This dataset contains locations and attributes of University and College, created as part of the DC Geographic Information System (DC GIS) for the Office of the Chief Technology Officer (OCTO) and participating D.C. government agencies. Information provided by OCTO, EMA, and other sources identified as University Areas and DC GIS staff geo-processed the data. This layer does not represent university areas contained in the campus plans from the DC Office of Zoning.
Updated as needed by TEBS-GIS using various sources.Can be downloaded from the GIS Data Portal here.Access directly in the TEBS-GIS database in SDE.LOCATIONS, SDE.College_University
Colleges and UniversitiesThis feature layer, utilizing data from the National Center for Education Statistics (NCES), displays colleges and universities in the U.S. and its territories. NCES uses the Integrated Postsecondary Education Data System (IPEDS) as the "primary source for information on U.S. colleges, universities, and technical and vocational institutions." According to NCES, this layer "contains directory information for every institution in the 2021-22 IPEDS universe. Includes name, address, city, state, zip code and various URL links to the institution's home page, admissions, financial aid offices and the net price calculator. Identifies institutions as currently active, institutions that participate in Title IV federal financial aid programs for which IPEDS is mandatory. It also includes variables derived from the 2021-22 Institutional Characteristics survey, such as control and level of institution, highest level and highest degree offered and Carnegie classifications."Gallaudet UniversityData currency: 2021Data source: IPEDS Complete Data FilesData modification: Removed fields with coded values and replaced with descriptionsFor more information: Integrated Postsecondary Education Data SystemSupport documentation: IPEDS Complete Data Files > Directory Information > DictionaryFor feedback, please contact: ArcGIScomNationalMaps@esri.comU.S. Department of Education (ED)Per ED, "ED's mission is to promote student achievement and preparation for global competitiveness by fostering educational excellence and ensuring equal access.ED was created in 1980 by combining offices from several federal agencies." ED's employees and budget "are dedicated to:Establishing policies on federal financial aid for education, and distributing as well as monitoring those funds.Collecting data on America's schools and disseminating research.Focusing national attention on key educational issues.Prohibiting discrimination and ensuring equal access to education."
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The California School Campus Database (CSCD) is now available for all public schools and colleges/universities in California.CSCD is a GIS data set that contains detailed outlines of the lands used by public schools for educational purposes. It includes campus boundaries of schools with kindergarten through 12th grade instruction, as well as colleges, universities, and public community colleges. Each is accurately mapped at the assessor parcel level. CSCD is the first statewide database of this information and is available for use without restriction.PURPOSEWhile data is available from the California Department of Education (CDE) at a point level, the data is simplified and often inaccurate.CSCD defines the entire school campus of all public schools to allow spatial analysis, including the full extent of lands used for public education in California. CSCD is suitable for a wide range of planning, assessment, analysis, and display purposes.The lands in CSCD are defined by the parcels owned, rented, leased, or used by a public California school district for the primary purpose of educating youth. CSCD provides vetted polygons representing each public school in the state.Data is also provided for community colleges and university lands as of the 2018 release.CSCD is suitable for a wide range of planning, assessment, analysis, and display purposes. It should not be used as the basis for official regulatory, legal, or other such governmental actions unless reviewed by the user and deemed appropriate for their use. See the user manual for more information.Link to California School Campus Database.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This layer shows and identifies the roads owned by West Chester University. | Publication Date: April 2018, Last Updated: April 2018 | West Chester University’s Geography and Planning department upholds its mission to provide spatial analysis expertise in order to solve many problems regarding spatial applications that facilitates research, sustainability goals, planning and communal integration.This dataset was curated by West Chester University’s Department of Geography and Planning and presented using West Chester University's Open GIS Data.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Lands approved or conveyed to the State of Alaska for a variety of reasons such as general purpose, expansion of communities, University of Alaska, and recreation.
This shape file characterizes the geographic representation of land parcels within the State of Alaska contained by the Ownership - State Owned, Managed - State Tentatively Approved or Patented category. It has been extracted from data sets used to produce the State status plats. This data set includes cases noted on the digital status plats up to one day prior to data extraction.
Each feature has an associated attribute record, including a Land Administration System (LAS) file-type and file-number which serves as an index to related LAS case-file information. Additional LAS case-file and customer information may be obtained at: http://dnr.alaska.gov/projects/las/ Those requiring more information regarding State land records should contact the Alaska Department of Natural Resources Public Information Center directly.
This is a map of Ducks Unlimited's university chapters in the United States. You can search the map by location or chapter name. Updated by the Youth and Education Staff.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
The College and University Campuses feature class/shapefile is composed of all Post Secondary Education facilities as defined by the Homeland Infrastructure Foundation-Level Data (HIFLD) Colleges and Universities and Supplemental Colleges point feature classes/shapefiles with a POPULATION value greater than or equal to 500. Also included is a subset of campuses with a POPULATION value under 500 or equal to -999. Included are Doctoral/Research Universities, Masters Colleges and Universities, Baccalaureate Colleges, Associates Colleges, Theological seminaries, Medical Schools and other health care professions, Schools of engineering and technology, business and management, art, music, design, Law schools, Teachers colleges, Tribal colleges, and other specialized institutions. Excluded are online institutions and administrative records as well as colleges and universities that do not have a verifiable campus map. Overall, this data layer covers all 50 states, as well as Puerto Rico and other assorted U.S. territories. This feature class/shapefile contains all MEDS/MEDS+ as approved by the National Geospatial-Intelligence Agency (NGA) Homeland Security Infrastructure Program (HSIP) Team. Complete field and attribute information is available in the ”Entities and Attributes” metadata section. Geographical coverage is depicted in the thumbnail above and detailed in the "Place Keyword" section of the metadata. This feature class does not have a relationship class but is related to Supplemental Colleges and Colleges and Universities. Note that attribution is derived from the Colleges and Universities and Supplemental Colleges feature classes/shapefiles. Refer to the metadata of those feature classes/shapefiles for further information regarding attribution. This release includes 21 new records and the removal of 88 records that are no longer applicable based on the sourced datasets.
The Digital Geomorphic-GIS Map of the Ocracoke Village to The Plains Area (1:10,000 scale 2006 mapping), North Carolina is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (ocis_geomorphology.gdb), and a 2.) Open Geospatial Consortium (OGC) geopackage. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (ocis_geomorphology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (ocis_geomorphology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (caha_fora_wrbr_geomorphology.pdf), 2.) the GRI ancillary map information document (.pdf) file (caha_fora_wrbr_geomorphology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (ocis_geomorphology_metadata_faq.pdf). Please read the caha_fora_wrbr_geomorphology.pdf for information pertaining to the proper extraction of the GIS data and other map files. QGIS software is available for free at: https://www.qgis.org/en/site/. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: East Carolina University. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (ocis_geomorphology_metadata.txt or ocis_geomorphology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:10,000 and United States National Map Accuracy Standards features are within (horizontally) 8.5 meters or 27.8 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Polygon geometry with attributes displaying colleges and universities in East Baton Rouge Parish, Louisiana.Metadata
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Students in geographic information systems and science (GIS) require significant experience outside of spatial analysis, cartography, and other traditional geographic topics. Computer science knowledge, skills, and practices exist as essential components of GIS practice, but coursework in this area is not universally offered in geography or GIS degrees. To support those interested in developing such courses, this paper describes the design and implementation of a server-focused course in WebGIS at University Texas A&M University. We provide an in-depth discussion of the equipment and resources required to build and operate an on-premise CyberGIS server infrastructure suitable for supporting such classes, providing comparisons with an equivalent solution built on Amazon Web Services (AWS). We consider the comparative costs of these systems, including benefits and drawbacks of each. In comparing these deployment options, we outline the technical expertise, monetary investments, operational expenses, and organizational strategies necessary to run server-based CyberGIS courses. Finally, we reflect on assignments and feedback from students and consider their experiences in a course of this nature. This article provides a resource for GIS instructors, academic departments, or other academic units to consider during infrastructure investment, curriculum redesign, the addition of courses in degree plans, or for the development of CyberGIS components.
The Unpublished Digital Geologic-GIS Map of the Cave Creek School Quadrangle, Texas is composed of GIS data layers and GIS tables in a 10.1 file geodatabase (ccsc_geology.gdb), a 10.1 ArcMap (.mxd) map document (ccsc_geology.mxd), individual 10.1 layer (.lyr) files for each GIS data layer, an ancillary map information document (lyjo_geology.pdf) which contains source map unit descriptions, as well as other source map text, figures and tables, metadata in FGDC text (.txt) and FAQ (.pdf) formats, and a GIS readme file (lyjo_geology_gis_readme.pdf). Please read the lyjo_geology_gis_readme.pdf for information pertaining to the proper extraction of the file geodatabase and other map files. To request GIS data in ESRI 10.1 shapefile format contact Stephanie O'Meara (stephanie.omeara@colostate.edu; see contact information below). Presently, a GRI Google Earth KMZ/KML product doesn't exist for this map. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Texas Bureau of Economic Geology, University of Texas at Austin. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (ccsc_geology_metadata.txt or ccsc_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in ArcGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data projection is NAD83, UTM Zone 14N. The data is within the area of interest of Lyndon B. Johnson National Historical Park.
The Unpublished Digital Geomorphic Map of the Shackleford Banks, North Carolina is composed of GIS data layers and GIS tables in a 10.1 file geodatabase (shkb_geology.gdb), a 10.1 ArcMap (.MXD) map document (shkb_geology.mxd), individual 10.1 layer (.LYR) files for each GIS data layer, an ancillary map information (.PDF) document (shkb_geology.pdf) which contains source map unit descriptions, as well as other source map text, figures and tables, metadata in FGDC text (.TXT) and FAQ (.HTML) formats, and a GIS readme file (calo_gis_readme.pdf). Please read the calo_gis_readme.pdf for information pertaining to the proper extraction of the file geodatabase and other map files. To request GIS data in ESRI 10.1 shapefile format contact Stephanie O’Meara (stephanie.o’meara@colostate.edu; see contact information below). The data is also available as a 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. Google Earth software is available for free at: http://www.google.com/earth/index.html. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: East Carolina University. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (shkb_metadata_faq.html; available at http://nrdata.nps.gov/geology/gri_data/gis/calo/shkb_metadata_faq.html). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:10,000 and United States National Map Accuracy Standards features are within (horizontally) 5.1 meters or 16.7 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.2. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data projection is NAD83, UTM Zone 18N, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth. The data is within the area of interest of Cape Lookout National Seashore.
Download In State Plane Projection Here. These are the areas for the Community Colleges serving Lake County. Update Frequency: This dataset is updated on a weekly basis.
COVID-19 data available by county from Johns Hopkins University (ArcGIS Blog).Johns Hopkins University is now providing data in a map layer by county for COVID-19 cases and deaths. This layer is created and maintained by the Center for Systems Science and Engineering (CSSE) at the Johns Hopkins University. This feature layer is supported by Esri Living Atlas team and JHU Data Services. See the FAQ or contact Johns Hopkins for more information._Communities around the world are taking strides in mitigating the threat that COVID-19 (coronavirus) poses. Geography and location analysis have a crucial role in better understanding this evolving pandemic.When you need help quickly, Esri can provide data, software, configurable applications, and technical support for your emergency GIS operations. Use GIS to rapidly access and visualize mission-critical information. Get the information you need quickly, in a way that’s easy to understand, to make better decisions during a crisis.Esri’s Disaster Response Program (DRP) assists with disasters worldwide as part of our corporate citizenship. We support response and relief efforts with GIS technology and expertise.More information...
Locations of higher education campuses within the City of Lynchburg. Includes locations for universities, colleges, and community colleges.
The establishment of a BES Multi-User Geodatabase (BES-MUG) allows for the storage, management, and distribution of geospatial data associated with the Baltimore Ecosystem Study. At present, BES data is distributed over the internet via the BES website. While having geospatial data available for download is a vast improvement over having the data housed at individual research institutions, it still suffers from some limitations. BES-MUG overcomes these limitations; improving the quality of the geospatial data available to BES researches, thereby leading to more informed decision-making. BES-MUG builds on Environmental Systems Research Institute's (ESRI) ArcGIS and ArcSDE technology. ESRI was selected because its geospatial software offers robust capabilities. ArcGIS is implemented agency-wide within the USDA and is the predominant geospatial software package used by collaborating institutions. Commercially available enterprise database packages (DB2, Oracle, SQL) provide an efficient means to store, manage, and share large datasets. However, standard database capabilities are limited with respect to geographic datasets because they lack the ability to deal with complex spatial relationships. By using ESRI's ArcSDE (Spatial Database Engine) in conjunction with database software, geospatial data can be handled much more effectively through the implementation of the Geodatabase model. Through ArcSDE and the Geodatabase model the database's capabilities are expanded, allowing for multiuser editing, intelligent feature types, and the establishment of rules and relationships. ArcSDE also allows users to connect to the database using ArcGIS software without being burdened by the intricacies of the database itself. For an example of how BES-MUG will help improve the quality and timeless of BES geospatial data consider a census block group layer that is in need of updating. Rather than the researcher downloading the dataset, editing it, and resubmitting to through ORS, access rules will allow the authorized user to edit the dataset over the network. Established rules will ensure that the attribute and topological integrity is maintained, so that key fields are not left blank and that the block group boundaries stay within tract boundaries. Metadata will automatically be updated showing who edited the dataset and when they did in the event any questions arise. Currently, a functioning prototype Multi-User Database has been developed for BES at the University of Vermont Spatial Analysis Lab, using Arc SDE and IBM's DB2 Enterprise Database as a back end architecture. This database, which is currently only accessible to those on the UVM campus network, will shortly be migrated to a Linux server where it will be accessible for database connections over the Internet. Passwords can then be handed out to all interested researchers on the project, who will be able to make a database connection through the Geographic Information Systems software interface on their desktop computer. This database will include a very large number of thematic layers. Those layers are currently divided into biophysical, socio-economic and imagery categories. Biophysical includes data on topography, soils, forest cover, habitat areas, hydrology and toxics. Socio-economics includes political and administrative boundaries, transportation and infrastructure networks, property data, census data, household survey data, parks, protected areas, land use/land cover, zoning, public health and historic land use change. Imagery includes a variety of aerial and satellite imagery. See the readme: http://96.56.36.108/geodatabase_SAL/readme.txt See the file listing: http://96.56.36.108/geodatabase_SAL/diroutput.txt
This dataset contains locations and attributes of University and College, created as part of the DC Geographic Information System (DC GIS) for the Office of the Chief Technology Officer (OCTO) and participating D.C. government agencies. Information provided by OCTO, EMA, and other sources identified as University Areas and DC GIS staff geo-processed the data. This layer does not represent university areas contained in the campus plans from the DC Office of Zoning.