5 datasets found
  1. The ULS23 Challenge Public Training Dataset

    • zenodo.org
    • data.niaid.nih.gov
    • +1more
    bin, zip
    Updated Nov 29, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Max de Grauw; Max de Grauw; Natália Alves; Natália Alves; Megan Schuurmans; Megan Schuurmans; Henkjan Huisman; Henkjan Huisman; Bram van Ginneken; Bram van Ginneken; Alessa Hering; Alessa Hering (2023). The ULS23 Challenge Public Training Dataset [Dataset]. http://doi.org/10.5281/zenodo.10035161
    Explore at:
    zip, binAvailable download formats
    Dataset updated
    Nov 29, 2023
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Max de Grauw; Max de Grauw; Natália Alves; Natália Alves; Megan Schuurmans; Megan Schuurmans; Henkjan Huisman; Henkjan Huisman; Bram van Ginneken; Bram van Ginneken; Alessa Hering; Alessa Hering
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    This dataset contains part of the imaging data for the Universal Lesion Segmentation Challenge (ULS23). It contains the lesion volumes-of-interest (VOI's) for the novel annotated data of this challenge. It consists of 750 lesions from the DeepLesion dataset, 744 bone and 124 pancreas lesions from the Radboudumc. Pancreas data was collected by Natália Alves, Megan Schuurmans and Henkjan Huisman. The annotations are made available through the Challenge repository on GitHub.

    The full training dataset:


    The Universal Lesion Segmentation 2023 (ULS23) data is licensed under CC BY-NC-SA 4.0

  2. Z

    The ULS23 Challenge Public Training Dataset Part 6

    • data.niaid.nih.gov
    • zenodo.org
    Updated Oct 31, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    de Grauw, Max; van Ginneken, Bram; Hering, Alessa (2023). The ULS23 Challenge Public Training Dataset Part 6 [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_10056234
    Explore at:
    Dataset updated
    Oct 31, 2023
    Dataset provided by
    Department of Medical Imaging, Radboud University Medical Center, The Netherlands
    Authors
    de Grauw, Max; van Ginneken, Bram; Hering, Alessa
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    This dataset contains part of the imaging data for the Universal Lesion Segmentation Challenge (ULS23). It contains lesion volumes-of-interest (VOI's) for part of the weakly annotated DeepLesion data. The annotations are made available through the Challenge repository on GitHub.The Universal Lesion Segmentation 2023 (ULS23) data is licensed under CC BY-NC-SA 4.0

  3. Z

    The ULS23 Challenge Public Training Dataset Part 4

    • nde-dev.biothings.io
    • data.niaid.nih.gov
    Updated Oct 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    de Grauw, Max (2023). The ULS23 Challenge Public Training Dataset Part 4 [Dataset]. https://nde-dev.biothings.io/resources?id=zenodo_10054701
    Explore at:
    Dataset updated
    Oct 30, 2023
    Dataset provided by
    de Grauw, Max
    Hering, Alessa
    Van Ginneken, Bram
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    This dataset contains part of the imaging data for the Universal Lesion Segmentation Challenge (ULS23). It contains lesion volumes-of-interest (VOI's) for part of the weakly annotated DeepLesion data. The annotations are made available through the Challenge repository on GitHub.The Universal Lesion Segmentation 2023 (ULS23) data is licensed under CC BY-NC-SA 4.0

  4. Z

    The ULS23 Challenge Public Training Dataset Part 3

    • data.niaid.nih.gov
    Updated Oct 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    de Grauw, Max; Van Ginneken, Bram; Hering, Alessa (2023). The ULS23 Challenge Public Training Dataset Part 3 [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_10054305
    Explore at:
    Dataset updated
    Oct 30, 2023
    Dataset provided by
    Department of Medical Imaging, Radboud University Medical Center, The Netherlands
    Authors
    de Grauw, Max; Van Ginneken, Bram; Hering, Alessa
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    This dataset contains part of the imaging data for the Universal Lesion Segmentation Challenge (ULS23). It contains lesion volumes-of-interest (VOI's) for previously released data. It consists of 76 lung lesions from the MDSC_Task06 dataset, 283 pancreas lesion from MDSC_Task07 and 133 colon lesions from MDSC_Task10, 558 abdominal lymph nodes, 379 mediastinal lymph nodes from the NIH-LN dataset. It also contains the weakly annotated CCC18 data, 1.211 lesions, and part of the DeepLesion dataset. The annotations are made available through the Challenge repository on GitHub.The Universal Lesion Segmentation 2023 (ULS23) data is licensed under CC BY-NC-SA 4.0

  5. The ULS23 Challenge Public Training Dataset Part 2

    • zenodo.org
    • data.niaid.nih.gov
    bin, zip
    Updated Oct 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Max de Grauw; Max de Grauw; Bram van Ginneken; Bram van Ginneken; Alessa Hering; Alessa Hering (2023). The ULS23 Challenge Public Training Dataset Part 2 [Dataset]. http://doi.org/10.5281/zenodo.10050960
    Explore at:
    bin, zipAvailable download formats
    Dataset updated
    Oct 30, 2023
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Max de Grauw; Max de Grauw; Bram van Ginneken; Bram van Ginneken; Alessa Hering; Alessa Hering
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    This dataset contains part of the imaging data for the Universal Lesion Segmentation Challenge (ULS23). It contains lesion volumes-of-interest (VOI's) for previously released data. It consists of 333 kidney lesions from the KiTS21 dataset, 2.246 lung lesion from LIDC-IDRI and 888 liver lesions from the LiTS challenge. The annotations are made available through the Challenge repository on GitHub.

    The Universal Lesion Segmentation 2023 (ULS23) data is licensed under CC BY-NC-SA 4.0

  6. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Max de Grauw; Max de Grauw; Natália Alves; Natália Alves; Megan Schuurmans; Megan Schuurmans; Henkjan Huisman; Henkjan Huisman; Bram van Ginneken; Bram van Ginneken; Alessa Hering; Alessa Hering (2023). The ULS23 Challenge Public Training Dataset [Dataset]. http://doi.org/10.5281/zenodo.10035161
Organization logo

The ULS23 Challenge Public Training Dataset

Explore at:
4 scholarly articles cite this dataset (View in Google Scholar)
zip, binAvailable download formats
Dataset updated
Nov 29, 2023
Dataset provided by
Zenodohttp://zenodo.org/
Authors
Max de Grauw; Max de Grauw; Natália Alves; Natália Alves; Megan Schuurmans; Megan Schuurmans; Henkjan Huisman; Henkjan Huisman; Bram van Ginneken; Bram van Ginneken; Alessa Hering; Alessa Hering
License

Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically

Description

This dataset contains part of the imaging data for the Universal Lesion Segmentation Challenge (ULS23). It contains the lesion volumes-of-interest (VOI's) for the novel annotated data of this challenge. It consists of 750 lesions from the DeepLesion dataset, 744 bone and 124 pancreas lesions from the Radboudumc. Pancreas data was collected by Natália Alves, Megan Schuurmans and Henkjan Huisman. The annotations are made available through the Challenge repository on GitHub.

The full training dataset:


The Universal Lesion Segmentation 2023 (ULS23) data is licensed under CC BY-NC-SA 4.0

Search
Clear search
Close search
Google apps
Main menu