34 datasets found
  1. a

    State Land All

    • gis.data.alaska.gov
    • arcgis.com
    • +3more
    Updated Apr 5, 2006
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alaska Department of Natural Resources ArcGIS Online (2006). State Land All [Dataset]. https://gis.data.alaska.gov/maps/SOA-DNR::state-land-all/about
    Explore at:
    Dataset updated
    Apr 5, 2006
    Dataset authored and provided by
    Alaska Department of Natural Resources ArcGIS Online
    Area covered
    Description

    Lands approved or conveyed to the State of Alaska for a variety of reasons such as general purpose, expansion of communities, University of Alaska, and recreation.

    This shape file characterizes the geographic representation of land parcels within the State of Alaska contained by the Ownership - State Owned, Managed - State Tentatively Approved or Patented category. It has been extracted from data sets used to produce the State status plats. This data set includes cases noted on the digital status plats up to one day prior to data extraction.

    Each feature has an associated attribute record, including a Land Administration System (LAS) file-type and file-number which serves as an index to related LAS case-file information. Additional LAS case-file and customer information may be obtained at: http://dnr.alaska.gov/projects/las/ Those requiring more information regarding State land records should contact the Alaska Department of Natural Resources Public Information Center directly.

  2. e

    Ohio Public Land Survey (PLS) Witness Tree GIS Shapefile

    • portal.edirepository.org
    • search.dataone.org
    zip
    Updated 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jillian Deines; Jason McLachlan; Angharad Hamlin; Daniel Williams; Jody Peters (2015). Ohio Public Land Survey (PLS) Witness Tree GIS Shapefile [Dataset]. http://doi.org/10.6073/pasta/6c8ccb2a4e385f757abbb276987833d7
    Explore at:
    zipAvailable download formats
    Dataset updated
    2015
    Dataset provided by
    EDI
    Authors
    Jillian Deines; Jason McLachlan; Angharad Hamlin; Daniel Williams; Jody Peters
    Time period covered
    1786 - 1865
    Area covered
    Description

    The United States Public Land Survey (PLS) divided land into one square mile units, termed sections. Surveyors used trees to locate section corners and other locations of interest (witness trees). As a result, a systematic ecological dataset was produced with regular sampling over a large region of the United States, beginning in Ohio in 1786 and continuing westward.
    We digitized and georeferenced archival hand drawn maps of these witness trees for 27 counties in Ohio. This dataset consists of a GIS point shapefile with 11,925 points located at section corners, recording 26,028 trees (up to four trees could be recorded at each corner). We retain species names given on each archival map key, resulting in 70 unique species common names. PLS records were obtained from hand-drawn archival maps of original witness trees produced by researchers at The Ohio State University in the 1960’s. Scans of these maps are archived as “The Edgar Nelson Transeau Ohio Vegetation Survey” at The Ohio State University: http://hdl.handle.net/1811/64106.
    The 27 counties are: Adams, Allen, Auglaize, Belmont, Brown, Darke, Defiance, Gallia, Guernsey, Hancock, Lawrence, Lucas, Mercer, Miami, Monroe, Montgomery, Morgan, Noble, Ottawa, Paulding, Pike, Putnam, Scioto, Seneca, Shelby, Williams, Wyandot. Coordinate Reference System: North American Datum 1983 (NAD83). This material is based upon work supported by the National Science Foundation under grants #DEB-1241874, 1241868, 1241870, 1241851, 1241891, 1241846, 1241856, 1241930.

  3. Land Cover 2050 - Global

    • rwanda.africageoportal.com
    • pacificgeoportal.com
    • +11more
    Updated Jul 9, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2021). Land Cover 2050 - Global [Dataset]. https://rwanda.africageoportal.com/datasets/cee96e0ada6541d0bd3d67f3f8b5ce63
    Explore at:
    Dataset updated
    Jul 9, 2021
    Dataset authored and provided by
    Esrihttp://esri.com/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Use this global model layer when performing analysis across continents. This layer displays a global land cover map and model for the year 2050 at a pixel resolution of 300m. ESA CCI land cover from the years 2010 and 2018 were used to create this prediction.Variable mapped: Projected land cover in 2050.Data Projection: Cylindrical Equal AreaMosaic Projection: Cylindrical Equal AreaExtent: Global Cell Size: 300mSource Type: ThematicVisible Scale: 1:50,000 and smallerSource: Clark UniversityPublication date: April 2021What you can do with this layer?This layer may be added to online maps and compared with the ESA CCI Land Cover from any year from 1992 to 2018. To do this, add Global Land Cover 1992-2018 to your map and choose the processing template (image display) from that layer called “Simplified Renderer.” This layer can also be used in analysis in ecological planning to find specific areas that may need to be set aside before they are converted to human use.Links to the six Clark University land cover 2050 layers in ArcGIS Living Atlas of the World:There are three scales (country, regional, and world) for the land cover and vulnerability models. They’re all slightly different since the country model can be more fine-tuned to the drivers in that particular area. Regional (continental) and global have more spatially consistent model weights. Which should you use? If you’re analyzing one country or want to make accurate comparisons between countries, use the country level. If mapping larger patterns, use the global or regional extent (depending on your area of interest). Land Cover 2050 - GlobalLand Cover 2050 - RegionalLand Cover 2050 - CountryLand Cover Vulnerability to Change 2050 GlobalLand Cover Vulnerability to Change 2050 RegionalLand Cover Vulnerability to Change 2050 CountryWhat these layers model (and what they don’t model)The model focuses on human-based land cover changes and projects the extent of these changes to the year 2050. It seeks to find where agricultural and urban land cover will cover the planet in that year, and what areas are most vulnerable to change due to the expansion of the human footprint. It does not predict changes to other land cover types such as forests or other natural vegetation during that time period unless it is replaced by agriculture or urban land cover. It also doesn’t predict sea level rise unless the model detected a pattern in changes in bodies of water between 2010 and 2018. A few 300m pixels might have changed due to sea level rise during that timeframe, but not many.The model predicts land cover changes based upon patterns it found in the period 2010-2018. But it cannot predict future land use. This is partly because current land use is not necessarily a model input. In this model, land set aside as a result of political decisions, for example military bases or nature reserves, may be found to be filled in with urban or agricultural areas in 2050. This is because the model is blind to the political decisions that affect land use.Quantitative Variables used to create ModelsBiomassCrop SuitabilityDistance to AirportsDistance to Cropland 2010Distance to Primary RoadsDistance to RailroadsDistance to Secondary RoadsDistance to Settled AreasDistance to Urban 2010ElevationGDPHuman Influence IndexPopulation DensityPrecipitationRegions SlopeTemperatureQualitative Variables used to create ModelsBiomesEcoregionsIrrigated CropsProtected AreasProvincesRainfed CropsSoil ClassificationSoil DepthSoil DrainageSoil pHSoil TextureWere small countries modeled?Clark University modeled some small countries that had a few transitions. Only five countries were modeled with this procedure: Bhutan, North Macedonia, Palau, Singapore and Vanuatu.As a rule of thumb, the MLP neural network in the Land Change Modeler requires at least 100 pixels of change for model calibration. Several countries experienced less than 100 pixels of change between 2010 & 2018 and therefore required an alternate modeling methodology. These countries are Bhutan, North Macedonia, Palau, Singapore and Vanuatu. To overcome the lack of samples, these select countries were resampled from 300 meters to 150 meters, effectively multiplying the number of pixels by four. As a result, we were able to empirically model countries which originally had as few as 25 pixels of change.Once a selected country was resampled to 150 meter resolution, three transition potential images were calibrated and averaged to produce one final transition potential image per transition. Clark Labs chose to create averaged transition potential images to limit artifacts of model overfitting. Though each model contained at least 100 samples of "change", this is still relatively little for a neural network-based model and could lead to anomalous outcomes. The averaged transition potentials were used to extrapolate change and produce a final hard prediction and risk map of natural land cover conversion to Cropland and Artificial Surfaces in 2050.39 Small Countries Not ModeledThere were 39 countries that were not modeled because the transitions, if any, from natural to anthropogenic were very small. In this case the land cover for 2050 for these countries are the same as the 2018 maps and their vulnerability was given a value of 0. Here were the countries not modeled:AndorraAntigua and BarbudaBarbadosCape VerdeComorosCook IslandsDjiboutiDominicaFaroe IslandsFrench GuyanaFrench PolynesiaGibraltarGrenadaGuamGuyanaIcelandJan MayenKiribatiLiechtensteinLuxembourgMaldivesMaltaMarshall IslandsMicronesia, Federated States ofMoldovaMonacoNauruSaint Kitts and NevisSaint LuciaSaint Vincent and the GrenadinesSamoaSan MarinoSeychellesSurinameSvalbardThe BahamasTongaTuvaluVatican CityIndex to land cover values in this dataset:The Clark University Land Cover 2050 projections display a ten-class land cover generalized from ESA Climate Change Initiative Land Cover. 1 Mostly Cropland2 Grassland, Scrub, or Shrub3 Mostly Deciduous Forest4 Mostly Needleleaf/Evergreen Forest5 Sparse Vegetation6 Bare Area7 Swampy or Often Flooded Vegetation8 Artificial Surface or Urban Area9 Surface Water10 Permanent Snow and Ice

  4. W

    Community Colleges

    • wifire-data.sdsc.edu
    • gis-calema.opendata.arcgis.com
    csv, esri rest +4
    Updated Jul 18, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CA Governor's Office of Emergency Services (2019). Community Colleges [Dataset]. https://wifire-data.sdsc.edu/dataset/community-colleges
    Explore at:
    esri rest, geojson, zip, html, csv, kmlAvailable download formats
    Dataset updated
    Jul 18, 2019
    Dataset provided by
    CA Governor's Office of Emergency Services
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description
    The California School Campus Database (CSCD) is now available for all public schools and colleges/universities in California.

    CSCD is a GIS data set that contains detailed outlines of the lands used by public schools for educational purposes. It includes campus boundaries of schools with kindergarten through 12th grade instruction, as well as colleges, universities, and public community colleges. Each is accurately mapped at the assessor parcel level. CSCD is the first statewide database of this information and is available for use without restriction.

    PURPOSE
    While data is available from the California Department of Education (CDE) at a point level, the data is simplified and often inaccurate.

    CSCD defines the entire school campus of all public schools to allow spatial analysis, including the full extent of lands used for public education in California. CSCD is suitable for a wide range of planning, assessment, analysis, and display purposes.

    The lands in CSCD are defined by the parcels owned, rented, leased, or used by a public California school district for the primary purpose of educating youth. CSCD provides vetted polygons representing each public school in the state.

    Data is also provided for community colleges and university lands as of the 2018 release.

    CSCD is suitable for a wide range of planning, assessment, analysis, and display purposes. It should not be used as the basis for official regulatory, legal, or other such governmental actions unless reviewed by the user and deemed appropriate for their use. See the user manual for more information.

  5. u

    Earth Data Analysis Center

    • gstore.unm.edu
    zip
    Updated Jan 27, 2014
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Earth Data Analysis Center (2014). Earth Data Analysis Center [Dataset]. https://gstore.unm.edu/apps/rgis/datasets/a8b934f4-4377-402d-b455-5e0ccc65ee36/metadata/FGDC-STD-001-1998.html
    Explore at:
    zip(14)Available download formats
    Dataset updated
    Jan 27, 2014
    Dataset provided by
    Earth Data Analysis Center
    Time period covered
    Nov 30, 2012
    Area covered
    New Mexico, West Bounding Coordinate -109.050113 East Bounding Coordinate -103.000673 North Bounding Coordinate 36.99943 South Bounding Coordinate 31.331905
    Description

    The Protected Areas Database of the United States (PAD-US) is a geodatabase, managed by USGS GAP, that illustrates and describes public land ownership, management and other conservation lands, including voluntarily provided privately protected areas. The State, Regional and LCC geodatabases contain two feature classes. The PADUS1_3_FeeEasement feature class and the national MPA feature class. Legitimate and other protected area overlaps exist in the full inventory, with Easements loaded on top of Fee. Parcel data within a protected area are dissolved in this file that powers the PAD-US Viewer. As overlaps exist, GAP creates separate analytical layers to summarize area statistics for "GAP Status Code" and "Owner Name". Contact the PAD-US Coordinator for more information. The lands included in PAD-US are assigned conservation measures that qualify their intent to manage lands for the preservation of biological diversity and to other natural, recreational and cultural uses; managed for these purposes through legal or other effective means. The geodatabase includes: 1) Geographic boundaries of public land ownership and voluntarily provided private conservation lands (e.g., Nature Conservancy Preserves); 2) The combination land owner, land manager, management designation or type, parcel name, GIS Acres and source of geographic information of each mapped land unit 3) GAP Status Code conservation measure of each parcel based on USGS National Gap Analysis Program (GAP) protection level categories which provide a measurement of management intent for long-term biodiversity conservation 4) IUCN category for a protected area's inclusion into UNEP-World Conservation Monitoring Centre's World Database for Protected Areas. IUCN protected areas are defined as, "A clearly defined geographical space, recognized, dedicated and managed, through legal or other effective means, to achieve the long-term conservation of nature with associated ecosystem services and cultural values" and are categorized following a classification scheme available through USGS GAP; 5) World Database of Protected Areas (WDPA) Site Codes linking the multiple parcels of a single protected area in PAD-US and connecting them to the Global Community. As legitimate and other overlaps exist in the combined inventory GAP creates separate analytical layers to obtain area statistics for "GAP Status Code" and "Owner Name". PAD-US version 1.3 Combined updates include: 1) State, local government and private protected area updates delivered September 2011 from PAD-US State Data Stewards: CO (Colorado State University), FL (Florida Natural Areas Inventory), ID (Idaho Fish and Game), MA (The Commonwealth's Office of Geographic Information Systems, MassGIS), MO (University of Missouri, MoRAP), MT (Montana Natural Heritage Program), NM (Natural Heritage New Mexico), OR (Oregon Natural Heritage Program), VA (Department of Conservation and Recreation, Virginia Natural Heritage Program). 2) Select local government (i.e. county, city) protected areas (3,632) across the country (to complement the current PAD-US inventory) aggregated by the Trust for Public Land (TPL) for their Conservation Almanac that tracks the conservation finance movement across the country. 3) A new Date of Establishment field that identifies the year an area was designated or otherwise protected, attributed for 86% of GAP Status Code 1 and 2 protected areas. Additional dates will be provided in future updates. 4) A national wilderness area update from wilderness.net 5) The Access field that describes public access to protected areas as defined by data stewards or categorical assignment by Primary Designation Type. . The new Access Source field documents local vs. categorical assignments. See the PAD-US Standard Manual for more information: gapanalysis.usgs.gov/padus 6) The transfer of conservation measures (i.e. GAP Status Codes, IUCN Categories) and documentation (i.e. GAP Code Source, GAP Code Date) from PAD-US version 1.2 or categorical assignments (see PAD-US Standard) when not provided by data stewards 7) Integration of non-sensitive National Conservation Easement Database (NCED) easements from August 2011, July 2012 with PAD-US version 1.2 easements. Duplicates were removed, unless 'Stacked' = Y and multiple easements exist. 8) Unique ID's transferred from NCED or requested for new easements. NCED and PAD-US are linked via Source UID in the PAD-US version 1.3 Easement feature class. 9) Official (member and eligible) MPAs from the NOAA MPA Inventory (March 2011, www.mpa.gov) translated into the PAD-US schema with conservation measures transferred from PAD-US version 1.2 or categorically assigned to new protected areas. Contact the PAD-US Coordinator for documentation of categorical GAP Status Code assignments for MPAs. 10) Identified MPA records that overlap existing protected areas in the PAD-US Fee feature class (i.e. PADUS Overlap field in MPA feature class). For example, many National Wildlife Refuges and National Parks are also MPAs and are represented in the PAD-US MPA and Fee feature classes.

  6. a

    State Selected Land

    • gis.data.alaska.gov
    • statewide-geoportal-1-soa-dnr.hub.arcgis.com
    • +2more
    Updated Apr 4, 2006
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alaska Department of Natural Resources ArcGIS Online (2006). State Selected Land [Dataset]. https://gis.data.alaska.gov/datasets/state-selected-land
    Explore at:
    Dataset updated
    Apr 4, 2006
    Dataset authored and provided by
    Alaska Department of Natural Resources ArcGIS Online
    Area covered
    Description

    Federal lands selected or top-filed by the state for a variety of reasons such as general purpose, expansion of communities, University of Alaska, and recreation.

    This shape file characterizes the geographic representation of land parcels within the State of Alaska contained by the Ownership - State Owned, Managed - State Selected Land category. It has been extracted from data sets used to produce the State status plats. This data set includes cases noted on the digital status plats up to one day prior to data extraction.

    Each feature has an associated attribute record, including a Land Administration System (LAS) file-type and file-number which serves as an index to related LAS case-file information. Additional LAS case-file and customer information may be obtained at: https://dnr.alaska.gov/projects/las/ Those requiring more information regarding State land records should contact the Alaska Department of Natural Resources Public Information Center directly.

  7. r

    India: Land Cover

    • opendata.rcmrd.org
    • goa-state-gis-esriindia1.hub.arcgis.com
    • +1more
    Updated Mar 21, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GIS Online (2022). India: Land Cover [Dataset]. https://opendata.rcmrd.org/maps/9aeb44fb438645e8ae8387231f5c2815
    Explore at:
    Dataset updated
    Mar 21, 2022
    Dataset authored and provided by
    GIS Online
    Area covered
    Description

    This layer is a time series of the annual ESA CCI (Climate Change Initiative) land cover maps of the world. ESA has produced land cover maps for the years since 1992. These are available at the European Space Agency Climate Change Initiative website.Time Extent: 1992-2019Cell Size: 300 meterSource Type: ThematicPixel Type: 8 Bit UnsignedData Projection: GCS WGS84Mosaic Projection: Web Mercator Auxiliary SphereExtent: GlobalSource: ESA Climate Change InitiativeUpdate Cycle: AnnualWhat can you do with this layer?This layer may be added to ArcGIS Online maps and applications and shown in a time series to watch a "time lapse" view of land cover change since 1992 for any part of the world. The same behavior exists when the layer is added to ArcGIS Pro.In addition to displaying all layers in a series, this layer may be queried so that only one year is displayed in a map. This layer can be used in analysis. For example, the layer may be added to ArcGIS Pro with a query set to display just one year. Then, an area count of land cover types may be produced for a feature dataset using the zonal statistics tool. Statistics may be compared with the statistics from other years to show a trend.To sum up area by land cover using this service, or any other analysis, be sure to use an equal area projection, such as Albers or Equal Earth.Different Classifications Available to MapFive processing templates are included in this layer. The processing templates may be used to display a smaller set of land cover classes.Cartographic Renderer (Default Template)Displays all ESA CCI land cover classes.*Forested lands TemplateThe forested lands template shows only forested lands (classes 50-90).Urban Lands TemplateThe urban lands template shows only urban areas (class 190).Converted Lands TemplateThe converted lands template shows only urban lands and lands converted to agriculture (classes 10-40 and 190).Simplified RendererDisplays the map in ten simple classes which match the ten simplified classes used in 2050 Land Cover projections from Clark University.Any of these variables can be displayed or analyzed by selecting their processing template. In ArcGIS Online, select the Image Display Options on the layer. Then pull down the list of variables from the Renderer options. Click Apply and Close. In ArcGIS Pro, go into the Layer Properties. Select Processing Templates from the left hand menu. From the Processing Template pull down menu, select the variable to display.Using TimeBy default, the map will display as a time series animation, one year per frame. A time slider will appear when you add this layer to your map. To see the most current data, move the time slider until you see the most current year.In addition to displaying the past quarter century of land cover maps as an animation, this time series can also display just one year of data by use of a definition query. For a step by step example using ArcGIS Pro on how to display just one year of this layer, as well as to compare one year to another, see the blog called Calculating Impervious Surface Change.Hierarchical ClassificationLand cover types are defined using the land cover classification (LCCS) developed by the United Nations, FAO. It is designed to be as compatible as possible with other products, namely GLCC2000, GlobCover 2005 and 2009.This is a heirarchical classification system. For example, class 60 means "closed to open" canopy broadleaved deciduous tree cover. But in some places a more specific type of broadleaved deciduous tree cover may be available. In that case, a more specific code 61 or 62 may be used which specifies "open" (61) or "closed" (62) cover.Land Cover ProcessingTo provide consistency over time, these maps are produced from baseline land cover maps, and are revised for changes each year depending on the best available satellite data from each period in time. These revisions were made from AVHRR 1km time series from 1992 to 1999, SPOT-VGT time series between 1999 and 2013, and PROBA-V data for years 2013, 2014 and 2015. When MERIS FR or PROBA-V time series are available, changes detected at 1 km are re-mapped at 300 m. The last step consists in back- and up-dating the 10-year baseline LC map to produce the 24 annual LC maps from 1992 to 2015.Source dataThe datasets behind this layer were extracted from NetCDF files and TIFF files produced by ESA. Years 1992-2015 were acquired from ESA CCI LC version 2.0.7 in TIFF format, and years 2016-2018 were acquired from version 2.1.1 in NetCDF format. These are downloadable from ESA with an account, after agreeing to their terms of use. https://maps.elie.ucl.ac.be/CCI/viewer/download.phpCitationESA. Land Cover CCI Product User Guide Version 2. Tech. Rep. (2017). Available at: maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdfMore technical documentation on the source datasets is available here:https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-land-cover?tab=doc*Index of all classes in this layer:10 Cropland, rainfed11 Herbaceous cover12 Tree or shrub cover20 Cropland, irrigated or post-flooding30 Mosaic cropland (>50%) / natural vegetation (tree, shrub, herbaceous cover) (<50%)40 Mosaic natural vegetation (tree, shrub, herbaceous cover) (>50%) / cropland (<50%)50 Tree cover, broadleaved, evergreen, closed to open (>15%)60 Tree cover, broadleaved, deciduous, closed to open (>15%)61 Tree cover, broadleaved, deciduous, closed (>40%)62 Tree cover, broadleaved, deciduous, open (15-40%)70 Tree cover, needleleaved, evergreen, closed to open (>15%)71 Tree cover, needleleaved, evergreen, closed (>40%)72 Tree cover, needleleaved, evergreen, open (15-40%)80 Tree cover, needleleaved, deciduous, closed to open (>15%)81 Tree cover, needleleaved, deciduous, closed (>40%)82 Tree cover, needleleaved, deciduous, open (15-40%)90 Tree cover, mixed leaf type (broadleaved and needleleaved)100 Mosaic tree and shrub (>50%) / herbaceous cover (<50%)110 Mosaic herbaceous cover (>50%) / tree and shrub (<50%)120 Shrubland121 Shrubland evergreen122 Shrubland deciduous130 Grassland140 Lichens and mosses150 Sparse vegetation (tree, shrub, herbaceous cover) (<15%)151 Sparse tree (<15%)152 Sparse shrub (<15%)153 Sparse herbaceous cover (<15%)160 Tree cover, flooded, fresh or brakish water170 Tree cover, flooded, saline water180 Shrub or herbaceous cover, flooded, fresh/saline/brakish water190 Urban areas200 Bare areas201 Consolidated bare areas202 Unconsolidated bare areas210 Water bodies

  8. p

    Fiji Land Cover 2050

    • pacificgeoportal.com
    • geoportal-pacificcore.hub.arcgis.com
    • +2more
    Updated Jun 26, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pacific GeoPortal - Core Organization (2024). Fiji Land Cover 2050 [Dataset]. https://www.pacificgeoportal.com/maps/3af72c223d1a4c729d4fd115022fc793
    Explore at:
    Dataset updated
    Jun 26, 2024
    Dataset authored and provided by
    Pacific GeoPortal - Core Organization
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This layer is a subset of Landcover 2050 Country focused on Fiji. Use this global model layer when performing analysis across continents. This layer displays a land cover map and model for the year 2050 at a pixel resolution of 300m for the Pacific Region. This is a subset of a Global Landcover 2050 dataset. You can access the global coverage from: Land Cover 2050 - Global ESA CCI land cover from the years 2010 and 2018 were used to create this prediction.Variable mapped: Projected land cover in 2050.Data Projection: Cylindrical Equal AreaMosaic Projection: Cylindrical Equal AreaExtent: Global Cell Size: 300mSource Type: ThematicVisible Scale: 1:50,000 and smallerSource: Clark UniversityPublication date: April 2021What you can do with this layer?This layer may be added to online maps and compared with the ESA CCI Land Cover from any year from 1992 to 2018. To do this, add Global Land Cover 1992-2018 to your map and choose the processing template (image display) from that layer called “Simplified Renderer.” This layer can also be used in analysis in ecological planning to find specific areas that may need to be set aside before they are converted to human use.Links to the six Clark University land cover 2050 layers in ArcGIS Living Atlas of the World:There are three scales (country, regional, and world) for the land cover and vulnerability models. They’re all slightly different since the country model can be more fine-tuned to the drivers in that particular area. Regional (continental) and global have more spatially consistent model weights. Which should you use? If you’re analyzing one country or want to make accurate comparisons between countries, use the country level. If mapping larger patterns, use the global or regional extent (depending on your area of interest). Land Cover 2050 - GlobalLand Cover 2050 - RegionalLand Cover 2050 - CountryLand Cover Vulnerability to Change 2050 GlobalLand Cover Vulnerability to Change 2050 RegionalLand Cover Vulnerability to Change 2050 CountryWhat these layers model (and what they don’t model)The model focuses on human-based land cover changes and projects the extent of these changes to the year 2050. It seeks to find where agricultural and urban land cover will cover the planet in that year, and what areas are most vulnerable to change due to the expansion of the human footprint. It does not predict changes to other land cover types such as forests or other natural vegetation during that time period unless it is replaced by agriculture or urban land cover. It also doesn’t predict sea level rise unless the model detected a pattern in changes in bodies of water between 2010 and 2018. A few 300m pixels might have changed due to sea level rise during that timeframe, but not many.The model predicts land cover changes based upon patterns it found in the period 2010-2018. But it cannot predict future land use. This is partly because current land use is not necessarily a model input. In this model, land set aside as a result of political decisions, for example military bases or nature reserves, may be found to be filled in with urban or agricultural areas in 2050. This is because the model is blind to the political decisions that affect land use.Quantitative Variables used to create ModelsBiomassCrop SuitabilityDistance to AirportsDistance to Cropland 2010Distance to Primary RoadsDistance to RailroadsDistance to Secondary RoadsDistance to Settled AreasDistance to Urban 2010ElevationGDPHuman Influence IndexPopulation DensityPrecipitationRegions SlopeTemperatureQualitative Variables used to create ModelsBiomesEcoregionsIrrigated CropsProtected AreasProvincesRainfed CropsSoil ClassificationSoil DepthSoil DrainageSoil pHSoil TextureWere small countries modeled?Clark University modeled some small countries that had a few transitions. Only five countries were modeled with this procedure: Bhutan, North Macedonia, Palau, Singapore and Vanuatu.As a rule of thumb, the MLP neural network in the Land Change Modeler requires at least 100 pixels of change for model calibration. Several countries experienced less than 100 pixels of change between 2010 & 2018 and therefore required an alternate modeling methodology. These countries are Bhutan, North Macedonia, Palau, Singapore and Vanuatu. To overcome the lack of samples, these select countries were resampled from 300 meters to 150 meters, effectively multiplying the number of pixels by four. As a result, we were able to empirically model countries which originally had as few as 25 pixels of change.Once a selected country was resampled to 150 meter resolution, three transition potential images were calibrated and averaged to produce one final transition potential image per transition. Clark Labs chose to create averaged transition potential images to limit artifacts of model overfitting. Though each model contained at least 100 samples of "change", this is still relatively little for a neural network-based model and could lead to anomalous outcomes. The averaged transition potentials were used to extrapolate change and produce a final hard prediction and risk map of natural land cover conversion to Cropland and Artificial Surfaces in 2050.39 Small Countries Not ModeledThere were 39 countries that were not modeled because the transitions, if any, from natural to anthropogenic were very small. In this case the land cover for 2050 for these countries are the same as the 2018 maps and their vulnerability was given a value of 0. Here were the countries not modeled:AndorraAntigua and BarbudaBarbadosCape VerdeComorosCook IslandsDjiboutiDominicaFaroe IslandsFrench GuyanaFrench PolynesiaGibraltarGrenadaGuamGuyanaIcelandJan MayenKiribatiLiechtensteinLuxembourgMaldivesMaltaMarshall IslandsMicronesia, Federated States ofMoldovaMonacoNauruSaint Kitts and NevisSaint LuciaSaint Vincent and the GrenadinesSamoaSan MarinoSeychellesSurinameSvalbardThe BahamasTongaTuvaluVatican CityIndex to land cover values in this dataset:The Clark University Land Cover 2050 projections display a ten-class land cover generalized from ESA Climate Change Initiative Land Cover. 1 Mostly Cropland2 Grassland, Scrub, or Shrub3 Mostly Deciduous Forest4 Mostly Needleleaf/Evergreen Forest5 Sparse Vegetation6 Bare Area7 Swampy or Often Flooded Vegetation8 Artificial Surface or Urban Area9 Surface Water10 Permanent Snow and Ice

  9. Land Cover 2050 - Regional

    • africageoportal.com
    • uneca.africageoportal.com
    • +8more
    Updated Jul 9, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2021). Land Cover 2050 - Regional [Dataset]. https://www.africageoportal.com/datasets/ec4d1d1fe03a4e62997a7a9397cf644d
    Explore at:
    Dataset updated
    Jul 9, 2021
    Dataset authored and provided by
    Esrihttp://esri.com/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Use this regional model layer when performing analysis within a single continent. This layer displays a single global land cover map that is modeled by region for the year 2050 at a pixel resolution of 300m. ESA CCI land cover from the years 2010 and 2018 were used to create this prediction.Variable mapped: Projected land cover in 2050.Data Projection: Cylindrical Equal AreaMosaic Projection: Cylindrical Equal AreaExtent: Global Cell Size: 300mSource Type: ThematicVisible Scale: 1:50,000 and smallerSource: Clark UniversityPublication date: April 2021What you can do with this layer?This layer may be added to online maps and compared with the ESA CCI Land Cover from any year from 1992 to 2018. To do this, add Global Land Cover 1992-2018 to your map and choose the processing template (image display) from that layer called “Simplified Renderer.” This layer can also be used in analysis in ecological planning to find specific areas that may need to be set aside before they are converted to human use.Links to the six Clark University land cover 2050 layers in ArcGIS Living Atlas of the World:There are three scales (country, regional, and world) for the land cover and vulnerability models. They’re all slightly different since the country model can be more fine-tuned to the drivers in that particular area. Regional (continental) and global have more spatially consistent model weights. Which should you use? If you’re analyzing one country or want to make accurate comparisons between countries, use the country level. If mapping larger patterns, use the global or regional extent (depending on your area of interest). Land Cover 2050 - GlobalLand Cover 2050 - RegionalLand Cover 2050 - CountryLand Cover Vulnerability to Change 2050 GlobalLand Cover Vulnerability to Change 2050 RegionalLand Cover Vulnerability to Change 2050 CountryWhat these layers model (and what they don’t model)The model focuses on human-based land cover changes and projects the extent of these changes to the year 2050. It seeks to find where agricultural and urban land cover will cover the planet in that year, and what areas are most vulnerable to change due to the expansion of the human footprint. It does not predict changes to other land cover types such as forests or other natural vegetation during that time period unless it is replaced by agriculture or urban land cover. It also doesn’t predict sea level rise unless the model detected a pattern in changes in bodies of water between 2010 and 2018. A few 300m pixels might have changed due to sea level rise during that timeframe, but not many.The model predicts land cover changes based upon patterns it found in the period 2010-2018. But it cannot predict future land use. This is partly because current land use is not necessarily a model input. In this model, land set aside as a result of political decisions, for example military bases or nature reserves, may be found to be filled in with urban or agricultural areas in 2050. This is because the model is blind to the political decisions that affect land use.Quantitative Variables used to create ModelsBiomassCrop SuitabilityDistance to AirportsDistance to Cropland 2010Distance to Primary RoadsDistance to RailroadsDistance to Secondary RoadsDistance to Settled AreasDistance to Urban 2010ElevationGDPHuman Influence IndexPopulation DensityPrecipitationRegions SlopeTemperatureQualitative Variables used to create ModelsBiomesEcoregionsIrrigated CropsProtected AreasProvincesRainfed CropsSoil ClassificationSoil DepthSoil DrainageSoil pHSoil TextureWere small countries modeled?Clark University modeled some small countries that had a few transitions. Only five countries were modeled with this procedure: Bhutan, North Macedonia, Palau, Singapore and Vanuatu.As a rule of thumb, the MLP neural network in the Land Change Modeler requires at least 100 pixels of change for model calibration. Several countries experienced less than 100 pixels of change between 2010 & 2018 and therefore required an alternate modeling methodology. These countries are Bhutan, North Macedonia, Palau, Singapore and Vanuatu. To overcome the lack of samples, these select countries were resampled from 300 meters to 150 meters, effectively multiplying the number of pixels by four. As a result, we were able to empirically model countries which originally had as few as 25 pixels of change.Once a selected country was resampled to 150 meter resolution, three transition potential images were calibrated and averaged to produce one final transition potential image per transition. Clark Labs chose to create averaged transition potential images to limit artifacts of model overfitting. Though each model contained at least 100 samples of "change", this is still relatively little for a neural network-based model and could lead to anomalous outcomes. The averaged transition potentials were used to extrapolate change and produce a final hard prediction and risk map of natural land cover conversion to Cropland and Artificial Surfaces in 2050.39 Small Countries Not ModeledThere were 39 countries that were not modeled because the transitions, if any, from natural to anthropogenic were very small. In this case the land cover for 2050 for these countries are the same as the 2018 maps and their vulnerability was given a value of 0. Here were the countries not modeled:AndorraAntigua and BarbudaBarbadosCape VerdeComorosCook IslandsDjiboutiDominicaFaroe IslandsFrench GuyanaFrench PolynesiaGibraltarGrenadaGuamGuyanaIcelandJan MayenKiribatiLiechtensteinLuxembourgMaldivesMaltaMarshall IslandsMicronesia, Federated States ofMoldovaMonacoNauruSaint Kitts and NevisSaint LuciaSaint Vincent and the GrenadinesSamoaSan MarinoSeychellesSurinameSvalbardThe BahamasTongaTuvaluVatican CityIndex to land cover values in this dataset:The Clark University Land Cover 2050 projections display a ten-class land cover generalized from ESA Climate Change Initiative Land Cover. 1 Mostly Cropland2 Grassland, Scrub, or Shrub3 Mostly Deciduous Forest4 Mostly Needleleaf/Evergreen Forest5 Sparse Vegetation6 Bare Area7 Swampy or Often Flooded Vegetation8 Artificial Surface or Urban Area9 Surface Water10 Permanent Snow and Ice

  10. Data from: Remapping California's Wildland Urban Interface: A Property-Level...

    • zenodo.org
    • data.niaid.nih.gov
    zip
    Updated Jan 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Aleksander K Berg; Aleksander K Berg; Dylan S. Connor; Dylan S. Connor; Peter J. Kedron; Peter J. Kedron; Amy E. Frazier; Amy E. Frazier (2025). Remapping California's Wildland Urban Interface: A Property-Level Time-Space Framework, 2000-2020 [Dataset]. http://doi.org/10.5281/zenodo.11043572
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jan 21, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Aleksander K Berg; Aleksander K Berg; Dylan S. Connor; Dylan S. Connor; Peter J. Kedron; Peter J. Kedron; Amy E. Frazier; Amy E. Frazier
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    California
    Description

    Maps of California's Wildland Urban Interface (WUI) generated using the Time Step Moving Window (TSMW) method outlined in the paper "Remapping California's Wildland Urban Interface: A Property-Level Time-Space Framework, 2000-2020".

    Please cite the original paper:

    Berg, Aleksander K, Dylan S. Connor, Peter Kedron, and Amy E. Frazier. 2024. “Remapping California’s Wildland Urban Interface: A Property-Level Time-Space Framework, 2000–2020.” Applied Geography 167 (June): 103271. https://doi.org/10.1016/j.apgeog.2024.103271.


    WUI maps were generated using Zillow ZTRAX parcel level attributes joined with FEMA USA Structures building footprints and the National Land Cover Database (NLCD).

    All files are geotiff rasters with WUI areas mapped at a ~30m resolution. A raster value of null indicates not WUI, raster value of 1 indicates intermix WUI, and a raster value of 2 indicates interface WUI.

    Three WUI maps were generated using structures built on of before the years indicated below:

    2000 - "CA_WUI_2000.tif"

    2010 - "CA_WUI_2010.tif"

    2020 - "CA_WUI_2020.tif"

    Acknowledgments -

    We thank our reviewers and editors for helping us to improve the manuscript. We gratefully acknowledge access to the Zillow Transaction and Assessment Dataset (ZTRAX) through a data use agreement between the University of Colorado Boulder, Arizona State University, and Zillow Group, Inc. More information on accessing the data can be found at http://www.zillow.com/ztrax. The results and opinions are those of the author(s) and do not reflect the position of Zillow Group. Support by Zillow Group Inc. is acknowledged. We thank Johannes Uhl and Stefan Leyk for their great work in preparing the original dataset. For feedback and comments, we also thank Billie Lee Turner II, Sharmistha Bagchi-Sen, and participants at the 2022 Global Conference on Economic Geography, the 2022 Young Economic Geographers Network meeting, and the 2023 annual meeting of the American Association of Geographers. Funding for our work has been provided by Arizona State University's Institute of Social Science Research (ISSR) Seed Grant Initiative. Additional funding was provided through the Humans, Disasters, and the Built Environment program of the National Science Foundation, Award Number 1924670 to the University of Colorado Boulder, the Institute of Behavioral Science, Earth Lab, the Cooperative Institute for Research in Environmental Sciences, the Grand Challenge Initiative and the Innovative Seed Grant program at the University of Colorado Boulder as well as the Eunice Kennedy Shriver National Institute of Child Health & Human Development of the National Institutes of Health under Award Numbers R21 HD098717 01A1 and P2CHD066613.

  11. VCRLTER-Northampton County GIS data archive, 1995.

    • search.dataone.org
    • portal.edirepository.org
    Updated Mar 10, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    John Porter; Anne Halpin; David Richardson; Guofan Shao (2014). VCRLTER-Northampton County GIS data archive, 1995. [Dataset]. https://search.dataone.org/view/knb-lter-vcr.223.2
    Explore at:
    Dataset updated
    Mar 10, 2014
    Dataset provided by
    Long Term Ecological Research Networkhttp://www.lternet.edu/
    Authors
    John Porter; Anne Halpin; David Richardson; Guofan Shao
    Time period covered
    Mar 22, 1995
    Area covered
    Description

    This data archive is a collection of GIS files and FGDC metadata prepared in 1995 for the Northampton County Planning Office by the Virginia Coast Reserve LTER project at the University of Virginia with support from the Virginia Department of Environmental Quality (DEQ) and the National Science Foundation (NSF). Original data sources include: 1:100,000-scale USGS digital line graph (DLG) hydrography and transportation data; 1:6,000-scale boundary, road, and railroad data for the town of Cape Charles from VDOT; 1:190,000-scale county-wide general soil map data and 1:15,540-scale detailed soil data for the Cape Charles area digitized from printed USDA soil survey maps; a land use and vegetation cover dataset (30 m. resolution) created by the VCRLTER derived from a 1993 Landsat Thematic Mapper satellite image; 1:20,000-scale plant association maps for 10 seaside barrier and marsh islands between Hog and Smith Islands, inclusive, prepared by Cheryl McCaffrey for TNC in 1975 and published in the Virginia Journal of Science in 1990; and 1993 colonial bird nesting site data collected by The Center for Conservation Biology (with partners The Nature Conservancy, College of William and Mary, University of Virginia, USFWS, VA-DCR, and VA-DGIF). Contents: HYDROGRAPHY Based on USGS 1:100,000 Digital Line Graph (DLG) data. Files: h100k_arc_u84 (streams, shorelines, etc.) and h100k_poly_u84 (marshes, mudflats, etc.). Note that the hydrographic data has been superseded by the more recent and more detailed USGS National Hydrography Dataset, available for the entire state of Virginia at "ftp://nhdftp.usgs.gov/DataSets/Staged/States/FileGDB/HighResolution/NHDH_VA_931v210.zip" (see http://nhd.usgs.gov/data.html for more information). A static 2013 version of the NHD data that includes shapefiles extracted from the original ESRI geodatabase format data and covering just the watersheds of the Eastern Shore of VA can also be found in the VCRLTER Data Catalog (dataset VCR14223). TRANSPORTATION Based on USGS 1:100,000 Digital Line Graph (DLG) data for the full county, and 1:6,000 VDOT data for the Cape Charles township. Files: 1:100k Transportation (lines) from USGS DLG data: rtf100k_arc_u84 (roads), rrf100k_arc_u84 (railroads), and mtf100k_arc_u84 (airports and utility transmission lines). Files: 1:6000 street, boundary, and rail line data for the town of Cape Charles, 1984, prepared by Virginia Department of Highways and Transportation Information Services (Division 1221 East Broad Street, Richmond, Virginia 23219). Streets correct through December 31,1983. Georeferencing corrected in 2014 for shapefiles only, using same methodology described for VCR14218 dataset. File : town_u84_adj (town_arc_u84old is the older unadjusted data). Note that the transportation data has been superseded by more recent and more detailed data contained in dataset VCR14222 of the VCRLTER Data Catalog. The VCR14222 data contains 2013 U.S. Census Bureau TIGER/Line road and airfield data supplemented by railroad and transmission lines digitized from high resolution VGIN-VBMP 2013 aerial imagery and additionally has boat launch locations not available here. SOILS General soil map for Northampton county (1:190k), and detailed soil map for Cape Charles and Cheriton areas (1:15,540) from published the USDA Soil Conservation Service's 1989 "Soil Survey of Northampton County, Virginia" digitized at UVA by Ray Dukes Smith: soilorig_poly_u84 (uses original shorelines from source maps), soil_poly_u84 (substitutes shorelines from 1993 landcover classification data), and cc_soil_poly_u84 (Cape Charles & Cheriton detailed data, map sheets 13 and 14). Note that the soil data has been superseded by more recent and more detailed SSURGO soil data from the USDA's Natural Resources Conservation Service (NRCS), which has seamless soil data from the 1:15,540 map series in tabular and GIS formats for the full county, as well as for all counties in VA and other states. A static 2013 version of the SSURGO data that contains merged data for Accomack and Northampton Counties can be found in the VCRLTER Data Catalog (dataset VCR14220). LANDUSE/LANDCOVER VCR Landuse and Vegetation Cover, 1993, created by Guofan Shao (VCRLTER) based on 30m resolution Landsat Thematic Mapper (TM) satellite imagery taken on July 28, 1993. Cropped to include just Northampton County. Landcover is divided into 5 classifications: (1) Forest or shrub, (2) Bare Land or Sand, (3) Planted Cropland, Grassland, or Upland Marsh, (4) Open Water, and (5) Low Salt Marsh. File = nhtm93s3_poly_u84. No spatial adjustments necessary. An outline of the county showing the shorelines based on the above 1993 TM classification is included as the shapefile:outline_poly_u84; however, no spatial adjustment has been applied. Note that a similar landuse/landcover classification based on the same... Visit https://dataone.org/datasets/knb-lter-vcr.223.2 for complete metadata about this dataset.

  12. Global Land Cover 1992-2020

    • cacgeoportal.com
    • climate.esri.ca
    • +4more
    Updated Apr 2, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2020). Global Land Cover 1992-2020 [Dataset]. https://www.cacgeoportal.com/datasets/1453082255024699af55c960bc3dc1fe
    Explore at:
    Dataset updated
    Apr 2, 2020
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer is a time series of the annual ESA CCI (Climate Change Initiative) land cover maps of the world. ESA has produced land cover maps for the years 1992-2020. These are available at the European Space Agency Climate Change Initiative website.Time Extent: 1992-2020Cell Size: 300 meter Source Type: ThematicPixel Type: 8 Bit UnsignedData Projection: GCS WGS84Mosaic Projection: Web Mercator Auxiliary Sphere Extent: GlobalSource: ESA Climate Change InitiativeUpdate Cycle: Annual until 2020, no updates thereafterWhat can you do with this layer? This layer may be added to ArcGIS Online maps and applications and shown in a time series to watch a "time lapse" view of land cover change since 1992 for any part of the world. The same behavior exists when the layer is added to ArcGIS Pro. In addition to displaying all layers in a series, this layer may be queried so that only one year is displayed in a map. This layer can be used in analysis. For example, the layer may be added to ArcGIS Pro with a query set to display just one year. Then, an area count of land cover types may be produced for a feature dataset using the zonal statistics tool. Statistics may be compared with the statistics from other years to show a trend. To sum up area by land cover using this service, or any other analysis, be sure to use an equal area projection, such as Albers or Equal Earth. Different Classifications Available to Map Five processing templates are included in this layer. The processing templates may be used to display a smaller set of land cover classes.Cartographic Renderer (Default Template)Displays all ESA CCI land cover classes.*Forested lands TemplateThe forested lands template shows only forested lands (classes 50-90).Urban Lands TemplateThe urban lands template shows only urban areas (class 190).Converted Lands TemplateThe converted lands template shows only urban lands and lands converted to agriculture (classes 10-40 and 190).Simplified RendererDisplays the map in ten simple classes which match the ten simplified classes used in 2050 Land Cover projections from Clark University.Any of these variables can be displayed or analyzed by selecting their processing template. In ArcGIS Online, select the Image Display Options on the layer. Then pull down the list of variables from the Renderer options. Click Apply and Close. In ArcGIS Pro, go into the Layer Properties. Select Processing Templates from the left hand menu. From the Processing Template pull down menu, select the variable to display. Using Time By default, the map will display as a time series animation, one year per frame. A time slider will appear when you add this layer to your map. To see the most current data, move the time slider until you see the most current year. In addition to displaying the past quarter century of land cover maps as an animation, this time series can also display just one year of data by use of a definition query. For a step by step example using ArcGIS Pro on how to display just one year of this layer, as well as to compare one year to another, see the blog called Calculating Impervious Surface Change. Hierarchical ClassificationLand cover types are defined using the land cover classification (LCCS) developed by the United Nations, FAO. It is designed to be as compatible as possible with other products, namely GLCC2000, GlobCover 2005 and 2009. This is a heirarchical classification system. For example, class 60 means "closed to open" canopy broadleaved deciduous tree cover. But in some places a more specific type of broadleaved deciduous tree cover may be available. In that case, a more specific code 61 or 62 may be used which specifies "open" (61) or "closed" (62) cover. Land Cover Processing To provide consistency over time, these maps are produced from baseline land cover maps, and are revised for changes each year depending on the best available satellite data from each period in time. These revisions were made from AVHRR 1km time series from 1992 to 1999, SPOT-VGT time series between 1999 and 2013, and PROBA-V data for years 2013, 2014 and 2015. When MERIS FR or PROBA-V time series are available, changes detected at 1 km are re-mapped at 300 m. The last step consists in back- and up-dating the 10-year baseline LC map to produce the 24 annual LC maps from 1992 to 2015. Source data The datasets behind this layer were extracted from NetCDF files and TIFF files produced by ESA. Years 1992-2015 were acquired from ESA CCI LC version 2.0.7 in TIFF format, and years 2016-2018 were acquired from version 2.1.1 in NetCDF format. These are downloadable from ESA with an account, after agreeing to their terms of use. https://maps.elie.ucl.ac.be/CCI/viewer/download.php CitationESA. Land Cover CCI Product User Guide Version 2. Tech. Rep. (2017). Available at: maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdfMore technical documentation on the source datasets is available here:https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-land-cover?tab=doc*Index of all classes in this layer:10 Cropland, rainfed11 Herbaceous cover12 Tree or shrub cover20 Cropland, irrigated or post-flooding30 Mosaic cropland (>50%) / natural vegetation (tree, shrub, herbaceous cover) (<50%)40 Mosaic natural vegetation (tree, shrub, herbaceous cover) (>50%) / cropland (<50%) 50 Tree cover, broadleaved, evergreen, closed to open (>15%)60 Tree cover, broadleaved, deciduous, closed to open (>15%)61 Tree cover, broadleaved, deciduous, closed (>40%)62 Tree cover, broadleaved, deciduous, open (15-40%)70 Tree cover, needleleaved, evergreen, closed to open (>15%)71 Tree cover, needleleaved, evergreen, closed (>40%)72 Tree cover, needleleaved, evergreen, open (15-40%)80 Tree cover, needleleaved, deciduous, closed to open (>15%)81 Tree cover, needleleaved, deciduous, closed (>40%)82 Tree cover, needleleaved, deciduous, open (15-40%)90 Tree cover, mixed leaf type (broadleaved and needleleaved)100 Mosaic tree and shrub (>50%) / herbaceous cover (<50%)110 Mosaic herbaceous cover (>50%) / tree and shrub (<50%)120 Shrubland121 Shrubland evergreen122 Shrubland deciduous130 Grassland140 Lichens and mosses150 Sparse vegetation (tree, shrub, herbaceous cover) (<15%)151 Sparse tree (<15%)152 Sparse shrub (<15%)153 Sparse herbaceous cover (<15%)160 Tree cover, flooded, fresh or brakish water170 Tree cover, flooded, saline water180 Shrub or herbaceous cover, flooded, fresh/saline/brakish water190 Urban areas200 Bare areas201 Consolidated bare areas202 Unconsolidated bare areas210 Water bodies

  13. BLM General Land Office Digitized Plat Maps of Bonners Ferry Idaho

    • catalog.data.gov
    • esri-olympia-office.hub.arcgis.com
    • +2more
    Updated Nov 30, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States General Land Office (2020). BLM General Land Office Digitized Plat Maps of Bonners Ferry Idaho [Dataset]. https://catalog.data.gov/dataset/blm-general-land-office-digitized-plat-maps-of-bonners-ferry-idaho
    Explore at:
    Dataset updated
    Nov 30, 2020
    Dataset provided by
    United States General Land Office
    Area covered
    Bonners Ferry, Idaho
    Description

    Donation sent to the University of Idaho Library Government Documents Librarian a CD containing General Land Office maps on it. A readme file on the CD contains this information:"I obtained the attached GLO maps from Mitch Price at River Design Group who obtained them from another source. These maps apparently do not have a date, I assume it was stripped off when they were rectified. These maps show the Great Northern Rail line, it arrived in Bonners Ferry in 1892. The Spokane International Railroad (Union Pacific purchased this line) built a bridge across the Kootenai R. in 1906." "I am a bit puzzled on the map dates, the Kootenai River Master Plan indicated these maps are 1862-65 but they also show the Great Northern Rail line but not the Spokane International Railroad which seems to place them somewhere between 1892 - 1906 unless perhaps they were revised at a later date."Gary Barton USGS Tacoma, WA 253-552-1613 officegbarton@usgs.gov

  14. a

    Land Use (1999) 37 Categories (Feature Service)

    • hub.arcgis.com
    • gis.data.mass.gov
    Updated Feb 1, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MassGIS - Bureau of Geographic Information (2024). Land Use (1999) 37 Categories (Feature Service) [Dataset]. https://hub.arcgis.com/maps/massgis::land-use-1999-37-categories-feature-service
    Explore at:
    Dataset updated
    Feb 1, 2024
    Dataset authored and provided by
    MassGIS - Bureau of Geographic Information
    Area covered
    Description

    This MassGIS Land Use data layer has 37 land use classifications interpreted from 1999 1:25,000 aerial photography. Photointerpretation and automation were done by the Resource Mapping Project at the University of Massachusetts, Amherst. All land use categories were aggregated from 104 categories originally defined in 1971 by Professor William MacConnell at the Dept. of Forestry at UMass Amherst.Please see https://www.mass.gov/info-details/massgis-data-land-use-1951-1999 for more details.Map service also available.

  15. d

    Data from: Verified Irrigated Agricultural Lands for the United States,...

    • catalog.data.gov
    • data.usgs.gov
    Updated Nov 20, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Verified Irrigated Agricultural Lands for the United States, 2002–17 [Dataset]. https://catalog.data.gov/dataset/verified-irrigated-agricultural-lands-for-the-united-states-200217
    Explore at:
    Dataset updated
    Nov 20, 2025
    Dataset provided by
    U.S. Geological Survey
    Area covered
    United States
    Description

    The spatial extents of verified irrigated lands were compiled from various federal and state sources across the nation and combined into a single Geographic Information System (GIS) geodatabase for the purpose of model training and validation. In cooperation with U.S. Geological Survey (USGS), researchers at the University of Wisconsin (UW) generated a nation-wide map of irrigated lands using remote-sensing techniques that will be incorporated into future irrigation water-use models. The verified spatial data varies in scope, accuracy, and time period represented, but in general represents GIS coverages (polygons) of agricultural land irrigated for at least some period during 2002–17. Data from 14 states were provided to UW (Arizona, California, Colorado, Florida, Georgia, Idaho, Illinois, Mississippi, Montana, New Mexico, Texas, Utah, Washington, and Wyoming). It is important to validate that the remote sensing techniques correctly identify both irrigated and non-irrigated land. Varying data sources prevent this approach from being applied throughout the United States, but most datasets used for validation include at least some “non irrigated” land identification.

  16. p

    Pacific Region Land Cover 1992-2020

    • pacificgeoportal.com
    • opendata.rcmrd.org
    • +3more
    Updated Sep 20, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pacific GeoPortal - Core Organization (2023). Pacific Region Land Cover 1992-2020 [Dataset]. https://www.pacificgeoportal.com/maps/e47019138ce648aab65d425af876dc55
    Explore at:
    Dataset updated
    Sep 20, 2023
    Dataset authored and provided by
    Pacific GeoPortal - Core Organization
    Area covered
    Description

    This layer is a subset of Global Landcover 1992- 2020 Layer. This layer is a time series of the annual ESA CCI (Climate Change Initiative) land cover maps of the world. ESA has produced land cover maps for the years 1992-2020. These are available at the European Space Agency Climate Change Initiative website.Time Extent: 1992-2020Cell Size: 300 meterSource Type: ThematicPixel Type: 8 Bit UnsignedData Projection: GCS WGS84Mosaic Projection: Web Mercator Auxiliary SphereExtent: GlobalSource: ESA Climate Change InitiativeUpdate Cycle: Annual until 2020, no updates thereafterWhat can you do with this layer?This layer may be added to ArcGIS Online maps and applications and shown in a time series to watch a "time lapse" view of land cover change since 1992 for any part of the world. The same behavior exists when the layer is added to ArcGIS Pro.In addition to displaying all layers in a series, this layer may be queried so that only one year is displayed in a map. This layer can be used in analysis. For example, the layer may be added to ArcGIS Pro with a query set to display just one year. Then, an area count of land cover types may be produced for a feature dataset using the zonal statistics tool. Statistics may be compared with the statistics from other years to show a trend.To sum up area by land cover using this service, or any other analysis, be sure to use an equal area projection, such as Albers or Equal Earth.Different Classifications Available to MapFive processing templates are included in this layer. The processing templates may be used to display a smaller set of land cover classes.Cartographic Renderer (Default Template)Displays all ESA CCI land cover classes.*Forested lands TemplateThe forested lands template shows only forested lands (classes 50-90).Urban Lands TemplateThe urban lands template shows only urban areas (class 190).Converted Lands TemplateThe converted lands template shows only urban lands and lands converted to agriculture (classes 10-40 and 190).Simplified RendererDisplays the map in ten simple classes which match the ten simplified classes used in 2050 Land Cover projections from Clark University.Any of these variables can be displayed or analyzed by selecting their processing template. In ArcGIS Online, select the Image Display Options on the layer. Then pull down the list of variables from the Renderer options. Click Apply and Close. In ArcGIS Pro, go into the Layer Properties. Select Processing Templates from the left hand menu. From the Processing Template pull down menu, select the variable to display.Using TimeBy default, the map will display as a time series animation, one year per frame. A time slider will appear when you add this layer to your map. To see the most current data, move the time slider until you see the most current year.In addition to displaying the past quarter century of land cover maps as an animation, this time series can also display just one year of data by use of a definition query. For a step by step example using ArcGIS Pro on how to display just one year of this layer, as well as to compare one year to another, see the blog called Calculating Impervious Surface Change.Hierarchical ClassificationLand cover types are defined using the land cover classification (LCCS) developed by the United Nations, FAO. It is designed to be as compatible as possible with other products, namely GLCC2000, GlobCover 2005 and 2009.This is a heirarchical classification system. For example, class 60 means "closed to open" canopy broadleaved deciduous tree cover. But in some places a more specific type of broadleaved deciduous tree cover may be available. In that case, a more specific code 61 or 62 may be used which specifies "open" (61) or "closed" (62) cover.Land Cover ProcessingTo provide consistency over time, these maps are produced from baseline land cover maps, and are revised for changes each year depending on the best available satellite data from each period in time. These revisions were made from AVHRR 1km time series from 1992 to 1999, SPOT-VGT time series between 1999 and 2013, and PROBA-V data for years 2013, 2014 and 2015. When MERIS FR or PROBA-V time series are available, changes detected at 1 km are re-mapped at 300 m. The last step consists in back- and up-dating the 10-year baseline LC map to produce the 24 annual LC maps from 1992 to 2015.Source dataThe datasets behind this layer were extracted from NetCDF files and TIFF files produced by ESA. Years 1992-2015 were acquired from ESA CCI LC version 2.0.7 in TIFF format, and years 2016-2018 were acquired from version 2.1.1 in NetCDF format. These are downloadable from ESA with an account, after agreeing to their terms of use. https://maps.elie.ucl.ac.be/CCI/viewer/download.phpCitationESA. Land Cover CCI Product User Guide Version 2. Tech. Rep. (2017). Available at: maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdfMore technical documentation on the source datasets is available here:https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-land-cover?tab=doc*Index of all classes in this layer:10 Cropland, rainfed11 Herbaceous cover12 Tree or shrub cover20 Cropland, irrigated or post-flooding30 Mosaic cropland (>50%) / natural vegetation (tree, shrub, herbaceous cover) (<50%)40 Mosaic natural vegetation (tree, shrub, herbaceous cover) (>50%) / cropland (<50%)50 Tree cover, broadleaved, evergreen, closed to open (>15%)60 Tree cover, broadleaved, deciduous, closed to open (>15%)61 Tree cover, broadleaved, deciduous, closed (>40%)62 Tree cover, broadleaved, deciduous, open (15-40%)70 Tree cover, needleleaved, evergreen, closed to open (>15%)71 Tree cover, needleleaved, evergreen, closed (>40%)72 Tree cover, needleleaved, evergreen, open (15-40%)80 Tree cover, needleleaved, deciduous, closed to open (>15%)81 Tree cover, needleleaved, deciduous, closed (>40%)82 Tree cover, needleleaved, deciduous, open (15-40%)90 Tree cover, mixed leaf type (broadleaved and needleleaved)100 Mosaic tree and shrub (>50%) / herbaceous cover (<50%)110 Mosaic herbaceous cover (>50%) / tree and shrub (<50%)120 Shrubland121 Shrubland evergreen122 Shrubland deciduous130 Grassland140 Lichens and mosses150 Sparse vegetation (tree, shrub, herbaceous cover) (<15%)151 Sparse tree (<15%)152 Sparse shrub (<15%)153 Sparse herbaceous cover (<15%)160 Tree cover, flooded, fresh or brakish water170 Tree cover, flooded, saline water180 Shrub or herbaceous cover, flooded, fresh/saline/brakish water190 Urban areas200 Bare areas201 Consolidated bare areas202 Unconsolidated bare areas210 Water bodies

  17. H

    Cross-CZO -- LiDAR, Land Cover, GIS/Map Data -- OpenTopography -- National...

    • hydroshare.org
    zip
    Updated Nov 21, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Center for Airborne Laser Mapping; Boulder Creek Critical Zone Observatory; Calhoun Critical Zone Observatory; University of Arizona; University of California Merced; Valles Caldera National Preserve; Bandelier National Monument; National Park Service; Jemez River Basin and Santa Catalina Mountains Critical Zone Observatory; Luquillo Critical Zone Observatory; Reynolds Creek CZO; Eel River CZO; Shale Hills CZO (2019). Cross-CZO -- LiDAR, Land Cover, GIS/Map Data -- OpenTopography -- National -- (2010-2017) [Dataset]. https://www.hydroshare.org/resource/4b7d49a5fc3a4a20a1e8dde4d2146f17
    Explore at:
    zip(3.9 KB)Available download formats
    Dataset updated
    Nov 21, 2019
    Dataset provided by
    HydroShare
    Authors
    National Center for Airborne Laser Mapping; Boulder Creek Critical Zone Observatory; Calhoun Critical Zone Observatory; University of Arizona; University of California Merced; Valles Caldera National Preserve; Bandelier National Monument; National Park Service; Jemez River Basin and Santa Catalina Mountains Critical Zone Observatory; Luquillo Critical Zone Observatory; Reynolds Creek CZO; Eel River CZO; Shale Hills CZO
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jul 1, 2010 - Jul 31, 2017
    Area covered
    Description

    Cross CZO LiDAR

  18. o

    Oregon Stewardship Database

    • geohub.oregon.gov
    • data.oregon.gov
    • +2more
    Updated Nov 2, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of Oregon (2015). Oregon Stewardship Database [Dataset]. https://geohub.oregon.gov/documents/50b2e2525f184c85bda1b1d8af17f649
    Explore at:
    Dataset updated
    Nov 2, 2015
    Dataset authored and provided by
    State of Oregon
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    This is a dataset download, not a document. The Open button will start the download.This data layer is an element of the Oregon GIS Framework. The Oregon Biodiversity Information Center (ORBIC), part of the Institute for Natural Resources (INR) within the Oregon University System, has been the steward of Oregon’s protected areas data since 1989. This data is incorporated into the NavigatOR GIS utility and the national US protected areas database maintained by the U.S. Geological Survey. New data in Oregon on conservation easements and newly developed protected area maps from local land trusts and County and City governments were incorporated in 2011-2013. The result is a very comprehensive map and protected areas database for Oregon. Updates and edits will continue to be made to improve the dataset.

  19. Land Cover Vulnerability Change 2050 - Country

    • angola.africageoportal.com
    • uneca.africageoportal.com
    • +6more
    Updated Jul 9, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2021). Land Cover Vulnerability Change 2050 - Country [Dataset]. https://angola.africageoportal.com/datasets/20bfd812017e4bc1a241d2581c156bcd
    Explore at:
    Dataset updated
    Jul 9, 2021
    Dataset authored and provided by
    Esrihttp://esri.com/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Use this country model layer when performing analysis within a single country. This layer displays predictions within each country of relative vulnerability to modification by humans by the year 2050. ESA CCI land cover maps from the years 2010 and 2018 were used to create these predictions. Variable mapped: Vulnerability of land cover to anthropogenic change by 2050.Data Projection: Cylindrical Equal AreaMosaic Projection: Cylindrical Equal AreaExtent: Global Cell Size: 300mSource Type: ThematicVisible Scale: 1:50,000 and smallerSource: Clark UniversityPublication date: April 2021Analysis: Optimized for analysis What you can do with this layer? This layer can be used in analysis, to estimate and compare vulnerability to land cover change globally due to expansion of human activity, by 2050. This layer is useful in ecological planning, helping to prioritize areas for conservation. Optimized for analysis means this layer does not have size constraints for analysis and it is recommended for multisource analysis with other layers optimized for analysis. See the Living Atlas Imagery Layers Optimized for Analysis Group for a complete list of imagery layers optimized for analysis. Links to the six Clark University land cover 2050 layers in ArcGIS Living Atlas of the World:There are three scales (country, regional, and global) for the land cover and vulnerability models. They’re all slightly different since the country model can be more fine-tuned to the drivers in that particular area. Regional (continental) and global have more spatially consistent model weights. Which should you use? If you’re analyzing one country or want to make accurate comparisons between proximate countries, use the country level. If mapping larger patterns or vastly separated countries, use the global or regional extent (depending on your area of interest). Land Cover 2050 - Global Land Cover 2050 - Regional Land Cover 2050 - Country Land Cover Vulnerability to Change 2050 Global Land Cover Vulnerability to Change 2050 Regional Land Cover Vulnerability to Change 2050 Country What these layers model (and what they don’t model) The model focuses on human-based land cover changes and projects the extent of these changes to the year 2050. It seeks to find where agricultural and urban land cover will cover the planet in that year, and what areas are most vulnerable to change due to the expansion of the human footprint. It does not predict changes to other land cover types such as forests or other natural vegetation during that time period unless it is replaced by agriculture or urban land cover. It also doesn’t predict sea level rise unless the model detected a pattern in changes in bodies of water between 2010 and 2018. A few 300m pixels might have changed due to sea level rise during that timeframe, but not many. The model predicts land cover changes based upon patterns it found in the period 2010-2018. But it cannot predict future land use. This is partly because current land use is not necessarily a model input. In this model, land set aside as a result of political decisions, for example military bases or nature reserves, may be found to be filled in with urban or agricultural areas in 2050. This is because the model is blind to the political decisions that affect land use. Quantitative Variables used to create ModelsBiomassCrop SuitabilityDistance to AirportsDistance to Cropland 2010Distance to Primary RoadsDistance to RailroadsDistance to Secondary RoadsDistance to Settled AreasDistance to Urban 2010ElevationGDPHuman Influence IndexPopulation DensityPrecipitationRegions SlopeTemperature Qualitative Variables used to create ModelsBiomesEcoregionsIrrigated CropsProtected AreasContinentCountryRainfed CropsSoil ClassificationSoil DepthSoil DrainageSoil pHSoil Texture

  20. a

    University Reserve Lands

    • hub.arcgis.com
    • data-cityofpg.opendata.arcgis.com
    Updated Feb 9, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Prince George (2016). University Reserve Lands [Dataset]. https://hub.arcgis.com/maps/CityofPG::university-reserve-lands
    Explore at:
    Dataset updated
    Feb 9, 2016
    Dataset authored and provided by
    City of Prince George
    License

    https://pgmapinfo.princegeorge.ca/opendata/CityofPrinceGeorge_Open_Government_License_Open_Data.pdfhttps://pgmapinfo.princegeorge.ca/opendata/CityofPrinceGeorge_Open_Government_License_Open_Data.pdf

    Area covered
    Description

    Lands reserved by the Crown for the University of Northern British Columbia

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Alaska Department of Natural Resources ArcGIS Online (2006). State Land All [Dataset]. https://gis.data.alaska.gov/maps/SOA-DNR::state-land-all/about

State Land All

Explore at:
364 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Apr 5, 2006
Dataset authored and provided by
Alaska Department of Natural Resources ArcGIS Online
Area covered
Description

Lands approved or conveyed to the State of Alaska for a variety of reasons such as general purpose, expansion of communities, University of Alaska, and recreation.

This shape file characterizes the geographic representation of land parcels within the State of Alaska contained by the Ownership - State Owned, Managed - State Tentatively Approved or Patented category. It has been extracted from data sets used to produce the State status plats. This data set includes cases noted on the digital status plats up to one day prior to data extraction.

Each feature has an associated attribute record, including a Land Administration System (LAS) file-type and file-number which serves as an index to related LAS case-file information. Additional LAS case-file and customer information may be obtained at: http://dnr.alaska.gov/projects/las/ Those requiring more information regarding State land records should contact the Alaska Department of Natural Resources Public Information Center directly.

Search
Clear search
Close search
Google apps
Main menu