seasonality, average snowmelt, rainfall and rain on snow rates, and finally, annual totals of each input type. Average snowmelt, rainfall and rain on snow rates were computed using days where values were greater than zero. Daily data were generated using precipitation input from the gridMET dataset (Abatzoglou, 2013) and the University of Arizona snow water equivalent product (Broxton et al., 2019). Abatzoglou, J. T. (2013), Development of gridded surface meteorological data for ecological applications and modelling. Int. J. Climatol., 33: 121–131. Broxton, P., X. Zeng, and N. Dawson. (2019). Daily 4 km Gridded SWE and Snow Depth from Assimilated In-Situ and Modeled Data over the Conterminous US, Version 1. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. https://doi.org/10.5067/0GGPB220EX6A.

  8. d

    EnviroAtlas - Average Annual Precipitation 1981-2010 by HUC12 for the...

    • catalog.data.gov
    • gimi9.com
    • +1more
    Updated Apr 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Environmental Protection Agency, Office of Research and Development-Sustainable and Healthy Communities Research Program, EnviroAtlas (Point of Contact) (2025). EnviroAtlas - Average Annual Precipitation 1981-2010 by HUC12 for the Conterminous United States [Dataset]. https://catalog.data.gov/dataset/enviroatlas-average-annual-precipitation-1981-2010-by-huc12-for-the-conterminous-united-states3
    Explore at:
    Dataset updated
    Apr 22, 2025
    Dataset provided by
    U.S. Environmental Protection Agency, Office of Research and Development-Sustainable and Healthy Communities Research Program, EnviroAtlas (Point of Contact)
    Area covered
    Contiguous United States, United States
    Description

    This EnviroAtlas dataset provides the average annual precipitation by 12-digit Hydrologic Unit (HUC). The values were estimated from maps produced by the PRISM Climate Group, Oregon State University. The original data was at the scale of 800 m grid cells representing average precipitation from 1981-2010 in mm. The data was converted to inches of precipitation and then zonal statistics were estimated for a final value of average annual precipitation for each 12 digit HUC. For more information about the original dataset please refer to the PRISM website at http://www.prism.oregonstate.edu/. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  9. Average annual precipitation - Business Environment Profile

    • ibisworld.com
    Updated Jan 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    IBISWorld (2025). Average annual precipitation - Business Environment Profile [Dataset]. https://www.ibisworld.com/united-states/bed/average-annual-precipitation/489
    Explore at:
    Dataset updated
    Jan 26, 2025
    Dataset authored and provided by
    IBISWorld
    License

    https://www.ibisworld.com/about/termsofuse/https://www.ibisworld.com/about/termsofuse/

    Description

    Annual average precipitation represents the average total rainfall seen across the United States in each year. Data is sourced from the National Oceanic and Atmospheric Administration's National Center for Environmental information.

  10. c

    Historical changes of annual temperature and precipitation indices at...

    • kilthub.cmu.edu
    txt
    Updated Aug 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yuchuan Lai; David Dzombak (2024). Historical changes of annual temperature and precipitation indices at selected 210 U.S. cities [Dataset]. http://doi.org/10.1184/R1/7961012.v6
    Explore at:
    txtAvailable download formats
    Dataset updated
    Aug 22, 2024
    Dataset provided by
    Carnegie Mellon University
    Authors
    Yuchuan Lai; David Dzombak
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Historical changes of annual temperature and precipitation indices at selected 210 U.S. cities

    This dataset provide:

    Annual average temperature, total precipitation, and temperature and precipitation extremes calculations for 210 U.S. cities.

    Historical rates of changes in annual temperature, precipitation, and the selected temperature and precipitation extreme indices in the 210 U.S. cities.

    Estimated thresholds (reference levels) for the calculations of annual extreme indices including warm and cold days, warm and cold nights, and precipitation amount from very wet days in the 210 cities.

    Annual average of daily mean temperature, Tmax, and Tmin are included for annual average temperature calculations. Calculations were based on the compiled daily temperature and precipitation records at individual cities.

    Temperature and precipitation extreme indices include: warmest daily Tmax and Tmin, coldest daily Tmax and Tmin , warm days and nights, cold days and nights, maximum 1-day precipitation, maximum consecutive 5-day precipitation, precipitation amounts from very wet days.

    Number of missing daily Tmax, Tmin, and precipitation values are included for each city.

    Rates of change were calculated using linear regression, with some climate indices applied with the Box-Cox transformation prior to the linear regression.

    The historical observations from ACIS belong to Global Historical Climatological Network - daily (GHCN-D) datasets. The included stations were based on NRCC’s “ThreadEx” project, which combined daily temperature and precipitation extremes at 255 NOAA Local Climatological Locations, representing all large and medium size cities in U.S. (See Owen et al. (2006) Accessing NOAA Daily Temperature and Precipitation Extremes Based on Combined/Threaded Station Records).

    Resources:

    See included README file for more information.

    Additional technical details and analyses can be found in: Lai, Y., & Dzombak, D. A. (2019). Use of historical data to assess regional climate change. Journal of climate, 32(14), 4299-4320. https://doi.org/10.1175/JCLI-D-18-0630.1

    Other datasets from the same project can be accessed at: https://kilthub.cmu.edu/projects/Use_of_historical_data_to_assess_regional_climate_change/61538

    ACIS database for historical observations: http://scacis.rcc-acis.org/

    GHCN-D datasets can also be accessed at: https://www.ncei.noaa.gov/data/global-historical-climatology-network-daily/

    Station information for each city can be accessed at: http://threadex.rcc-acis.org/

    • 2024 August updated -

      Annual calculations for 2022 and 2023 were added.

      Linear regression results and thresholds for extremes were updated because of the addition of 2022 and 2023 data.

      Note that future updates may be infrequent.

    • 2022 January updated -

      Annual calculations for 2021 were added.

      Linear regression results and thresholds for extremes were updated because of the addition of 2021 data.

    • 2021 January updated -

      Annual calculations for 2020 were added.

      Linear regression results and thresholds for extremes were updated because of the addition of 2020 data.

    • 2020 January updated -

      Annual calculations for 2019 were added.

      Linear regression results and thresholds for extremes were updated because of the addition of 2019 data.

      Thresholds for all 210 cities were combined into one single file – Thresholds.csv.

    • 2019 June updated -

      Baltimore was updated with the 2018 data (previously version shows NA for 2018) and new ID to reflect the GCHN ID of Baltimore-Washington International AP. city_info file was updated accordingly.

      README file was updated to reflect the use of "wet days" index in this study. The 95% thresholds for calculation of wet days utilized all daily precipitation data from the reference period and can be different from the same index from some other studies, where only days with at least 1 mm of precipitation were utilized to calculate the thresholds. Thus the thresholds in this study can be lower than the ones that would've be calculated from the 95% percentiles from wet days (i.e., with at least 1 mm of precipitation).

  11. U

    30-Year (1990-2019) Annual Average of DAYMET Precipitation and Temperature...

    • data.usgs.gov
    • catalog.data.gov
    Updated Feb 24, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Michael Wieczorek; Richard Signell (2024). 30-Year (1990-2019) Annual Average of DAYMET Precipitation and Temperature for North America [Dataset]. http://doi.org/10.5066/P9E0JZ82
    Explore at:
    Dataset updated
    Feb 24, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    Michael Wieczorek; Richard Signell
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Time period covered
    Jan 1, 1990 - Dec 31, 2019
    Area covered
    North America
    Description

    This metadata record describes the 30-year annual average of precipitation in millimeters (mm) and temperature (Celsius) during the period 1990–2019 for North America. The source data were produced by and acquired from DAYMET daily climate data (2020) and presented here as a series of two 1-kilometer resolution GeoTIFF files. An open source python code file used to process the data is also included.

  12. Absolute change in annual precipitation (CONUS) (Image Service)

    • catalog.data.gov
    • datasets.ai
    • +5more
    Updated Apr 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2025). Absolute change in annual precipitation (CONUS) (Image Service) [Dataset]. https://catalog.data.gov/dataset/absolute-change-in-annual-precipitation-conus-image-service-009f8
    Explore at:
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    U.S. Department of Agriculture Forest Servicehttp://fs.fed.us/
    Description

    The National Forest Climate Change Maps project was developed by the Rocky Mountain Research Station (RMRS) and the Office of Sustainability and Climate to meet the needs of national forest managers for information on projected climate changes at a scale relevant to decision making processes, including forest plans. The maps use state-of-the-art science and are available for every national forest in the contiguous United States with relevant data coverage. Currently, the map sets include variables related to precipitation, air temperature, snow (including snow residence time and April 1 snow water equivalent), and stream flow.Historical (1975-2005) and future (2071-2090) precipitation and temperature data for the contiguous United States are ensemble mean values across 20 global climate models from the CMIP5 experiment (https://journals.ametsoc.org/doi/abs/10.1175/BAMS-D-11-00094.1), downscaled to a 4 km grid. For more information on the downscaling method and to access the data, please see Abatzoglou and Brown, 2012 (https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/joc.2312) and the Northwest Knowledge Network (https://climate.northwestknowledge.net/MACA/). We used the MACAv2- Metadata monthly dataset; monthly precipitation values (mm) were summed over the season of interest (annual, winter, or summer). Absolute and percent change were then calculated between the historical and future time periods.Raster data are also available for download from RMRS site (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/categories/us-raster-layers.html), along with pdf maps and detailed metadata (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/downloads/NationalForestClimateChangeMapsMetadata.pdf).

  13. d

    Data from: Attributes for NHDPlus Catchments (Version 1.1) for the...

    • catalog.data.gov
    • data.usgs.gov
    • +3more
    Updated Nov 28, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Attributes for NHDPlus Catchments (Version 1.1) for the Conterminous United States: 30-Year Average Annual Precipitation, 1971-2000 [Dataset]. https://catalog.data.gov/dataset/attributes-for-nhdplus-catchments-version-1-1-for-the-conterminous-united-states-30-y-1971-131eb
    Explore at:
    Dataset updated
    Nov 28, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Contiguous United States, United States
    Description

    This data set represents the 30-year (1971-2000) average annual precipitation in millimeters multiplied by 100 compiled for every catchment of NHDPlus for the conterminous United States. The source data were the "United States Average Monthly or Annual Precipitation, 1971 - 2000" raster dataset produced by the PRISM Group at Oregon State University. The NHDPlus Version 1.1 is an integrated suite of application-ready geospatial datasets that incorporates many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,00-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first widely used in New England, and thus referred to as "the New England Method." This technique involves "burning in" the 1:100,000-scale NHD and when available building "walls" using the National Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. Over the past two years, an interdisciplinary team from the U.S. Geological Survey (USGS), and the U.S. Environmental Protection Agency (USEPA), and contractors, found that this method produces the best quality NHD catchments using an automated process (USEPA, 2007). The NHDPlus dataset is organized by 18 Production Units that cover the conterminous United States. The NHDPlus version 1.1 data are grouped by the U.S. Geologic Survey's Major River Basins (MRBs, Crawford and others, 2006). MRB1, covering the New England and Mid-Atlantic River basins, contains NHDPlus Production Units 1 and 2. MRB2, covering the South Atlantic-Gulf and Tennessee River basins, contains NHDPlus Production Units 3 and 6. MRB3, covering the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy River basins, contains NHDPlus Production Units 4, 5, 7 and 9. MRB4, covering the Missouri River basins, contains NHDPlus Production Units 10-lower and 10-upper. MRB5, covering the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf River basins, contains NHDPlus Production Units 8, 11 and 12. MRB6, covering the Rio Grande, Colorado and Great Basin River basins, contains NHDPlus Production Units 13, 14, 15 and 16. MRB7, covering the Pacific Northwest River basins, contains NHDPlus Production Unit 17. MRB8, covering California River basins, contains NHDPlus Production Unit 18.

  14. s

    Western US Mean Annual Precipitation

    • cinergi.sdsc.edu
    Updated Jan 1, 1900
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wetlands Reserve Program (1900). Western US Mean Annual Precipitation [Dataset]. http://cinergi.sdsc.edu/geoportal/rest/metadata/item/e7dbd0572a684862aeb2cf2f95e2eb6a/html
    Explore at:
    Dataset updated
    Jan 1, 1900
    Authors
    Wetlands Reserve Program
    Area covered
    Description

    Vector dataset provides derived average monthly precipitation according to a model using point precipitation and elevation data for the 30-year period of 1961-1990.

  15. United States Maximum 5-day Rainfall: 25-year Return Level

    • ceicdata.com
    Updated Dec 8, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2022). United States Maximum 5-day Rainfall: 25-year Return Level [Dataset]. https://www.ceicdata.com/en/united-states/environmental-climate-risk/maximum-5day-rainfall-25year-return-level
    Explore at:
    Dataset updated
    Dec 8, 2022
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2050
    Area covered
    United States
    Description

    United States Maximum 5-day Rainfall: 25-year Return Level data was reported at 9.986 mm in 2050. United States Maximum 5-day Rainfall: 25-year Return Level data is updated yearly, averaging 9.986 mm from Dec 2050 (Median) to 2050, with 1 observations. The data reached an all-time high of 9.986 mm in 2050 and a record low of 9.986 mm in 2050. United States Maximum 5-day Rainfall: 25-year Return Level data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Environmental: Climate Risk. A 25-year return level of the 5-day cumulative precipitation is the maximum precipitation sum over any 5-day period that can be expected once in an average 25-year period.;World Bank, Climate Change Knowledge Portal (https://climateknowledgeportal.worldbank.org);;

  16. d

    Average Annual Precipitation (PRISM model) 1961 - 1990

    • search.dataone.org
    • catalog.data.gov
    • +1more
    Updated Dec 1, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Chris Daly, Spatial Climate Analysis Service; George Taylor, the Oregon Climate Service at Oregon State University (2016). Average Annual Precipitation (PRISM model) 1961 - 1990 [Dataset]. https://search.dataone.org/view/c454b82d-4d5e-4cf2-9528-f43fce2584d4
    Explore at:
    Dataset updated
    Dec 1, 2016
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    Chris Daly, Spatial Climate Analysis Service; George Taylor, the Oregon Climate Service at Oregon State University
    Time period covered
    Jan 1, 1961 - Dec 31, 1990
    Area covered
    Variables measured
    FID, AREA, Area, RANGE, Range, Shape, PERIMETER, Perimeter, PRISM0M020
    Description

    This map layer shows polygons of average annual precipitation in the contiguous United States, for the climatological period 1961-1990. Parameter-elevation Regressions on Independent Slopes Model (PRISM) derived raster data is the underlying data set from which the polygons and vectors were created. PRISM is an analytical model that uses point data and a digital elevation model (DEM) to generate gridded estimates of annual, monthly and event-based climatic parameters.

  17. c

    Change factors for the 2- to 100-year daily (24-hour) extreme rainfall...

    • kilthub.cmu.edu
    • search.datacite.org
    txt
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tania Lopez-Cantu (2023). Change factors for the 2- to 100-year daily (24-hour) extreme rainfall storms for the Continental United States from downscaled climate projections [Dataset]. http://doi.org/10.1184/R1/12148932.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    Carnegie Mellon University
    Authors
    Tania Lopez-Cantu
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    This dataset contains change factors for the 2- to 100-year daily (24-hour) extreme rainfall storms for the Continental United States from publicly available downscaled climate projections, namely BCCAv.2, LOCA, MACA and NA-CORDEX data sets. Change factors were estimated as the ratio between the historical (period between1950-2005) climate simulations of extreme rainfall and the future (period between 2044-2099) climate simulations of rainfall depths corresponding to the average recurrence interval (e.g. 2-, 5-year). These change factors were computed using the Generalized Extreme Value Distribution, which is widely used to describe rainfall extremes.This data archive was prepared as part of the outputs of the published article Lopez‐Cantu, T., Prein, A. F., & Samaras, C. (2020). Uncertainties in Future U.S. Extreme Precipitation from Downscaled Climate Projections. Geophysical Research Letters. https://doi.org/10.1029/2019GL086797. When using the data in this archive, citation must be given to the original article.

  18. d

    30 year (1981 - 2010) annual average of daily intensity of precipitation for...

    • catalog.data.gov
    • data.usgs.gov
    • +3more
    Updated Jul 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). 30 year (1981 - 2010) annual average of daily intensity of precipitation for a rain event for the Conterminous United States and District of Columbia [Dataset]. https://catalog.data.gov/dataset/30-year-1981-2010-annual-average-of-daily-intensity-of-precipitation-for-a-rain-event-for-
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Washington, Contiguous United States, United States
    Description

    This metadata record describes the average daily precipitation intensity for rain events during the 30-year period 1981 – 2010 for the conterminous United States. A rain event is defined as a period when the number of consecutive days with precipitation equals or exceeds 1 millimeter. Daily precipitation intensity is defined as the amount of precipitation over the duration of a rain event divided by the number of days in a rain event. The source data was produced and acquired from DAYMET (2018) and is presented here as a 1-kilometer resolution GeoTIFF file.

  19. W

    Precipitation for Idaho; Mean Annual (1961-90)

    • cloud.csiss.gmu.edu
    • catalog.data.gov
    • +3more
    csv, esri rest +4
    Updated Dec 9, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States (2019). Precipitation for Idaho; Mean Annual (1961-90) [Dataset]. https://cloud.csiss.gmu.edu/uddi/dataset/precipitation-for-idaho-mean-annual-1961-90
    Explore at:
    geojson, csv, zip, html, esri rest, kmlAvailable download formats
    Dataset updated
    Dec 9, 2019
    Dataset provided by
    United States
    License

    https://geocatalog-uidaho.hub.arcgis.com/datasets/c72fb71c196944b7879b59122c675b3e_0/license.jsonhttps://geocatalog-uidaho.hub.arcgis.com/datasets/c72fb71c196944b7879b59122c675b3e_0/license.json

    Area covered
    Idaho
    Description
    These data represent mean annual precipitation (in inches) for Idaho for the climatological period 1961-90. Average annual precipitation is the average of the annual amount of precipitation for a location over a year. Data used to delineate these boundaries are from Idaho weather stations (1961-90).

    Source data for this web service can be downloaded from https://insideidaho.org/data/ago/ics/ppt_id_ics.zip.


  20. Major U.S. cities with the most rainy days 1981-2010

    • statista.com
    Updated Dec 31, 2011
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2011). Major U.S. cities with the most rainy days 1981-2010 [Dataset]. https://www.statista.com/statistics/226747/us-cities-with-the-most-rainy-days/
    Explore at:
    Dataset updated
    Dec 31, 2011
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    1981 - 2010
    Area covered
    United States
    Description

    This statistic shows the ten major U.S. cities with the most rainy days per year between 1981 and 2010. Rochester, New York, had an average of about 167 days per year with precipitation. The sunniest city in the U.S. was Phoenix, Arizona, with an average of 85 percent of sunshine per day.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Annual precipitation volume in the United States 1900-2024 [Dataset]. https://www.statista.com/statistics/504400/volume-of-precipitation-in-the-us/
Organization logo

Annual precipitation volume in the United States 1900-2024

Explore at:
3 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jul 10, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
United States
Description

In 2024, the United States saw some **** inches of precipitation. The main forms of precipitation include hail, drizzle, rain, sleet, and snow. Since the turn of the century, 2012 was the driest year on record with an annual precipitation of **** inches. Regional disparities in rainfall Louisiana emerged as the wettest state in the U.S. in 2024, recording a staggering ***** inches (*** meters) of precipitation—nearly **** inches (ca. ** centimeters) above its historical average. In stark contrast, Nevada received only **** inches (ca. ** centimeters), underscoring the vast differences in rainfall across the nation. These extremes illustrate the uneven distribution of precipitation, with the southwestern states experiencing increasingly dry conditions that experts predict will worsen in the coming years. Drought concerns persist Drought remains a significant concern in many parts of the country. The Palmer Drought Severity Index (PDSI) for the contiguous United States stood at ***** in December 2024, indicating moderate to severe drought conditions. This reading follows three years of generally negative PDSI values, with the most extreme drought recorded in December 2023 at *****.

Search
Clear search
Close search
Google apps
Main menu