description: The TRSQ digital data set represents the Township, Range, Section, Quarter section, and Quarter-quarter section divisions of the state. Beginning in the late 1840s, the federal government began surveying Minnesota as part of the Public Land Survey System (PLSS). The resulting network of land survey lines divided the state into townships, ranges, sections, quarter sections, quarter-quarter sections and government lots, and laid the groundwork for contemporary land ownership patterns. The quarter-quarter section remains an important subdivision for rural Minnesota since these lines are used to define local boundaries, roads, and service areas. All survey lines were extended across water bodies despite the fact that U.S. Geological Survey (USGS) base maps depict them only on land. This addition allows all sections and townships to be represented as closed areas ensuring that township and range location can be determined for any point in the state. It also means that the data is not affected if lake levels change over time. The township, range and section boundaries were digitized at MnGeo (formerly the Land Management Information Center - LMIC) from the USGS 30' x 60' map series (1:100,000-scale). Quarter section and quarter-quarter section subdivisions were calculated using the section lines. They were not digitized from original plat book survey lines or from the meandered lines that surveyors laid out around water bodies. The existence of government lots within a quarter-quarter section is recorded in the data set; however, the government lot boundaries were not digitized. If a quarter-quarter section contains more than one government lot, the number of lots is recorded -- see Lineage, Section 2, for more detail. Note: For most uses, TRSQ has been superseded by the Minnesota Department of Natural Resources (DNR) 1:24,000-scale 'Control Point Generated PLS' data set which is free online. See https://gisdata.mn.gov/dataset/plan-mndnr-public-land-survey for more information. Also, many county surveyors offices have more accurate PLS (Public Land Survey) data sets. For county webpages and contact information, see http://www.mngeo.state.mn.us/cty_contacts.html .; abstract: The TRSQ digital data set represents the Township, Range, Section, Quarter section, and Quarter-quarter section divisions of the state. Beginning in the late 1840s, the federal government began surveying Minnesota as part of the Public Land Survey System (PLSS). The resulting network of land survey lines divided the state into townships, ranges, sections, quarter sections, quarter-quarter sections and government lots, and laid the groundwork for contemporary land ownership patterns. The quarter-quarter section remains an important subdivision for rural Minnesota since these lines are used to define local boundaries, roads, and service areas. All survey lines were extended across water bodies despite the fact that U.S. Geological Survey (USGS) base maps depict them only on land. This addition allows all sections and townships to be represented as closed areas ensuring that township and range location can be determined for any point in the state. It also means that the data is not affected if lake levels change over time. The township, range and section boundaries were digitized at MnGeo (formerly the Land Management Information Center - LMIC) from the USGS 30' x 60' map series (1:100,000-scale). Quarter section and quarter-quarter section subdivisions were calculated using the section lines. They were not digitized from original plat book survey lines or from the meandered lines that surveyors laid out around water bodies. The existence of government lots within a quarter-quarter section is recorded in the data set; however, the government lot boundaries were not digitized. If a quarter-quarter section contains more than one government lot, the number of lots is recorded -- see Lineage, Section 2, for more detail. Note: For most uses, TRSQ has been superseded by the Minnesota Department of Natural Resources (DNR) 1:24,000-scale 'Control Point Generated PLS' data set which is free online. See https://gisdata.mn.gov/dataset/plan-mndnr-public-land-survey for more information. Also, many county surveyors offices have more accurate PLS (Public Land Survey) data sets. For county webpages and contact information, see http://www.mngeo.state.mn.us/cty_contacts.html .
In the past four centuries, the population of the United States has grown from a recorded 350 people around the Jamestown colony of Virginia in 1610, to an estimated 331 million people in 2020. The pre-colonization populations of the indigenous peoples of the Americas have proven difficult for historians to estimate, as their numbers decreased rapidly following the introduction of European diseases (namely smallpox, plague and influenza). Native Americans were also omitted from most censuses conducted before the twentieth century, therefore the actual population of what we now know as the United States would have been much higher than the official census data from before 1800, but it is unclear by how much. Population growth in the colonies throughout the eighteenth century has primarily been attributed to migration from the British Isles and the Transatlantic slave trade; however it is also difficult to assert the ethnic-makeup of the population in these years as accurate migration records were not kept until after the 1820s, at which point the importation of slaves had also been illegalized. Nineteenth century In the year 1800, it is estimated that the population across the present-day United States was around six million people, with the population in the 16 admitted states numbering at 5.3 million. Migration to the United States began to happen on a large scale in the mid-nineteenth century, with the first major waves coming from Ireland, Britain and Germany. In some aspects, this wave of mass migration balanced out the demographic impacts of the American Civil War, which was the deadliest war in U.S. history with approximately 620 thousand fatalities between 1861 and 1865. The civil war also resulted in the emancipation of around four million slaves across the south; many of whose ancestors would take part in the Great Northern Migration in the early 1900s, which saw around six million black Americans migrate away from the south in one of the largest demographic shifts in U.S. history. By the end of the nineteenth century, improvements in transport technology and increasing economic opportunities saw migration to the United States increase further, particularly from southern and Eastern Europe, and in the first decade of the 1900s the number of migrants to the U.S. exceeded one million people in some years. Twentieth and twenty-first century The U.S. population has grown steadily throughout the past 120 years, reaching one hundred million in the 1910s, two hundred million in the 1960s, and three hundred million in 2007. In the past century, the U.S. established itself as a global superpower, with the world's largest economy (by nominal GDP) and most powerful military. Involvement in foreign wars has resulted in over 620,000 further U.S. fatalities since the Civil War, and migration fell drastically during the World Wars and Great Depression; however the population continuously grew in these years as the total fertility rate remained above two births per woman, and life expectancy increased (except during the Spanish Flu pandemic of 1918).
Since the Second World War, Latin America has replaced Europe as the most common point of origin for migrants, with Hispanic populations growing rapidly across the south and border states. Because of this, the proportion of non-Hispanic whites, which has been the most dominant ethnicity in the U.S. since records began, has dropped more rapidly in recent decades. Ethnic minorities also have a much higher birth rate than non-Hispanic whites, further contributing to this decline, and the share of non-Hispanic whites is expected to fall below fifty percent of the U.S. population by the mid-2000s. In 2020, the United States has the third-largest population in the world (after China and India), and the population is expected to reach four hundred million in the 2050s.
description: The TRS digital data set represents the Township, Range, and Section boundaries of the state. Beginning in the late 1840s, the federal government began surveying Minnesota as part of the Public Land Survey System (PLSS). The resulting network of land survey lines divided the state into townships, ranges, sections, quarter sections, quarter-quarter sections and government lots, and laid the groundwork for contemporary land ownership patterns. The township, range and section boundaries were digitized at MnGeo (formerly known as the Land Management Information Center - LMIC) from stable base mylars of the U.S. Geological Survey (USGS) 30-minute latitude by 60-minute longitude map series (1:100,000-scale). All survey lines were extended across water bodies despite the fact that U.S. Geological Survey base maps depict them only on land. This addition allows all sections and townships to be represented as closed areas (polygons) ensuring that township and range location can be determined for any point in the state. It also means that the data set is not affected if lake levels change over time.; abstract: The TRS digital data set represents the Township, Range, and Section boundaries of the state. Beginning in the late 1840s, the federal government began surveying Minnesota as part of the Public Land Survey System (PLSS). The resulting network of land survey lines divided the state into townships, ranges, sections, quarter sections, quarter-quarter sections and government lots, and laid the groundwork for contemporary land ownership patterns. The township, range and section boundaries were digitized at MnGeo (formerly known as the Land Management Information Center - LMIC) from stable base mylars of the U.S. Geological Survey (USGS) 30-minute latitude by 60-minute longitude map series (1:100,000-scale). All survey lines were extended across water bodies despite the fact that U.S. Geological Survey base maps depict them only on land. This addition allows all sections and townships to be represented as closed areas (polygons) ensuring that township and range location can be determined for any point in the state. It also means that the data set is not affected if lake levels change over time.
Vector datasets of CWHR range maps are one component of California Wildlife Habitat Relationships (CWHR), a comprehensive information system and predictive model for California's wildlife. The CWHR System was developed to support habitat conservation and management, land use planning, impact assessment, education, and research involving terrestrial vertebrates in California. CWHR contains information on life history, management status, geographic distribution, and habitat relationships for wildlife species known to occur regularly in California. Range maps represent the maximum, current geographic extent of each species within California. They were originally delineated at a scale of 1:5,000,000 by species-level experts and have gradually been revised at a scale of 1:1,000,000. For more information about CWHR, visit the CWHR webpage (https://www.wildlife.ca.gov/Data/CWHR). The webpage provides links to download CWHR data and user documents such as a look up table of available range maps including species code, species name, and range map revision history; a full set of CWHR GIS data; .pdf files of each range map or species life history accounts; and a User Guide.
Forest Ecosystem Dynamics (FED) Project Spatial Data Archive: Edinburg Township Forest Map
The Biospheric Sciences Branch (formerly Earth Resources Branch) within the Laboratory for Terrestrial Physics at NASA's Goddard Space Flight Center and associated University investigators are involved in a research program entitled Forest Ecosystem Dynamics (FED) which is fundamentally concerned with vegetation change of forest ecosystems at local to regional spatial scales (100 to 10,000 meters) and temporal scales ranging from monthly to decadal periods (10 to 100 years). The nature and extent of the impacts of these changes, as well as the feedbacks to global climate, may be addressed through modeling the interactions of the vegetation, soil, and energy components of the boreal ecosystem.
The Howland Forest research site lies within the Northern Experimental Forest of International Paper. The natural stands in this boreal-northern hardwood transitional forest consist of spruce-hemlock-fir, aspen-birch, and hemlock-hardwood mixtures. The topography of the region varies from flat to gently rolling, with a maximum elevation change of less than 68 m within 10 km. Due to the region's glacial history, soil drainage classes within a small area may vary widely, from well drained to poorly drained. Consequently, an elaborate patchwork of forest communities has developed, supporting exceptional local species diversity.
This data layer contains forest polygons with information on cover type, volume, and crown closure for both the forest overstory and understory for the Township of Edinburg located in Penobscot County, Maine. The map was digitized, projected and differentially corrected using Global Positioning System points. Forest types were determined by delineation from color infrared photographs.
Note that the USGS records show that the orthophotoquads from which the data were digitized are in the Transverse Mercator projection. The printed map grid on both Howland and Edinburg maps is in the Universal Transverse Mercator projection. So, although the Edinburg map states that base map and control are from a Polyconic projection, (the Howland does not mention projection) the original base maps were assumed to be in the Transverse Mercator.
Information about the FED project and other datasets can be found at the FED Home Page: "https://forest.gsfc.nasa.gov/".
Not seeing a result you expected?
Learn how you can add new datasets to our index.
description: The TRSQ digital data set represents the Township, Range, Section, Quarter section, and Quarter-quarter section divisions of the state. Beginning in the late 1840s, the federal government began surveying Minnesota as part of the Public Land Survey System (PLSS). The resulting network of land survey lines divided the state into townships, ranges, sections, quarter sections, quarter-quarter sections and government lots, and laid the groundwork for contemporary land ownership patterns. The quarter-quarter section remains an important subdivision for rural Minnesota since these lines are used to define local boundaries, roads, and service areas. All survey lines were extended across water bodies despite the fact that U.S. Geological Survey (USGS) base maps depict them only on land. This addition allows all sections and townships to be represented as closed areas ensuring that township and range location can be determined for any point in the state. It also means that the data is not affected if lake levels change over time. The township, range and section boundaries were digitized at MnGeo (formerly the Land Management Information Center - LMIC) from the USGS 30' x 60' map series (1:100,000-scale). Quarter section and quarter-quarter section subdivisions were calculated using the section lines. They were not digitized from original plat book survey lines or from the meandered lines that surveyors laid out around water bodies. The existence of government lots within a quarter-quarter section is recorded in the data set; however, the government lot boundaries were not digitized. If a quarter-quarter section contains more than one government lot, the number of lots is recorded -- see Lineage, Section 2, for more detail. Note: For most uses, TRSQ has been superseded by the Minnesota Department of Natural Resources (DNR) 1:24,000-scale 'Control Point Generated PLS' data set which is free online. See https://gisdata.mn.gov/dataset/plan-mndnr-public-land-survey for more information. Also, many county surveyors offices have more accurate PLS (Public Land Survey) data sets. For county webpages and contact information, see http://www.mngeo.state.mn.us/cty_contacts.html .; abstract: The TRSQ digital data set represents the Township, Range, Section, Quarter section, and Quarter-quarter section divisions of the state. Beginning in the late 1840s, the federal government began surveying Minnesota as part of the Public Land Survey System (PLSS). The resulting network of land survey lines divided the state into townships, ranges, sections, quarter sections, quarter-quarter sections and government lots, and laid the groundwork for contemporary land ownership patterns. The quarter-quarter section remains an important subdivision for rural Minnesota since these lines are used to define local boundaries, roads, and service areas. All survey lines were extended across water bodies despite the fact that U.S. Geological Survey (USGS) base maps depict them only on land. This addition allows all sections and townships to be represented as closed areas ensuring that township and range location can be determined for any point in the state. It also means that the data is not affected if lake levels change over time. The township, range and section boundaries were digitized at MnGeo (formerly the Land Management Information Center - LMIC) from the USGS 30' x 60' map series (1:100,000-scale). Quarter section and quarter-quarter section subdivisions were calculated using the section lines. They were not digitized from original plat book survey lines or from the meandered lines that surveyors laid out around water bodies. The existence of government lots within a quarter-quarter section is recorded in the data set; however, the government lot boundaries were not digitized. If a quarter-quarter section contains more than one government lot, the number of lots is recorded -- see Lineage, Section 2, for more detail. Note: For most uses, TRSQ has been superseded by the Minnesota Department of Natural Resources (DNR) 1:24,000-scale 'Control Point Generated PLS' data set which is free online. See https://gisdata.mn.gov/dataset/plan-mndnr-public-land-survey for more information. Also, many county surveyors offices have more accurate PLS (Public Land Survey) data sets. For county webpages and contact information, see http://www.mngeo.state.mn.us/cty_contacts.html .