41 datasets found
  1. United States: highest point in each state or territory

    • statista.com
    Updated Aug 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). United States: highest point in each state or territory [Dataset]. https://www.statista.com/statistics/203932/highest-points-in-the-united-states-by-state/
    Explore at:
    Dataset updated
    Aug 8, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2005
    Area covered
    United States
    Description

    At 20,310 feet (6.2km) above sea level, the highest point in the United States is Denali, Alaska (formerly known as Mount McKinley). The highest point in the contiguous United States is Mount Whitney, in the Sierra Nevada mountain range in California; followed by Mount Elbert, Colorado - the highest point in the Rocky Mountains. When looking at the highest point in each state, the 13 tallest peaks are all found in the western region of the country, while there is much more diversity across the other regions and territories.

    Despite being approximately 6,500 feet lower than Denali, Hawaii's Mauna Kea is sometimes considered the tallest mountain (and volcano) on earth. This is because its base is well below sea level - the mountain has a total height of 33,474 feet, which is almost 4,500 feet higher than Mount Everest.

  2. United States: average elevation in each state or territory as of 2005

    • statista.com
    Updated Aug 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). United States: average elevation in each state or territory as of 2005 [Dataset]. https://www.statista.com/statistics/1325529/lowest-points-united-states-state/
    Explore at:
    Dataset updated
    Aug 9, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2005
    Area covered
    United States
    Description

    The United States has an average elevation of roughly 2,500 feet (763m) above sea level, however there is a stark contrast in elevations across the country. Highest states Colorado is the highest state in the United States, with an average elevation of 6,800 feet (2,074m) above sea level. The 10 states with the highest average elevation are all in the western region of the country, as this is, by far, the most mountainous region in the country. The largest mountain ranges in the contiguous western states are the Rocky Mountains, Sierra Nevada, and Cascade Range, while the Appalachian Mountains is the longest range in the east - however, the highest point in the U.S. is Denali (Mount McKinley), found in Alaska. Lowest states At just 60 feet above sea level, Delaware is the state with the lowest elevation. Delaware is the second smallest state, behind Rhode Island, and is located on the east coast. Larger states with relatively low elevations are found in the southern region of the country - both Florida and Louisiana have an average elevation of just 100 feet (31m) above sea level, and large sections of these states are extremely vulnerable to flooding and rising sea levels, as well as intermittent tropical storms.

  3. United States: lowest point in each state or territory as of 2005

    • statista.com
    Updated Aug 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). United States: lowest point in each state or territory as of 2005 [Dataset]. https://www.statista.com/statistics/1325443/lowest-points-united-states-state/
    Explore at:
    Dataset updated
    Aug 9, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2005
    Area covered
    United States
    Description

    At 282 feet below sea level, Death Valley in the Mojave Desert, California is the lowest point of elevation in the United States (and North America). Coincidentally, Death Valley is less than 85 miles from Mount Whitney, the highest point of elevation in the mainland United States. Death Valley is one of the hottest places on earth, and in 1913 it was the location of the highest naturally occurring temperature ever recorded on Earth (although some meteorologists doubt its legitimacy). New Orleans Louisiana is the only other state where the lowest point of elevation was below sea level. This is in the city of New Orleans, on the Mississippi River Delta. Over half of the city (up to two-thirds) is located below sea level, and recent studies suggest that the city is sinking further - man-made efforts to prevent water damage or flooding are cited as one reason for the city's continued subsidence, as they prevent new sediment from naturally reinforcing the ground upon which the city is built. These factors were one reason why New Orleans was so severely impacted by Hurricane Katrina in 2005 - the hurricane itself was one of the deadliest in history, and it destroyed many of the levee systems in place to prevent flooding, and the elevation exacerbated the damage caused. Highest low points The lowest point in five states is over 1,000 feet above sea level. Colorado's lowest point, at 3,315 feet, is still higher than the highest point in 22 states or territories. For all states whose lowest points are found above sea level, these points are located in rivers, streams, or bodies of water.

  4. Prince William Sound, Alaska 8/3 Arc-second MHHW Coastal Digital Elevation...

    • datadiscoverystudio.org
    • s.cnmilf.com
    • +2more
    netcdf v.4 classic
    Updated Apr 20, 2009
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    DOC/NOAA/NESDIS/NGDC > National Geophysical Data Center, NESDIS, NOAA, U.S. Department of Commerce (2009). Prince William Sound, Alaska 8/3 Arc-second MHHW Coastal Digital Elevation Model [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/c45e262def274fedbb2719b3708be778/html
    Explore at:
    netcdf v.4 classicAvailable download formats
    Dataset updated
    Apr 20, 2009
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    United States Department of Commercehttp://www.commerce.gov/
    National Environmental Satellite, Data, and Information Service
    Authors
    DOC/NOAA/NESDIS/NGDC > National Geophysical Data Center, NESDIS, NOAA, U.S. Department of Commerce
    Area covered
    Description

    NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) to support individual coastal States as part of the National Tsunami Hazard Mitigation Program's (NTHMP) efforts to improve community preparedness and hazard mitigation. These integrated bathymetric-topographic DEMs are used to support tsunami and coastal inundation mapping. Bathymetric, topographic, and shoreline data used in DEM compilation are obtained from various sources, including NGDC, the U.S. National Ocean Service (NOS), the U.S. Geological Survey (USGS), the U.S. Army Corps of Engineers (USACE), the Federal Emergency Management Agency (FEMA), and other federal, state, and local government agencies, academic institutions, and private companies. DEMs are referenced to various vertical and horizontal datums depending on the specific modeling requirements of each State. For specific datum information on each DEM, refer to the appropriate DEM documentation. Cell sizes also vary depending on the specification required by modelers in each State, but typically range from 8/15 arc-second (~16 meters) to 8 arc-seconds (~240 meters).The DEM Global Mosaic is an image service providing access to bathymetric/topographic digital elevation models stewarded at NOAA's National Centers for Environmental Information (NCEI), along with the global GEBCO_2014 grid: http://www.gebco.net/data_and_products/gridded_bathymetry_data. NCEI builds and distributes high-resolution, coastal digital elevation models (DEMs) that integrate ocean bathymetry and land topography to support NOAA's mission to understand and predict changes in Earth's environment, and conserve and manage coastal and marine resources to meet our Nation's economic, social, and environmental needs. They can be used for modeling of coastal processes (tsunami inundation, storm surge, sea-level rise, contaminant dispersal, etc.), ecosystems management and habitat research, coastal and marine spatial planning, and hazard mitigation and community preparedness. This service is a general-purpose global, seamless bathymetry/topography mosaic. It combines DEMs from a variety of near sea-level vertical datums, such as mean high water (MHW), mean sea level (MSL), and North American Vertical Datum of 1988 (NAVD88). Elevation values have been rounded to the nearest meter, with DEM cell sizes going down to 1 arc-second. Higher-resolution DEMs, with greater elevation precision, are available in the companion NAVD88: http://noaa.maps.arcgis.com/home/item.html?id=e9ba2e7afb7d46cd878b34aa3bfce042 and MHW: http://noaa.maps.arcgis.com/home/item.html?id=3bc7611c1d904a5eaf90ecbec88fa799 mosaics. By default, the DEMs are drawn in order of cell size, with higher-resolution grids displayed on top of lower-resolution grids. If overlapping DEMs have the same resolution, the newer one is shown. Please see NCEI's corresponding DEM Footprints map service: http://noaa.maps.arcgis.com/home/item.html?id=d41f39c8a6684c54b62c8f1ab731d5ad for polygon footprints and more information about the individual DEMs used to create this composite view. In this visualization, the elevations/depths are displayed using this color ramp: http://gis.ngdc.noaa.gov/viewers/images/dem_color_scale.png.A map service showing the location and coverage of land and seafloor digital elevation models (DEMs) available from NOAA's National Centers for Environmental Information (NCEI). NCEI builds and distributes high-resolution, coastal digital elevation models (DEMs) that integrate ocean bathymetry and land topography to support NOAA's mission to understand and predict changes in Earth's environment, and conserve and manage coastal and marine resources to meet our Nation's economic, social, and environmental needs. They can be used for modeling of coastal processes (tsunami inundation, storm surge, sea-level rise, contaminant dispersal, etc.), ecosystems management and habitat research, coastal and marine spatial planning, and hazard mitigation and community preparedness. Layers available in the map service: Layers 1-4: DEMs by Category (includes various DEMs, both hosted at NCEI, and elsewhere on the web); Layers 6-11: NCEI DEM Projects (DEMs hosted at NCEI, color-coded by project); Layer 12: All NCEI Bathymetry DEMs (All bathymetry or bathy-topo DEMs hosted at NCEI).

  5. United States US: Urban Population Living in Areas Where Elevation is Below...

    • ceicdata.com
    Updated Mar 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2023). United States US: Urban Population Living in Areas Where Elevation is Below 5 meters: % of Total Population [Dataset]. https://www.ceicdata.com/en/united-states/land-use-protected-areas-and-national-wealth/us-urban-population-living-in-areas-where-elevation-is-below-5-meters--of-total-population
    Explore at:
    Dataset updated
    Mar 15, 2023
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 1990 - Dec 1, 2010
    Area covered
    United States
    Description

    United States US: Urban Population Living in Areas Where Elevation is Below 5 meters: % of Total Population data was reported at 2.264 % in 2010. This records an increase from the previous number of 2.246 % for 2000. United States US: Urban Population Living in Areas Where Elevation is Below 5 meters: % of Total Population data is updated yearly, averaging 2.264 % from Dec 1990 (Median) to 2010, with 3 observations. The data reached an all-time high of 2.329 % in 1990 and a record low of 2.246 % in 2000. United States US: Urban Population Living in Areas Where Elevation is Below 5 meters: % of Total Population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s USA – Table US.World Bank: Land Use, Protected Areas and National Wealth. Urban population below 5m is the percentage of the total population, living in areas where the elevation is 5 meters or less.; ; Center for International Earth Science Information Network (CIESIN)/Columbia University. 2013. Urban-Rural Population and Land Area Estimates Version 2. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). http://sedac.ciesin.columbia.edu/data/set/lecz-urban-rural-population-land-area-estimates-v2.; Weighted Average;

  6. d

    National High Altitude Photography

    • catalog.data.gov
    • datasets.ai
    • +4more
    Updated Apr 11, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    DOI/USGS/EROS (2025). National High Altitude Photography [Dataset]. https://catalog.data.gov/dataset/national-high-altitude-photography
    Explore at:
    Dataset updated
    Apr 11, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    The National High Altitude Photography (NHAP) program, which was operated from 1980 - 1989, was coordinated by the U.S. Geological Survey as an interagency project to eliminate duplicate photography in various Government programs. The aim of the program was to cover the 48 conterminous states of the USA over a 5-year span. In the NHAP program, black-and-white and color-infrared aerial photographs were obtained on 9-inch film from an altitude of 40,000 feet above mean terrain elevation and are centered over USGS 7.5-minute quadrangles. The color-infrared photographs are at a scale of 1:58,000 (1 inch equals about .9 miles) and the black-and-white photographs are at a scale of 1:80,000 (1 inch equals about 1.26 miles).

  7. a

    Surging Seas: Risk Zone Map

    • amerigeo.org
    • data.amerigeoss.org
    Updated Feb 18, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AmeriGEOSS (2019). Surging Seas: Risk Zone Map [Dataset]. https://www.amerigeo.org/datasets/surging-seas-risk-zone-map
    Explore at:
    Dataset updated
    Feb 18, 2019
    Dataset authored and provided by
    AmeriGEOSS
    Description

    IntroductionClimate Central’s Surging Seas: Risk Zone map shows areas vulnerable to near-term flooding from different combinations of sea level rise, storm surge, tides, and tsunamis, or to permanent submersion by long-term sea level rise. Within the U.S., it incorporates the latest, high-resolution, high-accuracy lidar elevation data supplied by NOAA (exceptions: see Sources), displays points of interest, and contains layers displaying social vulnerability, population density, and property value. Outside the U.S., it utilizes satellite-based elevation data from NASA in some locations, and Climate Central’s more accurate CoastalDEM in others (see Methods and Qualifiers). It provides the ability to search by location name or postal code.The accompanying Risk Finder is an interactive data toolkit available for some countries that provides local projections and assessments of exposure to sea level rise and coastal flooding tabulated for many sub-national districts, down to cities and postal codes in the U.S. Exposure assessments always include land and population, and in the U.S. extend to over 100 demographic, economic, infrastructure and environmental variables using data drawn mainly from federal sources, including NOAA, USGS, FEMA, DOT, DOE, DOI, EPA, FCC and the Census.This web tool was highlighted at the launch of The White House's Climate Data Initiative in March 2014. Climate Central's original Surging Seas was featured on NBC, CBS, and PBS U.S. national news, the cover of The New York Times, in hundreds of other stories, and in testimony for the U.S. Senate. The Atlantic Cities named it the most important map of 2012. Both the Risk Zone map and the Risk Finder are grounded in peer-reviewed science.Back to topMethods and QualifiersThis map is based on analysis of digital elevation models mosaicked together for near-total coverage of the global coast. Details and sources for U.S. and international data are below. Elevations are transformed so they are expressed relative to local high tide lines (Mean Higher High Water, or MHHW). A simple elevation threshold-based “bathtub method” is then applied to determine areas below different water levels, relative to MHHW. Within the U.S., areas below the selected water level but apparently not connected to the ocean at that level are shown in a stippled green (as opposed to solid blue) on the map. Outside the U.S., due to data quality issues and data limitations, all areas below the selected level are shown as solid blue, unless separated from the ocean by a ridge at least 20 meters (66 feet) above MHHW, in which case they are shown as not affected (no blue).Areas using lidar-based elevation data: U.S. coastal states except AlaskaElevation data used for parts of this map within the U.S. come almost entirely from ~5-meter horizontal resolution digital elevation models curated and distributed by NOAA in its Coastal Lidar collection, derived from high-accuracy laser-rangefinding measurements. The same data are used in NOAA’s Sea Level Rise Viewer. (High-resolution elevation data for Louisiana, southeast Virginia, and limited other areas comes from the U.S. Geological Survey (USGS)). Areas using CoastalDEM™ elevation data: Antigua and Barbuda, Barbados, Corn Island (Nicaragua), Dominica, Dominican Republic, Grenada, Guyana, Haiti, Jamaica, Saint Kitts and Nevis, Saint Lucia, Saint Vincent and the Grenadines, San Blas (Panama), Suriname, The Bahamas, Trinidad and Tobago. CoastalDEM™ is a proprietary high-accuracy bare earth elevation dataset developed especially for low-lying coastal areas by Climate Central. Use our contact form to request more information.Warning for areas using other elevation data (all other areas)Areas of this map not listed above use elevation data on a roughly 90-meter horizontal resolution grid derived from NASA’s Shuttle Radar Topography Mission (SRTM). SRTM provides surface elevations, not bare earth elevations, causing it to commonly overestimate elevations, especially in areas with dense and tall buildings or vegetation. Therefore, the map under-portrays areas that could be submerged at each water level, and exposure is greater than shown (Kulp and Strauss, 2016). However, SRTM includes error in both directions, so some areas showing exposure may not be at risk.SRTM data do not cover latitudes farther north than 60 degrees or farther south than 56 degrees, meaning that sparsely populated parts of Arctic Circle nations are not mapped here, and may show visual artifacts.Areas of this map in Alaska use elevation data on a roughly 60-meter horizontal resolution grid supplied by the U.S. Geological Survey (USGS). This data is referenced to a vertical reference frame from 1929, based on historic sea levels, and with no established conversion to modern reference frames. The data also do not take into account subsequent land uplift and subsidence, widespread in the state. As a consequence, low confidence should be placed in Alaska map portions.Flood control structures (U.S.)Levees, walls, dams or other features may protect some areas, especially at lower elevations. Levees and other flood control structures are included in this map within but not outside of the U.S., due to poor and missing data. Within the U.S., data limitations, such as an incomplete inventory of levees, and a lack of levee height data, still make assessing protection difficult. For this map, levees are assumed high and strong enough for flood protection. However, it is important to note that only 8% of monitored levees in the U.S. are rated in “Acceptable” condition (ASCE). Also note that the map implicitly includes unmapped levees and their heights, if broad enough to be effectively captured directly by the elevation data.For more information on how Surging Seas incorporates levees and elevation data in Louisiana, view our Louisiana levees and DEMs methods PDF. For more information on how Surging Seas incorporates dams in Massachusetts, view the Surging Seas column of the web tools comparison matrix for Massachusetts.ErrorErrors or omissions in elevation or levee data may lead to areas being misclassified. Furthermore, this analysis does not account for future erosion, marsh migration, or construction. As is general best practice, local detail should be verified with a site visit. Sites located in zones below a given water level may or may not be subject to flooding at that level, and sites shown as isolated may or may not be be so. Areas may be connected to water via porous bedrock geology, and also may also be connected via channels, holes, or passages for drainage that the elevation data fails to or cannot pick up. In addition, sea level rise may cause problems even in isolated low zones during rainstorms by inhibiting drainage.ConnectivityAt any water height, there will be isolated, low-lying areas whose elevation falls below the water level, but are protected from coastal flooding by either man-made flood control structures (such as levees), or the natural topography of the surrounding land. In areas using lidar-based elevation data or CoastalDEM (see above), elevation data is accurate enough that non-connected areas can be clearly identified and treated separately in analysis (these areas are colored green on the map). In the U.S., levee data are complete enough to factor levees into determining connectivity as well.However, in other areas, elevation data is much less accurate, and noisy error often produces “speckled” artifacts in the flood maps, commonly in areas that should show complete inundation. Removing non-connected areas in these places could greatly underestimate the potential for flood exposure. For this reason, in these regions, the only areas removed from the map and excluded from analysis are separated from the ocean by a ridge of at least 20 meters (66 feet) above the local high tide line, according to the data, so coastal flooding would almost certainly be impossible (e.g., the Caspian Sea region).Back to topData LayersWater Level | Projections | Legend | Social Vulnerability | Population | Ethnicity | Income | Property | LandmarksWater LevelWater level means feet or meters above the local high tide line (“Mean Higher High Water”) instead of standard elevation. Methods described above explain how each map is generated based on a selected water level. Water can reach different levels in different time frames through combinations of sea level rise, tide and storm surge. Tide gauges shown on the map show related projections (see just below).The highest water levels on this map (10, 20 and 30 meters) provide reference points for possible flood risk from tsunamis, in regions prone to them.

  8. d

    High-Resolution Airborne Gravity Gradiometry, Magnetic, and Radiometric Data...

    • catalog.data.gov
    • data.usgs.gov
    • +2more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). High-Resolution Airborne Gravity Gradiometry, Magnetic, and Radiometric Data of Mountain Pass, Southeast Mojave Desert, California [Dataset]. https://catalog.data.gov/dataset/high-resolution-airborne-gravity-gradiometry-magnetic-and-radiometric-data-of-mountain-pas
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Mojave Desert, California
    Description

    A detailed airborne gravity gradiometry, magnetic, and radiometric survey of Mountain Pass, California was flown by CGG Canada Services Ltd. (CGG). The high-resolution helicopter survey was flown at a flight-line spacing of 100 and 200 m, a flight-line azimuth of 70 degrees, a nominal flight-line elevation above ground of 70 m, and consists of about 1,814 line-kilometers. Tie lines were spaced at a 1-km interval with a flight-line azimuth of 160 degrees. Data were collected using a HeliFALCON airborne gravity gradiometry system, Scintrex CS-3 cesium magnetometer, Radiation Solutions RS-500 spectrometer, and Riegl LMS-Q1401-80n laser scanner and processed by CGG. Gravity gradiometry data include corrections for residual aircraft motion, self gradient, terrain corrections, and tie-line and micro-levelling. Magnetic data were corrected by the contractor for diurnal variations of the Earth’s magnetic field, tie-line leveled, micro-leveled, and an International Geomagnetic Reference Field of the Earth was removed. Radiometric data include corrections for aircraft and cosmic background radiation, radon background, Compton scattering effects, and variations in altitude. Data are provided in ASCII (.csv) and Geosoft database (.gdb) format, database channels and descriptions are listed in the survey report, and grids of gravity and hillshade are in ASCII Grid eXchange Format (.gxf). Maps and grids of magnetic and radiometric data were released by Ponce and Denton (2018a-d). References: Ponce, D.A., and Denton, K.M., 2018a, Aeromagnetic map of Mountain Pass and vicinity, California and Nevada: U.S. Geological Survey Scientific Investigations Map 3412-B, 6 p., 1 pl., scale 1:62,500, https://doi.org/10.3133/sim3412B. Ponce, D.A., and Denton, K.M., 2018b, High-resolution aeromagnetic survey of Mountain Pass, California: U.S. Geological Survey data release, https://doi.org/doi:10.5066/P92XVOOF. Ponce, D.A., and Denton, K.M., 2018c, Airborne radiometric maps of Mountain Pass, California: U.S. Geological Survey Scientific Investigations Map 3412-C, 6 p., 1 pl., scale 1:62,500, https://doi.org/10.3133/sim3412C. Ponce, D.A., and Denton, K.M., 2018d, High-resolution airborne radiometric survey of Mountain Pass, California: U.S. Geological Survey data release, https://doi.org/10.5066/P9ENLS6D.

  9. Cities with the highest altitudes in the world

    • statista.com
    Updated Jun 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Cities with the highest altitudes in the world [Dataset]. https://www.statista.com/statistics/509341/highest-cities-in-the-world/
    Explore at:
    Dataset updated
    Jun 26, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2020
    Area covered
    World
    Description

    The highest city in the world with a population of more than one million is La Paz. The Capital of Bolivia sits ***** meters above sea level, and is more than 1,000 meters higher than the second-ranked city, Quito. La Paz is also higher than Mt. Fuji in Japan, which has a height of 3,776 meters. Many of the world's largest cities are located in South America. The only city in North America that makes the top 20 list is Denver, Colorado, which has an altitude of ***** meters.

  10. w

    National Elevation Dataset for the Western United States

    • data.wu.ac.at
    • search.dataone.org
    zip
    Updated May 12, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of the Interior (2018). National Elevation Dataset for the Western United States [Dataset]. https://data.wu.ac.at/schema/data_gov/YzM5MGU5ZGYtZTA4ZC00MjM0LWIyYjAtM2Y2YjNmYjAyNzgz
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 12, 2018
    Dataset provided by
    Department of the Interior
    Area covered
    5ae25aa72d08dc4a0d89c63bf7c3a3b05f31656e
    Description

    Digital elevation model used for the conservation assessment of Greater Sage-grouse and sagebrush habitat conducted by the Western Association of Fish and Wildlife Agencies. Digital elevation models were downloaded from the USGS National Elevation Dataset (NED) which was developed by merging the highest-resolution, best quality elevation data available across the United States into a seamless raster format to provide 1:24,000-scale Digital Elevation Model (DEM) data for the conterminous US.

  11. A

    1 meter Digital Elevation Models (DEMs) - USGS National Map 3DEP...

    • data.amerigeoss.org
    • data.usgs.gov
    • +4more
    xml
    Updated Aug 9, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States (2022). 1 meter Digital Elevation Models (DEMs) - USGS National Map 3DEP Downloadable Data Collection [Dataset]. https://data.amerigeoss.org/dataset/1-meter-digital-elevation-models-dems-usgs-national-map-3dep-downloadable-data-collection-29fa0
    Explore at:
    xmlAvailable download formats
    Dataset updated
    Aug 9, 2022
    Dataset provided by
    United States
    Description

    This is a tiled collection of the 3D Elevation Program (3DEP) and is one meter resolution.The 3DEP data holdings serve as the elevation layer of The National Map, and provide foundational elevation information for earth science studies and mapping applications in the United States. Scientists and resource managers use 3DEP data for hydrologic modeling, resource monitoring, mapping and visualization, and many other applications. The elevations in this DEM represent the topographic bare-earth surface. USGS standard one-meter DEMs are produced exclusively from high resolution light detection and ranging (lidar) source data of one-meter or higher resolution. One-meter DEM surfaces are seamless within collection projects, but, not necessarily seamless across projects. The spatial reference used for tiles of the one-meter DEM within the conterminous United States (CONUS) is Universal Transverse Mercator (UTM) in units of meters, and in conformance with the North American Datum of 1983 (NAD83). All bare earth elevation values are in meters and are referenced to the North American Vertical Datum of 1988 (NAVD88). Each tile is distributed in the UTM Zone in which it lies. If a tile crosses two UTM zones, it is delivered in both zones. The one-meter DEM is the highest resolution standard DEM offered in the 3DEP product suite. Other 3DEP products are nationally seamless DEMs in resolutions of 1/3, 1, and 2 arc seconds. These seamless DEMs were referred to as the National Elevation Dataset (NED) from about 2000 through 2015 at which time they became the seamless DEM layers under the 3DEP program and the NED name and system were retired. Other 3DEP products include five-meter DEMs in Alaska as well as various source datasets including the lidar point cloud and interferometric synthetic aperture radar (Ifsar) digital surface models and intensity images. All 3DEP products are public domain.

  12. d

    High Accuracy Elevation Data - truck

    • search.dataone.org
    • datadiscoverystudio.org
    • +1more
    Updated Dec 1, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Greg Desmond (2016). High Accuracy Elevation Data - truck [Dataset]. https://search.dataone.org/view/369fbd0c-1a1d-47e4-9efb-973eb3cc5974
    Explore at:
    Dataset updated
    Dec 1, 2016
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    Greg Desmond
    Time period covered
    Jan 1, 1995 - Jan 1, 1996
    Area covered
    Description

    The High Accuracy Elevation Data Project collected elevation data (meters) on a 400 meter topographic grid with a vertical accuracy of +/- 15 centimeters to define the topography in South Florida. The data are referenced to the horizontal datum North American Datum 1983 (NAD 83) and the vertical datum North American Vertical Datum 1988 (NAVD 88). The High Accuracy Elevation Data Project began with a pilot study in FY 1995 to determine if the then state-of-the-art GPS technology could be used to perform a topographic survey that would meet the vertical accuracy requirements of the hydrologic modeling community. The initial testing platform was from a truck and met the accuracy requirements. Data were collected in areas near Homestead, Florida. The data are available for the areas shown on the USGS High Accuracy Elevation Data graphic at http://sofia.usgs.gov/exchange/desmond/desmondelev.html.

  13. d

    High-resolution digital elevation dataset for Mount Baker and vicinity,...

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). High-resolution digital elevation dataset for Mount Baker and vicinity, Washington, based on lidar surveys of 2015 [Dataset]. https://catalog.data.gov/dataset/high-resolution-digital-elevation-dataset-for-mount-baker-and-vicinity-washington-based-on
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    U.S. Geological Survey
    Area covered
    Washington, Mount Baker
    Description

    Snow and ice-covered Mount Baker in northern Washington, is the highest peak in the North Cascades (3,286 meters or 10,781 feet) and the northernmost volcano in the conterminous United States. It is the only U.S. volcano in the Cascade Range that has been affected by both alpine and continental glaciation. The stratovolcano is composed mainly of andesite lava flows and breccias formed prior to the most recent major glaciation (Fraser Glaciation), which occurred between about 25,000 and 10,000 years ago. The most recent major eruption at Mount Baker (6,700 years ago) was accompanied by a major flank-collapse event that caused lahars to rush down the Nooksack River and then eastward into Baker Lake. In 1975-76, Sherman Crater immediately south of the summit, exhibited signs of renewed volcanic activity as a result of magma intruding into the volcano but not erupting. The DEM (digital elevation model) of Mount Baker covers approximately 201 square miles and is the product of high-precision airborne lidar (Light Detection and Ranging) surveys performed between 08/26/15 and 09/27/15 by Quantum Spatial under contract with the USGS. The DEM, represents the ground surface beneath forest cover. This release includes two raster datasets in .tif format, (1) a DEM dataset (mt_baker_dem.zip, 1.40 GB), and (2) a hillshade raster (mt_baker_hillshade.zip, 573 MB).

  14. Census of Population and Housing, 2000 [United States]: 1998 Dress...

    • icpsr.umich.edu
    ascii
    Updated Jan 12, 2006
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States. Bureau of the Census (2006). Census of Population and Housing, 2000 [United States]: 1998 Dress Rehearsal, P.L. 94-171 Redistricting Data, Geographic Files for 11 Counties in South Carolina, Sacramento, California, and Menominee County, Wisconsin [Dataset]. http://doi.org/10.3886/ICPSR02913.v1
    Explore at:
    asciiAvailable download formats
    Dataset updated
    Jan 12, 2006
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    Authors
    United States. Bureau of the Census
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/2913/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/2913/terms

    Time period covered
    1998
    Area covered
    Sacramento, South Carolina, California, Wisconsin, United States, South Carolina
    Description

    The 1998 Dress Rehearsal was conducted as a prelude to the United States Census of Population and Housing, 2000, in the following locations: (1) Columbia, South Carolina, and surrounding areas, including the town of Irmo and the counties of Chester, Chesterfield, Darlington, Fairfield, Kershaw, Lancaster, Lee, Marlboro, Newberry, Richland, and Union, (2) Sacramento, California, and (3) Menominee County, Wisconsin, including the Menominee American Indian Reservation. This collection contains map files showing various levels of geography (in the form of Census Tract Outline Maps, Voting District/State Legislative District Outline Maps, and County Block Maps), TIGER/Line digital files, and Corner Point files for the Census 2000 Dress Rehearsal sites. The Corner Point data files contain the bounding latitude and longitude coordinates for each individual map sheet of the 1998 Dress Rehearsal Public Law (P.L.) 94-171 map products. These files include a sheet identifier, minimum and maximum longitude, minimum and maximum latitude, and the map scale (integer value) for each map sheet. The latitude and longitude coordinates are in decimal degrees and expressed as integer values with six implied decimal places. There is a separate Corner Point File for each of the three map types: County Block Map, Census Tract Outline Map, and Voting District/State Legislative District Outline Map. Each of the three map file types is provided in two formats: Portable Document Format (PDF), for viewing, and Hewlett-Packard Graphics Language (HP-GL) format, for plotting. The County Block Maps show the greatest detail and the most complete set of geographic information of all the maps. These large-scale maps depict the smallest geographic entities for which the Census Bureau presents data -- the census blocks -- by displaying the features that delineate them and the numbers that identify them. These maps show the boundaries, names, and codes for American Indian/Alaska Native areas, county subdivisions, places, census tracts, and, for this series, the geographic entities that the states delineated in Phase 2, Voting District Project, of the Redistricting Data Program. The HP-GL version of the County Block Maps is broken down into index maps and map sheets. The map sheets cover a small area, and the index maps are composed of multiple map sheets, showing the entire area. The intent of the County Block Map series is to provide a map for each county on the smallest possible number of map sheets at the maximum practical scale, dependent on the area size of the county and the density of the block pattern. The latter affects the display of block numbers and feature identifiers. The Census Tract Outline Maps show the boundaries and numbers of census tracts, and name the features underlying the boundaries. These maps also show the boundaries and names of counties, county subdivisions, and places. They identify census tracts in relation to governmental unit boundaries. The mapping unit is the county. These large-format maps are produced to support the P.L. 94-171 program and all other 1998 Dress Rehearsal data tabulations. The Voting District/State Legislative District Outline Maps show the boundaries and codes for voting districts as delineated by the states in Phase 2, Voting District Project, of the Redistricting Data Program. The features underlying the voting district boundaries are shown, as well as the names of these features. Additionally, for states that submit the information, these maps show the boundaries and codes for state legislative districts and their underlying features. These maps also show the boundaries of and names of American Indian/Alaska Native areas, counties, county subdivisions, and places. The scale of the district maps is optimized to keep the number of map sheets for each area to a minimum, but the scale and number of map sheets will vary by the area size of the county and the voting districts and state legislative districts delineated by the states. The Census 2000 Dress Rehearsal TIGER/Line Files consist of line segments representing physical features and governmental and statistical boundaries. The files contain information distributed over a series of record types for the spatial objects of a county. These TIGER/Line Files are an extract of selected geographic and cartographic information from the Census TIGER (Topological

  15. a

    National Hydrography Dataset - Plus HR

    • the-idaho-map-open-data-idaho.hub.arcgis.com
    Updated Jan 1, 2009
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of Idaho (2009). National Hydrography Dataset - Plus HR [Dataset]. https://the-idaho-map-open-data-idaho.hub.arcgis.com/maps/86ef77e7345a4e71a40d06ac910ac877
    Explore at:
    Dataset updated
    Jan 1, 2009
    Dataset authored and provided by
    State of Idaho
    Area covered
    Description

    The USGS NHDPlus High Resolution service, NHDPlus_HR, a part of The National Map, is a comprehensive set of digital spatial data comprising a nationally seamless network of stream reaches, elevation-based catchment areas, flow surfaces, and value-added attributes that enhance stream network navigation, analysis, and data display. NHDPlus High Resolution (NHDPlus HR) is a scalable geospatial hydrography framework built from the high resolution National Hydrography Dataset, nationally complete Watershed The USGS NHDPlus High Resolution service, NHDPlus_HR, a part of The National Map, is a comprehensive set of digital spatial data comprising a nationally seamless network of stream reaches, elevation-based catchment areas, flow surfaces, and value-added attributes that enhance stream network navigation, analysis, and data display. NHDPlus High Resolution (NHDPlus HR) is a scalable geospatial hydrography framework built from the high resolution National Hydrography Dataset, nationally complete Watershed Boundary Dataset, and 3D Elevation Program (3DEP) ? arc-second (10 meter ground spacing) digital elevation model data. The National Map download client allows free downloads of public domain NHDPlus HR data in Esri File Geodatabase format. For additional information on the NHDPlus HR, go to https://www.usgs.gov/national-hydrography/national-hydrography-dataset. See https://apps.nationalmap.gov/help/ for assistance with The National Map viewer, download client, services, or metadata.Use Constraints: _ None. All data are open and non-proprietary. However, users should be aware that temporal changes may have occurred since this dataset was collected and that some parts of this data may no longer represent actual conditions. Users should not use this data for critical applications without a full awareness of its limitations. This dataset is not intended to be used for site-specific regulatory determinations. Acknowledgment of the U.S. Geological Survey would be appreciated for products derived from these data.

  16. Highest mountains in Africa

    • statista.com
    Updated May 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Highest mountains in Africa [Dataset]. https://www.statista.com/statistics/1237791/highest-mountains-in-africa/
    Explore at:
    Dataset updated
    May 9, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Africa
    Description

    Mount Kilimanjaro is the highest mountain in Africa. Located in Tanzania, it reaches the highest summit at 5,895 meters. This highest peak is the Kibo, one of Kilimanjaro’s volcanic cones, with Mawenzi and Shira. Mount Kenya is the second-highest mountain on the African continent, with a height of 5,199 meters. Mount Stanley, located between Uganda and the Democratic Republic of the Congo, ranks third and extends to 5,109 meters.

    Mount Kilimanjaro’s tourist surge: rebounding from COVID-19 

    Mount Kilimanjaro is a popular tourist attraction. In the 2022/23 season, approximately 47,200 tourists visited the national park hosting the famous mountain. This was a steep increase from the previous two seasons, which were negatively affected by COVID-19-related travel restrictions. Moreover, the fee for doing a technical climb of the mountain was 750 U.S. dollars per day. However, citizens of the East African Community benefited from their country’s membership in this community and could pay far less as a result.

    Exploring Africa’s leading tourist gems 

    Africa is home to some of the most revered natural attractions, particularly its safari parks. The Serengeti National Park in Tanzania was the continent’s most popular and highest-rated park. The park is internationally renowned and listed as one of the UNESCO World Heritage sites. In Africa, South Africa had the highest number of UNESCO sites.

  17. U

    A seamless, high-resolution, coastal digital elevation model (DEM) for...

    • data.usgs.gov
    • datadiscoverystudio.org
    • +3more
    Updated Feb 20, 2010
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Patrick Barnard; Daniel Hoover (2010). A seamless, high-resolution, coastal digital elevation model (DEM) for Southern California [Dataset]. http://doi.org/10.3133/ds487
    Explore at:
    Dataset updated
    Feb 20, 2010
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    Patrick Barnard; Daniel Hoover
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Time period covered
    1996 - 2008
    Area covered
    Southern California, California
    Description

    A seamless, three-meter digital elevation model (DEM) was constructed for the entire Southern California coastal zone, extending 473 km from Point Conception to the Mexican border. The goal was to integrate the most recent, high-resolution datasets available (for example, Light Detection and Ranging (Lidar) topography, multibeam and single beam sonar bathymetry, and Interferometric Synthetic Aperture Radar (IfSAR) topography) into a continuous surface from at least the 20-m isobath to the +20-m elevation contour.

  18. e

    Mountain Birdwatch: 2010-2022

    • knb.ecoinformatics.org
    • search-demo.dataone.org
    • +2more
    Updated Mar 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jason Hill (2025). Mountain Birdwatch: 2010-2022 [Dataset]. http://doi.org/10.5063/F1R78CP7
    Explore at:
    Dataset updated
    Mar 15, 2025
    Dataset provided by
    Knowledge Network for Biocomplexity
    Authors
    Jason Hill
    Time period covered
    Jun 1, 2010 - Jul 31, 2022
    Area covered
    Variables measured
    Year, Route, State, Region, RouteID, Comments, Latitude, Elevation, Longitude, ObserverID, and 32 more
    Description

    Mountain Birdwatch (MBW) is a long-term community science monitoring program for 10 bird and 1 mammal species that breed in high-elevation spruce-fir forests of the northeastern United States. Initiated in 2000 as Mountain Birdwatch 1.0, MBW 2.0 (years 2010 and onwards) provides the only region-wide source of population information on these high-elevation species. Each June, under the coordination of the Vermont Center for Ecostudies, volunteers perform repeated point counts at nearly 750 long-term fixed sampling sites along established hiking trails in Vermont, New Hampshire, Maine, and eastern New York (Catskills and Adirondacks). The primary emphasis was placed on Bicknell’s Thrush, a montane-fir specialist that breeds only in the Northeastern U.S. and adjacent portions of Canada. In 2010, the program underwent many positive changes to reemerge as Mountain Birdwatch 2.0. All of the sampling locations prior to 2010 were permanently retired, and new sampling locations were chosen using a generalized random tessellation stratified (GRTS) procedure. For more information see: https://vtecostudies.org/projects/mountains/mountain-birdwatch/ These data on KNB contain all of the point count for the 11 monitored species from 2010 to 2022 with the exception of data from 6 routes in Maine that occur on commercial timberlands. Our confidentiality agreements with those timber operations prevent us from sharing those data in a non-aggregated format.

  19. Highest peak connection speed in selected U.S. states 2017

    • statista.com
    Updated Dec 10, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Highest peak connection speed in selected U.S. states 2017 [Dataset]. https://www.statista.com/statistics/325760/peak-internet-connection-speed-by-us-state/
    Explore at:
    Dataset updated
    Dec 10, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    The statistic shows a ranking of the U.S. states with the highest average peak connection speed. During the first quarter of 2017, Maryland was ranked fourth with an average peak IPv4 connection speed of 106.1 Mbps.

  20. c

    U.S. Sea Level Rise - Intermediate-High (2050)

    • resilience.climate.gov
    • socal-sustainability-atlas-claremont.hub.arcgis.com
    • +3more
    Updated Sep 6, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Climate Resilience (2022). U.S. Sea Level Rise - Intermediate-High (2050) [Dataset]. https://resilience.climate.gov/maps/1a98734fb5c34602ae6f886da1638bb9
    Explore at:
    Dataset updated
    Sep 6, 2022
    Dataset authored and provided by
    National Climate Resilience
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    The sea level rise (SLR) coastal inundation layers were created using existing federal products: the (1) NOAA Coastal Digital Elevation Models (DEMs) and (2) 2022 Interagency Sea Level Rise Technical Report Data Files. The DEMs for the Continental United States (CONUS) are provided in North American Vertical Datum 1988 (NAVD 88) and were converted to Mean Higher High Water (MHHW) using the NOAA VDatum conversion surfaces; the elevation values are in meters (m). The NOAA Scenarios of Future Mean Sea Level are provided in centimeters (cm). The MHHW DEMs for CONUS were merged and converted to cm and Scenarios of Future Mean Sea Level were subtracted from the merged DEM. Values below 0 represent areas that are below sea level and are “remapped” to 1, all values above 0 are remapped to “No Data”, creating a map that shows only areas impacted by SLR. Areas protected by levees in Louisiana and Texas were then masked or removed from the results. This was done for each of the emissions scenarios (Lower Emissions = 2022 Intermediate SLR Scenario Higher Emissions = 2022 Intermediate High SLR Scenario) at each of the mapped time intervals (Early Century - Year 2030, Middle Century - Year 2050, and Late Century - Year 2090). The resulting maps are displayed in the CMRA Assessment Tool. County, tract, and tribal geographies summaries of percentage SLR inundation were also calculated using Zonal Statistics tools. The Sea Level Rise Scenario year 2020 is considered “baseline” and the impacts are calculated by subtracting the baseline value from each of the near-term, mid-term and long-term timeframes. General Disclaimer The data and maps in this tool illustrate the scale of potential flooding, not the exact location, and do not account for erosion, subsidence, or future construction. Water levels are relative to Mean Higher High Water (MHHW) (excludes wind driven tides). The data, maps, and information provided should be used only as a screening-level tool for management decisions. As with all remotely sensed data, all features should be verified with a site visit. Hydroconnectivity was not considered in the mapping process. The data and maps in this tool are provided “as is,” without warranty to their performance, merchantable state, or fitness for any particular purpose. The entire risk associated with the results and performance of these data is assumed by the user. This tool should be used strictly as a planning reference tool and not for navigation, permitting, or other legal purposes. SLR visualizations and statistics are not available in CMRA for Hawaii, Alaska, or U.S. territories at this time. Levees Disclaimer Enclosed levee areas are displayed as gray areas on the maps. Major federal leveed areas were assumed high enough and strong enough to protect against inundation depicted in this viewer, and therefore no inundation was mapped in these regions. Major federal leveed areas were taken from the National Levee Database. Minor (nonfederal) leveed areas were mapped using the best available elevation data that capture leveed features. In some cases, however, breaks in elevation occur along leveed areas because of flood control features being removed from elevation data, limitations of the horizontal and vertical resolution of the elevation data, the occurrence of levee drainage features, and so forth. Flooding behind levees is only depicted if breaks in elevation data occur or if the levee elevations are overtopped by the water surface. At some flood levels, alternate pathways around—not through—levees, walls, dams, and flood gates may exist that allow water to flow into areas protected at lower levels. In general, imperfect levee and elevation data make assessing protection difficult, and small data errors can have large consequences. Citations 2022 Sea Level Rise Technical Report - Sweet, W.V., B.D. Hamlington, R.E. Kopp, C.P. Weaver, P.L. Barnard, D. Bekaert, W. Brooks, M. Craghan, G. Dusek, T. Frederikse, G. Garner, A.S. Genz, J.P. Krasting, E. Larour, D. Marcy, J.J. Marra, J. Obeysekera, M. Osler, M. Pendleton, D. Roman, L. Schmied, W. Veatch, K.D. White, and C. Zuzak, 2022: Global and Regional Sea Level Rise Scenarios for the United States: Updated Mean Projections and Extreme Water Level Probabilities Along U.S. Coastlines. NOAA Technical Report NOS 01. National Oceanic and Atmospheric Administration, National Ocean Service, Silver Spring, MD, 111 pp. https://oceanservice.noaa.gov/hazards/sealevelrise/noaa-nostechrpt01-global-regional-SLR-scenarios-US.pdf

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2024). United States: highest point in each state or territory [Dataset]. https://www.statista.com/statistics/203932/highest-points-in-the-united-states-by-state/
Organization logo

United States: highest point in each state or territory

Explore at:
Dataset updated
Aug 8, 2024
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
2005
Area covered
United States
Description

At 20,310 feet (6.2km) above sea level, the highest point in the United States is Denali, Alaska (formerly known as Mount McKinley). The highest point in the contiguous United States is Mount Whitney, in the Sierra Nevada mountain range in California; followed by Mount Elbert, Colorado - the highest point in the Rocky Mountains. When looking at the highest point in each state, the 13 tallest peaks are all found in the western region of the country, while there is much more diversity across the other regions and territories.

Despite being approximately 6,500 feet lower than Denali, Hawaii's Mauna Kea is sometimes considered the tallest mountain (and volcano) on earth. This is because its base is well below sea level - the mountain has a total height of 33,474 feet, which is almost 4,500 feet higher than Mount Everest.

Search
Clear search
Close search
Google apps
Main menu