100+ datasets found
  1. c

    Data used to model and map lithium concentrations in groundwater used as...

    • s.cnmilf.com
    • data.usgs.gov
    • +1more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Data used to model and map lithium concentrations in groundwater used as drinking water for the conterminous United States [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/data-used-to-model-and-map-lithium-concentrations-in-groundwater-used-as-drinking-water-fo
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    United States, Contiguous United States
    Description

    This data release contains data used to develop models and maps that estimate the occurrence of lithium in groundwater used as drinking water throughout the conterminous United States. An extreme gradient boosting model was developed to estimate the most probable lithium concentration category (≤4, >4 to ≤10, >10 to ≤30 or >30 µg/L). The model uses lithium concentration data from wells located throughout the conterminous United States and predictor variables that are available as geospatial data. The model is included in this data release in the zipped folder named Model_Archive and was used to produce maps that are also included in this data release. The model input data (predictor variables) that were used to make the maps are within a zipped folder (Map_Input_Data.zip) that contains 20 tif-raster files, one for each model predictor variable. The map probability estimates that are outputs from the model are in a zipped folder (Map_Output_Data.zip) that contains 10 tif-raster files, two model estimate maps for each of the lithium concentration categories and the category with the highest probability for public supply well depths and domestic supply well depths.

  2. A

    Surface Water Trends for the Conterminous United States using monthly...

    • data.amerigeoss.org
    • data.usgs.gov
    • +4more
    xml
    Updated Aug 23, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States (2022). Surface Water Trends for the Conterminous United States using monthly DSWEmod Surface Water Maps, 2003–2019 [Dataset]. https://data.amerigeoss.org/bg/dataset/surface-water-trends-for-the-conterminous-united-states-using-monthly-dswemod-surface-wate-9835
    Explore at:
    xmlAvailable download formats
    Dataset updated
    Aug 23, 2022
    Dataset provided by
    United States
    Area covered
    United States, Contiguous United States
    Description

    The Dynamic Surface Water Extent MODIS (DSWEmod) surface water maps for the conterminous United States were used for a study conducted by the U.S. Geological Survey (USGS) Patterns in the Landscape - Analyses of Cause and Effect (PLACE) team quantifying seasonal and annual surface water trends within Environmental Protection Agency (EPA) Level I and Level III Ecoregions (Omernik, 1987) across the U.S. from 2003 through 2019. The overarching objectives of this study were to, i) generate the monthly DSWEmod maps for the conterminous United States, ii) review the spatial and temporal dynamics of surface water extent across ecoregions, and iii) examine the relationship between precipitation and surface water extents at an ecoregion scale. The DSWEmod model classifies the landscape (i.e., each 250-meter Moderate Resolution Imaging Spectroradiometer, or MODIS, pixel) into different classes of surface water based on quantified levels of confidence, including, i) high-confidence surface water (class 1), ii) moderate-confidence surface water (class 2), iii) potential wetland (class 3), and iv) low-confidence water/wetland (class 4), as well as a not-water class (class 0) and a no-data class (class 9). The confidence level is based on thresholds within various water- and vegetation-based indices. The level of confidence is based on how many, and, which index thresholds are met. Only high-confidence surface water (class 1) was considered in this study. This data release includes a vector shapefile consisting of 85 polygons, delineating EPA Level III Ecoregions for the conterminous United States. For each Level III Ecoregion, we include attributes identifying, i) their respective Level I Ecoregion name and identification number, ii) quantified seasonal and annual mean water area and correlations with precipitation from the associated surface water trends study, iii) mean surface water extent statistics (mean, minimum, maximum, standard deviation, coefficient of variation, percent of ecoregion), and iv) seasonal and annual results from the Mann-Kendall statistical analysis. An associated manuscript describes the methodology, results, and conclusions from this study.

  3. d

    Map of Arsenic concentrations in groundwater of the United States

    • catalog.data.gov
    • data.usgs.gov
    • +4more
    Updated Nov 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Map of Arsenic concentrations in groundwater of the United States [Dataset]. https://catalog.data.gov/dataset/map-of-arsenic-concentrations-in-groundwater-of-the-united-states
    Explore at:
    Dataset updated
    Nov 1, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    United States
    Description

    The map graphic image at https://www.sciencebase.gov/catalog/file/get/63140561d34e36012efa2b7f?name=arsenic_map.png illustrates arsenic values, in micrograms per liter, for groundwater samples from about 31,000 wells and springs in 49 states compiled by the United States Geological Survey (USGS). The map graphic illustrates an updated version of figure 1 from Ryker (2001). Cited Reference: Ryker, S.J., Nov. 2001, Mapping arsenic in groundwater-- A real need, but a hard problem: Geotimes Newsmagazine of the Earth Sciences, v. 46 no. 11, p. 34-36 at http://www.agiweb.org/geotimes/nov01/feature_Asmap.html. An excel tabular data file, a txt file, along with a GIS shape file of arsenic concentrations (20,043 samples collected by the USGS) for a subset of the sites shown on the map. Samples were collected between 1973 and 2001 and are provided for download.

  4. C

    Streams and Waterbodies of the United States

    • data.cnra.ca.gov
    • data.amerigeoss.org
    Updated May 8, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ocean Data Partners (2019). Streams and Waterbodies of the United States [Dataset]. https://data.cnra.ca.gov/dataset/streams-and-waterbodies-of-the-united-states
    Explore at:
    Dataset updated
    May 8, 2019
    Dataset authored and provided by
    Ocean Data Partners
    Area covered
    United States
    Description

    This map layer shows areal and linear water features of the United States, Puerto Rico, and the U.S. Virgin Islands. The original file was produced by joining the individual State hydrography layers from the 1:2,000,000- scale Digital Line Graph (DLG) data produced by the USGS. This map layer was formerly distributed as Hydrography Features of the United States. This is a revised version of the January 2003 map layer.

  5. d

    USGS Surface-Water Data for the Nation - National Water Information System...

    • search.dataone.org
    • data.usgs.gov
    • +5more
    Updated Oct 29, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2016). USGS Surface-Water Data for the Nation - National Water Information System (NWIS) [Dataset]. https://search.dataone.org/view/357cf736-0d23-48b2-b464-fb37248fe398
    Explore at:
    Dataset updated
    Oct 29, 2016
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    U.S. Geological Survey
    Area covered
    Description

    The USGS compiles online access to water-resources data collected at approximately 1.5 million sites in all 50 States, the District of Columbia, Puerto Rico, the Virgin Islands, Guam, American Samoa and the Commonwealth of the Northern Mariana Islands.

  6. a

    Freshwater Water Monitoring Stations and Treaties-United States of America

    • hub.arcgis.com
    • afghanistan-uneplive.hub.arcgis.com
    Updated Mar 15, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Freshwater Water Monitoring Stations and Treaties-United States of America [Dataset]. https://hub.arcgis.com/maps/8fad871fdf0c4149b9cf8402c6d8788a
    Explore at:
    Dataset updated
    Mar 15, 2017
    Dataset authored and provided by
    UN Environment, Early Warning &Data Analytics
    Area covered
    Description

    This map highlights 8962 stations with monthly discharge data, including data derived daily up to 20 December 2013. The GRDB (Global Runoff DataBase) is built on an initial dataset collected in the early 1980s from the responses to WMO (World Meteorological Organization request to its member countries to provide a global hydrological data set to complement a specific set of atmospheric data in the framework of the First Global GARP Experiment (FCGE). The initial dataset of monthly river discharge data over a period of several years around 1980 was supplemented with the UNESCO monthly river discharge data collection 1965-85. Today the database comprises discharge data of nearly 9.000 gauging stations from all over the world. Since 1993 the total number of station-years has increased by a factor of around 10.Credits and partnerships:OSU - College of Earth, Ocean and Atmospheric SciencesCarniege Corporation of New YGloabl orkNASCE - Northwest Alliance for Computational Science & EngineeringInternational Water Management InstituteUNESCO - United Nations Educational, Scientific and Cultural OrganisationUSGS - United States Geological Survey

  7. c

    National Surface Water Maps using Daily MODIS Satellite Data for the...

    • s.cnmilf.com
    • data.usgs.gov
    • +3more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). National Surface Water Maps using Daily MODIS Satellite Data for the Conterminous United States, 2003–2019 [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/national-surface-water-maps-using-daily-modis-satellite-data-for-the-conterminous-united-s
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    United States, Contiguous United States
    Description

    Members from the U.S. Geological Survey (USGS) Patterns in the Landscape - Analyses of Cause and Effect (PLACE) team are releasing monthly surface water maps for the conterminous United States (U.S.) from 2003 through 2019 as 250-meter resolution geoTIFF files. The maps were produced using the Dynamic Surface Water Extent (DSWE) algorithm applied to daily Moderate Resolution Imaging Spectroradiometer (MODIS) imagery (DSWEmod) (Soulard et al., 2021) - see associated items. The DSWEmod model classifies the landscape (i.e., each MODIS pixel) into different classes of surface water based on quantified levels of confidence, including, i) high-confidence surface water (class 1), ii) moderate-confidence surface water (class 2), iii) potential wetland (class 3), and iv) low-confidence water/wetland (class 4), as well as a not-water class (class 0) and a no-data class (class 9). This data release consists of a Parent Directory and 18 Child Items. The Parent Directory includes a zipped folder housing the complete monthly DSWEmod surface water maps for the conterminous United States from 2003 through 2019 represented in 17 multiband images, equating to one image for each year from 2003 through 2019. Each annual image – available as separate Child Items (n = 17) – consists of 12 bands, where each band value from 1-12 represents sequential months from January (Band 1) to December (Band 12). Such a structure allows for a user to download either the full time-series of DSWEmod products or a user-specified set of years. The DSWEmod surface water maps were used for a study conducted by the PLACE team quantifying seasonal and annual surface water trends within Environmental Protection Agency (EPA) Level I and Level III Ecoregions (Omernik, 1987) across the U.S. from 2003 through 2019. The results from this study are also being released as a Child Item - Surface Water Trends for the Conterminous United States using monthly DSWEmod Surface Water Maps, 2003–2019. This portion of the data release includes a vector shapefile consisting of 85 polygons, delineating EPA Level III Ecoregions for the conterminous United States. For each Level III Ecoregion, we include attributes identifying, (i) their respective Level I Ecoregion name and identification number, (ii) quantified seasonal and overall mean water area, (iii) comparisons with U.S. Geological Survey (USGS) National Water Information System (NWIS) streamgage discharge trends, (iv) mean surface water extent statistics (mean, minimum, maximum, standard deviation, coefficient of variation, percent of ecoregion), and (v) seasonal and overall results from the Mann-Kendall statistical analysis. An associated manuscript describes the methodology, results, and conclusions from this study.

  8. W

    USGS Water Resources: 1:250,000-scale Hydrologic Units of the United States

    • cloud.csiss.gmu.edu
    • data.amerigeoss.org
    • +1more
    html
    Updated Aug 8, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Energy Data Exchange (2019). USGS Water Resources: 1:250,000-scale Hydrologic Units of the United States [Dataset]. https://cloud.csiss.gmu.edu/uddi/dataset/usgs-water-resources-1-250-000-scale-hydrologic-units-of-the-united-states
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Aug 8, 2019
    Dataset provided by
    Energy Data Exchange
    Area covered
    United States
    Description

    From the site: "The Geographic Information Retrieval and Analysis System (GIRAS) was developed in the mid 70s to put into digital form a number of data layers which were of interest to the USGS. One of these data layers was the Hydrologic Units. The map is based on the Hydrologic Unit Maps published by the U.S. Geological Survey Office of Water Data Coordination, together with the list descriptions and name of region, subregion, accounting units, and cataloging unit. The hydrologic units are encoded with an eight-digit number that indicates the hydrologic region (first two digits), hydrologic subregion (second two digits), accounting unit (third two digits), and cataloging unit (fourth two digits).

    The data produced by GIRAS was originally collected at a scale of 1:250K. Some areas, notably major cities in the west, were recompiled at a scale of 1:100K. In order to join the data together and use the data in a geographic information system (GIS) the data were processed in the ARC/INFO GUS software package. Within the GIS, the data were edgematched and the neatline boundaries between maps were removed to create a single data set for the conterminous United States."

  9. d

    Digital map of water-level changes in the High Plains aquifer in parts of...

    • catalog.data.gov
    • data.usgs.gov
    • +4more
    Updated Nov 1, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Digital map of water-level changes in the High Plains aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming, 1980 to 1997 [Dataset]. https://catalog.data.gov/dataset/digital-map-of-water-level-changes-in-the-high-plains-aquifer-in-parts-of-colorado-kansas--07097
    Explore at:
    Dataset updated
    Nov 1, 2024
    Dataset provided by
    U.S. Geological Survey
    Area covered
    Ogallala Aquifer, Oklahoma, Colorado, Wyoming
    Description

    This data set consists of digital water-level-change contours for the High Plains aquifer in the central United States, 1980 to 1997. The High Plains aquifer extends from south of 32 degrees to almost 44 degrees north latitude and from 96 degrees 30 minutes to 104 degrees west longitude. The aquifer underlies about 174,000 square miles in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. This digital data set was created from 5,233 wells measured in both 1980 and 1997. The water-level-change contours were drawn manually on mylar at a scale of 1:1,000,000. The contours then were converted to a digital map.

  10. f

    Law, policy, planning, and market-based strategies, categories, and example...

    • plos.figshare.com
    xls
    Updated Jun 26, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Noah Silber-Coats; Emile Elias; Caiti Steele; Katherine Fernald; Mason Gagliardi; Aaron Hrozencik; Lucia Levers; Steve Ostoja; Lauren Parker; Jeb Williamson; Yiqing Yao (2024). Law, policy, planning, and market-based strategies, categories, and example cases in each category. [Dataset]. http://doi.org/10.1371/journal.pwat.0000246.t003
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 26, 2024
    Dataset provided by
    PLOS Water
    Authors
    Noah Silber-Coats; Emile Elias; Caiti Steele; Katherine Fernald; Mason Gagliardi; Aaron Hrozencik; Lucia Levers; Steve Ostoja; Lauren Parker; Jeb Williamson; Yiqing Yao
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Law, policy, planning, and market-based strategies, categories, and example cases in each category.

  11. U

    Maps of water depth derived from satellite images of selected reaches of the...

    • data.usgs.gov
    • catalog.data.gov
    Updated Sep 30, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Carl Legleiter; Milad Niroumand-Jadidi (2024). Maps of water depth derived from satellite images of selected reaches of the American, Colorado, and Potomac Rivers acquired in 2020 and 2021 (ver. 2.0, September 2024) [Dataset]. http://doi.org/10.5066/P1APEJEP
    Explore at:
    Dataset updated
    Sep 30, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    Carl Legleiter; Milad Niroumand-Jadidi
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Time period covered
    Oct 10, 2020 - Aug 13, 2021
    Area covered
    United States, Colorado
    Description

    Information on water depth in river channels is important for a number of applications in water resource management but can be difficult to obtain via conventional field methods, particularly over large spatial extents and with the kind of frequency and regularity required to support monitoring programs. Remote sensing methods could provide a viable alternative means of mapping river bathymetry (i.e., water depth). The purpose of this study was to develop and test new, spectrally based techniques for estimating water depth from satellite image data. More specifically, a neural network-based temporal ensembling approach was evaluated in comparison to several other neural network depth retrieval (NNDR) algorithms. These methods are described in a manuscript titled "Neural Network-Based Temporal Ensembling of Water Depth Estimates Derived from SuperDove Images" and the purpose of this data release is to make available the depth maps produced using these techniques. The images used as ...

  12. d

    Digital data set describing ground-water regions with unconsolidated...

    • datadiscoverystudio.org
    gz, tgz
    Updated May 20, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2018). Digital data set describing ground-water regions with unconsolidated watercourses in the conterminous US. [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/6a3f895b1e2e4c0280278f96948cd05d/html
    Explore at:
    gz, tgzAvailable download formats
    Dataset updated
    May 20, 2018
    Description

    description: This data set describes ground-water regions in the United States defined by the U.S. Geological Survey. These ground-water regions are useful for dividing the United States into areas of roughly similar hydrologic characterstics and water-use patterns. Most of these regions are very generalized and were developed from a illustration published at a scale of approximately 1:20 million. The data set also includes polygon features for unconsolidated watercourses taken from 1:7,500,000-scale U.S. Geological Survey map of productive aquifers.; abstract: This data set describes ground-water regions in the United States defined by the U.S. Geological Survey. These ground-water regions are useful for dividing the United States into areas of roughly similar hydrologic characterstics and water-use patterns. Most of these regions are very generalized and were developed from a illustration published at a scale of approximately 1:20 million. The data set also includes polygon features for unconsolidated watercourses taken from 1:7,500,000-scale U.S. Geological Survey map of productive aquifers.

  13. National Hydrography Dataset Plus Version 2.1

    • resilience.climate.gov
    • oregonwaterdata.org
    • +4more
    Updated Aug 16, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). National Hydrography Dataset Plus Version 2.1 [Dataset]. https://resilience.climate.gov/maps/4bd9b6892530404abfe13645fcb5099a
    Explore at:
    Dataset updated
    Aug 16, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    The National Hydrography Dataset Plus (NHDplus) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US EPA Office of Water and the US Geological Survey, the NHDPlus provides mean annual and monthly flow estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses. For more information on the NHDPlus dataset see the NHDPlus v2 User Guide.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territories not including Alaska.Geographic Extent: The United States not including Alaska, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American SamoaProjection: Web Mercator Auxiliary Sphere Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: EPA and USGSUpdate Frequency: There is new new data since this 2019 version, so no updates planned in the futurePublication Date: March 13, 2019Prior to publication, the NHDPlus network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the NHDPlus Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, On or Off Network (flowlines only), Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original NHDPlus dataset. No data values -9999 and -9998 were converted to Null values for many of the flowline fields.What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer is limited to scales of approximately 1:1,000,000 or larger but a vector tile layer created from the same data can be used at smaller scales to produce a webmap that displays across the full range of scales. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute. Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map. Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class. Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.

  14. N

    USGS WaterWatch

    • catalog.newmexicowaterdata.org
    html
    Updated Dec 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    US Geological Survey (2023). USGS WaterWatch [Dataset]. https://catalog.newmexicowaterdata.org/dataset/usgs-waterwatch
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Dec 8, 2023
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    WaterWatch (http://waterwatch.usgs.gov) is a U.S. Geological Survey (USGS) World Wide Web site that displays maps, graphs, and tables describing real-time, recent, and past streamflow conditions for the United States. The real-time information generally is updated on an hourly basis. WaterWatch provides streamgage-based maps that show the location of more than 3,000 long-term (30 years or more) USGS streamgages; use colors to represent streamflow conditions compared to historical streamflow; feature a point-and-click interface allowing users to retrieve graphs of stream stage (water elevation) and flow; and highlight locations where extreme hydrologic events, such as floods and droughts, are occurring.

    The streamgage-based maps show streamflow conditions for real-time, average daily, and 7-day average streamflow. The real-time streamflow maps highlight flood and high flow conditions. The 7-day average streamflow maps highlight below-normal and drought conditions.

    WaterWatch also provides hydrologic unit code (HUC) maps. HUC-based maps are derived from the streamgage-based maps and illustrate streamflow conditions in hydrologic regions. These maps show average streamflow conditions for 1-, 7-, 14-, and 28-day periods, and for monthly average streamflow; highlight regions of low flow or hydrologic drought; and provide historical runoff and streamflow conditions beginning in 1901.

    WaterWatch summarizes streamflow conditions in a region (state or hydrologic unit) in terms of the long-term typical condition at streamgages in the region. Summary tables are provided along with time-series plots that depict variations through time. WaterWatch also includes tables of current streamflow information and locations of flooding.

  15. Aquifer Risk Map 2022

    • hub.arcgis.com
    • gis.data.ca.gov
    • +1more
    Updated Apr 4, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Water Boards (2021). Aquifer Risk Map 2022 [Dataset]. https://hub.arcgis.com/maps/b25cf272c7c7448f89dd4e41d86948fa
    Explore at:
    Dataset updated
    Apr 4, 2021
    Dataset provided by
    California State Water Resources Control Board
    Authors
    California Water Boards
    Area covered
    Description

    This is the 2022 version of the Aquifer Risk Map. The 2021 version of the Aquifer Risk Map is available here.This aquifer risk map is developed to fulfill requirements of SB-200 and is intended to help prioritize areas where domestic wells and state small water systems may be accessing raw source groundwater that does not meet primary drinking water standards (maximum contaminant level or MCL). In accordance with SB-200, the risk map is to be made available to the public and is to be updated annually starting January 1, 2021. The Fund Expenditure Plan states the risk map will be used by Water Boards staff to help prioritize areas for available SAFER funding. This is the final 2022 map based upon feedback received from the 2021 map. A summary of methodology updates to the 2022 map can be found here.This map displays raw source groundwater quality risk per square mile section. The water quality data is based on depth-filtered, declustered water quality results from public and domestic supply wells. The process used to create this map is described in the 2022 Aquifer Risk Map Methodology document. Data processing scripts are available on GitHub. Download/export links are provided in this app under the Data Download widget.This draft version was last updated December 1, 2021. Water quality risk: This layer contains summarized water quality risk per square mile section and well point. The section water quality risk is determined by analyzing the long-tern (20-year) section average and the maximum recent (within 5 years) result for all sampled contaminants. These values are compared to the MCL and sections with values above the MCL are “high risk”, sections with values within 80%-100% of the MCL are “medium risk” and sections with values below 80% of the MCL are “low risk”. The specific contaminants above or close to the MCL are listed as well. The water quality data is based on depth-filtered, de-clustered water quality results from public and domestic supply wells.Individual contaminants: This layer shows de-clustered water quality data for arsenic, nitrate, 1,2,3-trichloropropane, uranium, and hexavalent chromium per square mile section. Domestic Well Density: This layer shows the count of domestic well records per square mile. The domestic well density per square mile is based on well completion report data from the Department of Water Resources Online System for Well Completion Reports, with records drilled prior to 1970 removed and records of “destruction” removed.State Small Water Systems: This layer displays point locations for state small water systems based on location data from the Division of Drinking Water.Public Water System Boundaries: This layer displays the approximate service boundaries for public water systems based on location data from the Division of Drinking Water.Reference layers: This layer contains several reference boundaries, including boundaries of CV-SALTS basins with their priority status, Groundwater Sustainability Agency boundaries, census block group boundaries, county boundaries, and groundwater unit boundaries. ArcGIS Web Application

  16. f

    Water supply-based strategies, categories, and example cases in each...

    • plos.figshare.com
    xls
    Updated Jun 26, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Noah Silber-Coats; Emile Elias; Caiti Steele; Katherine Fernald; Mason Gagliardi; Aaron Hrozencik; Lucia Levers; Steve Ostoja; Lauren Parker; Jeb Williamson; Yiqing Yao (2024). Water supply-based strategies, categories, and example cases in each category. [Dataset]. http://doi.org/10.1371/journal.pwat.0000246.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 26, 2024
    Dataset provided by
    PLOS Water
    Authors
    Noah Silber-Coats; Emile Elias; Caiti Steele; Katherine Fernald; Mason Gagliardi; Aaron Hrozencik; Lucia Levers; Steve Ostoja; Lauren Parker; Jeb Williamson; Yiqing Yao
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Water supply-based strategies, categories, and example cases in each category.

  17. USA Flood Map

    • hub.arcgis.com
    • geohub-murfreesborotn.opendata.arcgis.com
    Updated Jun 30, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2015). USA Flood Map [Dataset]. https://hub.arcgis.com/maps/1b50b5db0eb140e5b622a4c8042b71ca
    Explore at:
    Dataset updated
    Jun 30, 2015
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This map shows current flood conditions in the United States using live data from the National Weather Service, including observed flooding locations, river and precipitation forecasts, and flood warning areas. For a map that focuses on more general weather reports and current radar, see our Severe Weather Map.About the dataStream Gauges: This is Esri's Live Stream Gauges layer, symbolized to show only those gauges that are currently at or above flood stage. Click on a gauge to see the current depth, flow rate, and alert level. Five day forecasts from Advanced Hydrologic Prediction Service are shown where available.Population Density: This is Esri's World Population Estimate, which models the likely population of each 250 meter square cell, globally. It provides import context to the map, showing where flooding is likely to have a human impact.Flood Warnings (short and long term): These weather alerts are NOAA Weather Warnings, Watches, and Advisory data provided through the Common Alerting Protocol (CAP) Alert system. The long term warnings (flood warnings) are done on a county basis, while the short term warnings (flash flood and marine warnings) are more spatially precise. 72-hour Precipitation Forecast: This is the Quantitative Precipitation Forecast (QPF) from NOAA's National Digital Forecast Database. By default it shows the predicted total over the next 72 hours, but this forecast can also be viewed in six hour intervals.

  18. USA Water Bodies

    • anrgeodata.vermont.gov
    • data.lojic.org
    • +1more
    Updated Apr 22, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2014). USA Water Bodies [Dataset]. https://anrgeodata.vermont.gov/maps/esri::usa-water-bodies/about
    Explore at:
    Dataset updated
    Apr 22, 2014
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer presents the water feature areas of the United States. It provides the water bodies for geographic display and analysis at regional levels.To download the data for this layer as a layer package for use in ArcGIS desktop applications, refer to USA National Atlas Water Feature Areas - Water Bodies.

  19. c

    Water-surface profile map files for the Mississippi River near Prairie...

    • s.cnmilf.com
    • data.usgs.gov
    • +1more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Water-surface profile map files for the Mississippi River near Prairie Island, Welch, Minnesota, 2019 [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/water-surface-profile-map-files-for-the-mississippi-river-near-prairie-island-welch-minnes
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Welch, Prairie Island Indian Community, Mississippi River, Minnesota
    Description

    Four digital water-surface profile maps for a 14-mile reach of the Mississippi River near Prairie Island in Welch, Minnesota from the confluence of the St. Croix River at Prescott, Wisconsin to upstream of the United States Army Corps of Engineers (USACE) Lock and Dam No. 3 in Welch, Minnesota, were created by the U.S. Geological Survey (USGS) in cooperation with the Prairie Island Indian Community. The water-surface profile maps depict estimates of the areal extent and depth of inundation corresponding to selected water levels (stages) at the USGS streamgage Mississippi River at Prescott, Wisconsin (USGS station number 05344500). Current conditions for estimating near-real-time areas of water inundation by use of USGS streamgage information may be obtained on the internet at http://waterdata.usgs.gov/. Water-surface profiles were computed for the stream reach using HEC-GeoRAS software by means of a one-dimensional step-backwater HEC-RAS hydraulic model using the steady-state flow computation option. The hydraulic model used in this study was previously created by the USACE . The original hydraulic model previously created extended beyond the 14-mile reach used in this study. After obtaining the hydraulic model from USACE, the HEC-RAS model was calibrated by using the most current stage-discharge relations at the USGS streamgage Mississippi River at Prescott, Wisconsin (USGS station number 05344500). The hydraulic model was then used to determine four water-surface profiles for flood stages referenced to 37.00, 39.00, 40.00, and 41.00-feet of stage at the USGS streamgage on the Mississippi River at Prescott, Wisconsin (USGS station number 05344500). The simulated water-surface profiles were then combined with a digital elevation model (DEM, derived from light detection and ranging (LiDAR) in Geographic Information System (GIS) data having a 0.35-foot vertical and 1.97-foot root mean square error horizontal resolution) in order to delineate the area inundated at each stage. The calibrated hydraulic model used to produce digital water-surface profile maps near Prairie Island, as part of the associated report, is documented in the U.S. Geological Survey Scientific Investigations Report 2021-5018 (https://doi.org/10.3133/ sir20215018). The data provided in this data release contains three zip files: 1) MissRiverPI_DepthGrids.zip, 2) MissRiverPI_InundationLayers.zip, and 3) ModelArchive.zip. The MissRiverPI_DepthGrids.zip and MissRiverPI_InundationLayers.zip files contain model output water-surface profile maps as shapefiles (.shp) and Keyhole Markup Language files (.kmz) that can be opened using Esri GIS systems (.shp files) or Google Earth (.kmz files), while the ModelArchive.zip contains model inputs, outputs, and calibration data used in creating the water-surface profiles maps.

  20. U

    Domestic well locations and populations served in the contiguous U.S.: 1990,...

    • data.usgs.gov
    • search.dataone.org
    • +2more
    Updated Aug 26, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Johnson Tyler D. (2020). Domestic well locations and populations served in the contiguous U.S.: 1990, Block-group method (BGM) map. [Dataset]. http://doi.org/10.5066/F7028PSX
    Explore at:
    Dataset updated
    Aug 26, 2020
    Dataset provided by
    United States Geological Survey
    Authors
    Johnson Tyler D.
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Time period covered
    Jan 1, 1990 - Dec 31, 1990
    Area covered
    Contiguous United States, United States
    Description

    In this dataset we present two maps that estimate the location and population served by domestic wells in the contiguous United States. The first methodology, called the “Block Group Method” or BGM, builds upon the original block-group data from the 1990 census (the last time the U.S. Census queried the population regarding their source of water) by incorporating higher resolution census block data. The second methodology, called the “Road-Enhanced Method” or REM, refines the locations by using a buffer expansion and shrinkage technique along roadways to define areas where domestic wells exist. The fundamental assumption with this method is that houses (and therefore domestic wells) are located near a named road. The results are presented as two nationally consistent domestic-well population datasets. While both methods can be considered valid, the REM map is more precise in locating domestic wells; the REM map had a smaller amount of spatial bias (nearly equal vs biased in type 1 erro ...

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
U.S. Geological Survey (2024). Data used to model and map lithium concentrations in groundwater used as drinking water for the conterminous United States [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/data-used-to-model-and-map-lithium-concentrations-in-groundwater-used-as-drinking-water-fo

Data used to model and map lithium concentrations in groundwater used as drinking water for the conterminous United States

Explore at:
2 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jul 6, 2024
Dataset provided by
United States Geological Surveyhttp://www.usgs.gov/
Area covered
United States, Contiguous United States
Description

This data release contains data used to develop models and maps that estimate the occurrence of lithium in groundwater used as drinking water throughout the conterminous United States. An extreme gradient boosting model was developed to estimate the most probable lithium concentration category (≤4, >4 to ≤10, >10 to ≤30 or >30 µg/L). The model uses lithium concentration data from wells located throughout the conterminous United States and predictor variables that are available as geospatial data. The model is included in this data release in the zipped folder named Model_Archive and was used to produce maps that are also included in this data release. The model input data (predictor variables) that were used to make the maps are within a zipped folder (Map_Input_Data.zip) that contains 20 tif-raster files, one for each model predictor variable. The map probability estimates that are outputs from the model are in a zipped folder (Map_Output_Data.zip) that contains 10 tif-raster files, two model estimate maps for each of the lithium concentration categories and the category with the highest probability for public supply well depths and domestic supply well depths.

Search
Clear search
Close search
Google apps
Main menu