6 datasets found
  1. d

    UA Census Urbanized Areas, 1990 - Minnesota

    • datamed.org
    Updated Dec 13, 2011
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2011). UA Census Urbanized Areas, 1990 - Minnesota [Dataset]. https://datamed.org/display-item.php?repository=0012&idName=ID&id=56d4b832e4b0e644d3130c1c
    Explore at:
    Dataset updated
    Dec 13, 2011
    Area covered
    Minnesota
    Description

    This datalayer displays the Urbanized Areas (UAs) for the state based on a January 1, 1990 ground condition. Note that the Census Bureau made significant changes in Urban/Rural designations for the Census 2000 data layers. Some of these delineations and definitions are explained below. 1990 Urban/Rural The U.S. Census Bureau defined urban for the 1990 census as consisting of all territory and population in urbanized areas (UAs) and in the urban portion of places with 2,500 or more people located outside of the UAs. The 1990 urban and rural classification applied to the 50 states, the District of Columbia, and Puerto Rico. 1990 Urbanized Areas A 1990 urbanized area (UA) consisted of at least one central place and the adjacent densely settled surrounding territory that together had a minimum population of 50,000 people. The densely settled surrounding territory generally consisted of an area with continuous residential development and a general overall population density of at least 1,000 people per square mile. 1990 Extended Cities For the 1990 census, the U.S. Census Bureau distinguished the urban and rural population within incorporated places whose boundaries contained large, sparsely populated, or even unpopulated area. Under the 1990 criteria, an extended city had to contain either 25 percent of the total land area or at least 25 square miles with an overall population density lower than 100 people per square mile. Such pieces of territory had to cover at least 5 square miles. This low-density area was classified as rural and the other, more densely settled portion of the incorporated place was classified as urban. Unlike previous censuses where the U.S. Census Bureau defined extended cities only within UAs, for the 1990 census the U.S. Census Bureau applied the extended city criteria to qualifying incorporated places located outside UAs. 1990 Urbanized Area Codes Each 1990 UA was assigned a 4-digit numeric census code in alphabetical sequence on a nationwide basis based on the metropolitan area codes. Note that in Record Type C, the 1990 UA 4-digit numeric census code and Census 2000 UA 5-digit numeric census code share a 5-character field. Because of this, the 1990 4-digit UA code, in Record Type C only, appears with a trailing blank. For Census 2000 the U.S. Census Bureau classifies as urban all territory, population, and housing units located within urbanized areas (UAs) and urban clusters (UCs). It delineates UA and UC boundaries to encompass densely settled territory, which generally consists of: - A cluster of one or more block groups or census blocks each of which has a population density of at least 1,000 people per square mile at the time - Surrounding block groups and census blocks each of which has a population density of at least 500 people per square mile at the time, and - Less densely settled blocks that form enclaves or indentations, or are used to connect discontiguous areas with qualifying densities. Rural consists of all territory, population, and housing units located outside of UAs and UCs. For Census 2000 this urban and rural classification applies to the 50 states, the District of Columbia, Puerto Rico, American Samoa, Guam, the Northern Mariana Islands, and the Virgin Islands of the United States. Urbanized Areas (UAs) An urbanized area consists of densely settled territory that contains 50,000 or more people. The U.S. Census Bureau delineates UAs to provide a better separation of urban and rural territory, population, and housing in the vicinity of large places. For Census 2000, the UA criteria were extensively revised and the delineations were performed using a zero-based approach. Because of more stringent density requirements, some territory that was classified as urbanized for the 1990 census has been reclassified as rural. (Area that was part of a 1990 UA has not been automatically grandfathered into the 2000 UA.) In addition, some areas that were identified as UAs for the 1990 census have been reclassified as urban clusters. Urban Clusters (UCs) An urban cluster consists of densely settled territory that has at least 2,500 people but fewer than 50,000 people. The U.S. Census Bureau introduced the UC for Census 2000 to provide a more consistent and accurate measure of the population concentration in and around places. UCs are defined using the same criteria that are used to define UAs. UCs replace the provision in the 1990 and previous censuses that defined as urban only those places with 2,500 or more people located outside of urbanized areas. Urban Area Title and Code The title of each UA and UC may contain up to three incorporated place names, and will include the two-letter U.S. Postal Service abbreviation for each state into which the UA or UC extends. However, if the UA or UC does not contain an incorporated place, the urban area title will include the single name of a census designated place (CDP), minor civil division, or populated place recognized by the U.S. Geological Survey's Geographic Names Information System. Each UC and UA is assigned a 5-digit numeric code, based on a national alphabetical sequence of all urban area names. For the 1990 census, the U.S. Census Bureau assigned as four-digit UA code based on the metropolitan area codes. Urban Area Central Places A central place functions as the dominant center of an urban area. The U.S. Census Bureau identifies one or more central places for each UA or UC that contains a place. Any incorporated place or census designated place (CDP) that is in the title of the urban area is a central place of that UA or UC. In addition, any other incorporated place or CDP that has an urban population of 50,000 or an urban population of at least 2,500 people and is at least 2/3 the size of the largest place within the urban area also is a central place. Extended Places As a result of the UA and UC delineations, an incorporated place or census designated place (CDP) may be partially within and partially outside of a UA or UC. Any place that is split by a UA or UC is referred to as an extended place.

  2. f

    Table_1_Recent Carbon Storage and Burial Exceed Historic Rates in the San...

    • frontiersin.figshare.com
    xlsx
    Updated Jun 6, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cathleen Wigand; Meagan Eagle; Benjamin L. Branoff; Stephen Balogh; Kenneth M. Miller; Rose M. Martin; Alana Hanson; Autumn J. Oczkowski; Evelyn Huertas; Joseph Loffredo; Elizabeth B. Watson (2023). Table_1_Recent Carbon Storage and Burial Exceed Historic Rates in the San Juan Bay Estuary Peri-Urban Mangrove Forests (Puerto Rico, United States).XLSX [Dataset]. http://doi.org/10.3389/ffgc.2021.676691.s002
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jun 6, 2023
    Dataset provided by
    Frontiers
    Authors
    Cathleen Wigand; Meagan Eagle; Benjamin L. Branoff; Stephen Balogh; Kenneth M. Miller; Rose M. Martin; Alana Hanson; Autumn J. Oczkowski; Evelyn Huertas; Joseph Loffredo; Elizabeth B. Watson
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Bahía de San Juan, Puerto Rico, San Juan
    Description

    Mangroves sequester significant quantities of organic carbon (C) because of high rates of burial in the soil and storage in biomass. We estimated mangrove forest C storage and accumulation rates in aboveground and belowground components among five sites along an urbanization gradient in the San Juan Bay Estuary, Puerto Rico. Sites included the highly urbanized and clogged Caño Martin Peña in the western half of the estuary, a series of lagoons in the center of the estuary, and a tropical forest reserve (Piñones) in the easternmost part. Radiometrically dated cores were used to determine sediment accretion and soil C storage and burial rates. Measurements of tree dendrometers coupled with allometric equations were used to estimate aboveground biomass. Estuary-wide mangrove forest C storage and accumulation rates were estimated using interpolation methods and coastal vegetation cover data. In recent decades (1970–2016), the highly urbanized Martin Peña East (MPE) site with low flushing had the highest C storage and burial rates among sites. The MPE soil carbon burial rate was over twice as great as global estimates. Mangrove forest C burial rates in recent decades were significantly greater than historic decades (1930–1970) at Caño Martin Peña and Piñones. Although MPE and Piñones had similarly low flushing, the landscape settings (clogged canal vs forest reserve) and urbanization (high vs low) were different. Apparently, not only urbanization, but site-specific flushing patterns, landscape setting, and soil fertility affected soil C storage and burial rates. There was no difference in C burial rates between historic and recent decades at the San José and La Torrecilla lagoons. Mangrove forests had soil C burial rates ranging from 88 g m–2 y–1 at the San José lagoon to 469 g m–2 y–1 at the MPE in recent decades. Watershed anthropogenic CO2 emissions (1.56 million Mg C y–1) far exceeded the annual mangrove forest C storage rates (aboveground biomass plus soils: 17,713 Mg C y–1). A combination of maintaining healthy mangrove forests and reducing anthropogenic emissions might be necessary to mitigate greenhouse gas emissions in urban, tropical areas.

  3. d

    Watershed characteristics for study sites of the Surface Water Trends...

    • search.dataone.org
    • data.usgs.gov
    • +2more
    Updated Oct 5, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    James A. Falcone (2017). Watershed characteristics for study sites of the Surface Water Trends project, National Water Quality Program [Dataset]. https://search.dataone.org/view/cc410d86-bc00-44a8-a884-f3f55a490020
    Explore at:
    Dataset updated
    Oct 5, 2017
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    James A. Falcone
    Time period covered
    Jan 1, 1940 - Dec 31, 2014
    Area covered
    Description

    This product consists of 29 datasets of tabular data and associated metadata for watershed characteristics of 1,530 study sites of the Surface Water Trends (SWT) project of the U.S. Geological Survey’s (USGS) National Water Quality Program (NWQP). The project is conducting national studies of trends in water quality of streams and rivers for periods ranging from 10 to 40 years, between 1972 and 2012. The data here include both static and time-series characteristics. Static data include primarily physical characteristics which have changed little over this period, such as geology, soils, and topography. Time-series data represent characteristics which may or may not have changed over time, such as land use, agricultural practices, precipitation, hydrologic modifications, atmospheric deposition, and population changes.

  4. d

    2015 Cartographic Boundary File, Urban Area-State-County for Wisconsin,...

    • catalog.data.gov
    Updated Jan 13, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). 2015 Cartographic Boundary File, Urban Area-State-County for Wisconsin, 1:500,000 [Dataset]. https://catalog.data.gov/dataset/2015-cartographic-boundary-file-urban-area-state-county-for-wisconsin-1-5000001
    Explore at:
    Dataset updated
    Jan 13, 2021
    Area covered
    Wisconsin
    Description

    The 2015 cartographic boundary shapefiles are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files. The records in this file allow users to map the parts of Urban Areas that overlap a particular county. After each decennial census, the Census Bureau delineates urban areas that represent densely developed territory, encompassing residential, commercial, and other nonresidential urban land uses. In general, this territory consists of areas of high population density and urban land use resulting in a representation of the "urban footprint." There are two types of urban areas: urbanized areas (UAs) that contain 50,000 or more people and urban clusters (UCs) that contain at least 2,500 people, but fewer than 50,000 people (except in the U.S. Virgin Islands and Guam which each contain urban clusters with populations greater than 50,000). Each urban area is identified by a 5-character numeric census code that may contain leading zeroes. The primary legal divisions of most states are termed counties. In Louisiana, these divisions are known as parishes. In Alaska, which has no counties, the equivalent entities are the organized boroughs, city and boroughs, municipalities, and for the unorganized area, census areas. The latter are delineated cooperatively for statistical purposes by the State of Alaska and the Census Bureau. In four states (Maryland, Missouri, Nevada, and Virginia), there are one or more incorporated places that are independent of any county organization and thus constitute primary divisions of their states. These incorporated places are known as independent cities and are treated as equivalent entities for purposes of data presentation. The District of Columbia and Guam have no primary divisions, and each area is considered an equivalent entity for purposes of data presentation. The Census Bureau treats the following entities as equivalents of counties for purposes of data presentation: Municipios in Puerto Rico, Districts and Islands in American Samoa, Municipalities in the Commonwealth of the Northern Mariana Islands, and Islands in the U.S. Virgin Islands. The entire area of the United States, Puerto Rico, and the Island Areas is covered by counties or equivalent entities. The boundaries for counties and equivalent entities are as of January 1, 2010.

  5. D

    Data from: Urbanization and translocation disrupt the relationship between...

    • datasetcatalog.nlm.nih.gov
    • data.niaid.nih.gov
    • +4more
    Updated Dec 18, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    DeVore, Jayna L.; Shine, Richard; Ducatez, Simon (2019). Urbanization and translocation disrupt the relationship between host density and parasite abundance [Dataset]. http://doi.org/10.5061/dryad.fn2z34tq5
    Explore at:
    Dataset updated
    Dec 18, 2019
    Authors
    DeVore, Jayna L.; Shine, Richard; Ducatez, Simon
    Description

    1.) The species interactions that structure natural communities are increasingly disrupted by radical habitat change resulting from the widespread processes of urbanization and species translocations. Although many species are disadvantaged by these changes, others thrive in these new environments, achieving densities exceeding those found in natural habitats. Often the same species that benefit from urbanization are successful invaders in introduced habitats, suggesting that similar processes promote these species in both environments. 2.) Both processes may especially benefit certain species by modifying their interactions with harmful parasites (“enemy release”). To detect such modifications, we first need to identify the mechanisms underlying host-parasite associations in natural populations, then test whether they are disrupted in cities and introduced habitats. 3.) We studied the interaction between the cane toad (Rhinella marina), a globally invasive species native to South America, and its Amblyomma ticks. Our field study of 642 cane toads across 46 sites within their native range in French Guiana revealed that 56% of toads carried ticks, and that toads with ticks were in poor body condition relative to uninfected conspecifics. Across natural and disturbed habitats, tick prevalence and abundance increased with toad density, but this association was disrupted in the urban environment, where tick abundance remained low even where toad densities were high, and prevalence decreased with density. 4.) Reductions in the abundance of ticks in urban habitats may be attributable to pesticides (which are sprayed for mosquito control, but are also lethal to ticks), and our literature review shows that tick abundance is generally lower in cane toads from urban habitats across South America. In the invasive range, ticks were either absent (in 1,960 toads from Puerto Rico, Hawai’i, Japan, and Australia) or less abundant (in Florida and the Caribbean; literature review). 5.) The positive relationship between host density and parasite abundance is thought to be a key mechanism through which parasites regulate host populations; anthropogenic processes that disrupt this relationship may allow populations in urban and introduced habitats to persist at densities that would otherwise lead to severe impacts from parasites.

  6. f

    Table_1_Recent Nitrogen Storage and Accumulation Rates in Mangrove Soils...

    • frontiersin.figshare.com
    xlsx
    Updated Jun 6, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cathleen Wigand; Autumn J. Oczkowski; Benjamin L. Branoff; Meagan Eagle; Alana Hanson; Rose M. Martin; Stephen Balogh; Kenneth M. Miller; Evelyn Huertas; Joseph Loffredo; Elizabeth B. Watson (2023). Table_1_Recent Nitrogen Storage and Accumulation Rates in Mangrove Soils Exceed Historic Rates in the Urbanized San Juan Bay Estuary (Puerto Rico, United States).XLSX [Dataset]. http://doi.org/10.3389/ffgc.2021.765896.s001
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jun 6, 2023
    Dataset provided by
    Frontiers
    Authors
    Cathleen Wigand; Autumn J. Oczkowski; Benjamin L. Branoff; Meagan Eagle; Alana Hanson; Rose M. Martin; Stephen Balogh; Kenneth M. Miller; Evelyn Huertas; Joseph Loffredo; Elizabeth B. Watson
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States, Bahía de San Juan, Puerto Rico, San Juan
    Description

    Tropical mangrove forests have been described as “coastal kidneys,” promoting sediment deposition and filtering contaminants, including excess nutrients. Coastal areas throughout the world are experiencing increased human activities, resulting in altered geomorphology, hydrology, and nutrient inputs. To effectively manage and sustain coastal mangroves, it is important to understand nitrogen (N) storage and accumulation in systems where human activities are causing rapid changes in N inputs and cycling. We examined N storage and accumulation rates in recent (1970 – 2016) and historic (1930 – 1970) decades in the context of urbanization in the San Juan Bay Estuary (SJBE, Puerto Rico), using mangrove soil cores that were radiometrically dated. Local anthropogenic stressors can alter N storage rates in peri-urban mangrove systems either directly by increasing N soil fertility or indirectly by altering hydrology (e.g., dredging, filling, and canalization). Nitrogen accumulation rates were greater in recent decades than historic decades at Piñones Forest and Martin Peña East. Martin Peña East was characterized by high urbanization, and Piñones, by the least urbanization in the SJBE. The mangrove forest at Martin Peña East fringed a poorly drained canal and often received raw sewage inputs, with N accumulation rates ranging from 17.7 to 37.9 g m–2 y–1 in recent decades. The Piñones Forest was isolated and had low flushing, possibly exacerbated by river damming, with N accumulation rates ranging from 18.6 to 24.2 g m–2 y–1 in recent decades. Nearly all (96.3%) of the estuary-wide mangrove N (9.4 Mg ha–1) was stored in the soils with 7.1 Mg ha–1 sequestered during 1970–2017 (0–18 cm) and 2.3 Mg ha–1 during 1930–1970 (19–28 cm). Estuary-wide mangrove soil N accumulation rates were over twice as great in recent decades (0.18 ± 0.002 Mg ha–1y–1) than historically (0.08 ± 0.001 Mg ha–1y–1). Nitrogen accumulation rates in SJBE mangrove soils in recent times were twofold larger than the rate of human-consumed food N that is exported as wastewater (0.08 Mg ha–1 y–1), suggesting the potential for mangroves to sequester human-derived N. Conservation and effective management of mangrove forests and their surrounding watersheds in the Anthropocene are important for maintaining water quality in coastal communities throughout tropical regions.

  7. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
(2011). UA Census Urbanized Areas, 1990 - Minnesota [Dataset]. https://datamed.org/display-item.php?repository=0012&idName=ID&id=56d4b832e4b0e644d3130c1c

UA Census Urbanized Areas, 1990 - Minnesota

Explore at:
10 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Dec 13, 2011
Area covered
Minnesota
Description

This datalayer displays the Urbanized Areas (UAs) for the state based on a January 1, 1990 ground condition. Note that the Census Bureau made significant changes in Urban/Rural designations for the Census 2000 data layers. Some of these delineations and definitions are explained below. 1990 Urban/Rural The U.S. Census Bureau defined urban for the 1990 census as consisting of all territory and population in urbanized areas (UAs) and in the urban portion of places with 2,500 or more people located outside of the UAs. The 1990 urban and rural classification applied to the 50 states, the District of Columbia, and Puerto Rico. 1990 Urbanized Areas A 1990 urbanized area (UA) consisted of at least one central place and the adjacent densely settled surrounding territory that together had a minimum population of 50,000 people. The densely settled surrounding territory generally consisted of an area with continuous residential development and a general overall population density of at least 1,000 people per square mile. 1990 Extended Cities For the 1990 census, the U.S. Census Bureau distinguished the urban and rural population within incorporated places whose boundaries contained large, sparsely populated, or even unpopulated area. Under the 1990 criteria, an extended city had to contain either 25 percent of the total land area or at least 25 square miles with an overall population density lower than 100 people per square mile. Such pieces of territory had to cover at least 5 square miles. This low-density area was classified as rural and the other, more densely settled portion of the incorporated place was classified as urban. Unlike previous censuses where the U.S. Census Bureau defined extended cities only within UAs, for the 1990 census the U.S. Census Bureau applied the extended city criteria to qualifying incorporated places located outside UAs. 1990 Urbanized Area Codes Each 1990 UA was assigned a 4-digit numeric census code in alphabetical sequence on a nationwide basis based on the metropolitan area codes. Note that in Record Type C, the 1990 UA 4-digit numeric census code and Census 2000 UA 5-digit numeric census code share a 5-character field. Because of this, the 1990 4-digit UA code, in Record Type C only, appears with a trailing blank. For Census 2000 the U.S. Census Bureau classifies as urban all territory, population, and housing units located within urbanized areas (UAs) and urban clusters (UCs). It delineates UA and UC boundaries to encompass densely settled territory, which generally consists of: - A cluster of one or more block groups or census blocks each of which has a population density of at least 1,000 people per square mile at the time - Surrounding block groups and census blocks each of which has a population density of at least 500 people per square mile at the time, and - Less densely settled blocks that form enclaves or indentations, or are used to connect discontiguous areas with qualifying densities. Rural consists of all territory, population, and housing units located outside of UAs and UCs. For Census 2000 this urban and rural classification applies to the 50 states, the District of Columbia, Puerto Rico, American Samoa, Guam, the Northern Mariana Islands, and the Virgin Islands of the United States. Urbanized Areas (UAs) An urbanized area consists of densely settled territory that contains 50,000 or more people. The U.S. Census Bureau delineates UAs to provide a better separation of urban and rural territory, population, and housing in the vicinity of large places. For Census 2000, the UA criteria were extensively revised and the delineations were performed using a zero-based approach. Because of more stringent density requirements, some territory that was classified as urbanized for the 1990 census has been reclassified as rural. (Area that was part of a 1990 UA has not been automatically grandfathered into the 2000 UA.) In addition, some areas that were identified as UAs for the 1990 census have been reclassified as urban clusters. Urban Clusters (UCs) An urban cluster consists of densely settled territory that has at least 2,500 people but fewer than 50,000 people. The U.S. Census Bureau introduced the UC for Census 2000 to provide a more consistent and accurate measure of the population concentration in and around places. UCs are defined using the same criteria that are used to define UAs. UCs replace the provision in the 1990 and previous censuses that defined as urban only those places with 2,500 or more people located outside of urbanized areas. Urban Area Title and Code The title of each UA and UC may contain up to three incorporated place names, and will include the two-letter U.S. Postal Service abbreviation for each state into which the UA or UC extends. However, if the UA or UC does not contain an incorporated place, the urban area title will include the single name of a census designated place (CDP), minor civil division, or populated place recognized by the U.S. Geological Survey's Geographic Names Information System. Each UC and UA is assigned a 5-digit numeric code, based on a national alphabetical sequence of all urban area names. For the 1990 census, the U.S. Census Bureau assigned as four-digit UA code based on the metropolitan area codes. Urban Area Central Places A central place functions as the dominant center of an urban area. The U.S. Census Bureau identifies one or more central places for each UA or UC that contains a place. Any incorporated place or census designated place (CDP) that is in the title of the urban area is a central place of that UA or UC. In addition, any other incorporated place or CDP that has an urban population of 50,000 or an urban population of at least 2,500 people and is at least 2/3 the size of the largest place within the urban area also is a central place. Extended Places As a result of the UA and UC delineations, an incorporated place or census designated place (CDP) may be partially within and partially outside of a UA or UC. Any place that is split by a UA or UC is referred to as an extended place.

Search
Clear search
Close search
Google apps
Main menu