This is a link to the Automated Geographic Reference Center (AGRC) that houses GIS data for the state of Utah. This includes geoscience, cadastre, elevation and terrain, digital aerial photography, roads, aquifer data, etc. Several GIS datasets used in the Utah FORGE project originated from this site.
This is a GIS point feature shapefile representing wells, and their temperatures, that are located in the general Utah FORGE area near Milford, Utah. There are also fields that represent interpolated temperature values at depths of 200 m, 1000 m, 2000 m, 3000 m, and 4000 m. in degrees Fahrenheit. The temperature values at specific depths as mentioned above were derived as follows. In cases where the well reached a given depth (200 m and 1, 2, 3, or 4 km), the temperature is the measured temperature. For the shallower wells (and at deeper depths in the wells reaching one or more of the target depths), temperatures were extrapolated from the temperature-depth profiles that appeared to have stable (re-equilibrated after drilling) and linear profiles within the conductive regime (i.e. below the water table or other convective influences such as shallow hydrothermal outflow from the Roosevelt Hydrothermal System). Measured temperatures/gradients from deeper wells (when available and reasonably close to a given well) were used to help constrain the extrapolation to greater depths. Most of the field names in the attribute table are intuitive, however HF = heat flow, intercept = the temperature at the surface (x-axis of the temperature-depth plots) based on the linear segment of the plot that was used to extrapolate the temperature profiles to greater depths, and depth_m is the total well depth. This information is also present in the shapefile metadata.
The Digital Geologic-GIS Map of Natural Bridges National Monument, Utah is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (nabr_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (nabr_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (nabr_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (nabr_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (nabr_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (nabr_geology_metadata_faq.pdf). Please read the nabr_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Michigan Technological University. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (nabr_geology_metadata.txt or nabr_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
The data for the Utah dataset was primarily compiled from the Utah Division of Water Resources, Utah Automated Geographic Reference Center. Please visit https://gis.utah.gov/data/ for the source data, data disclaimers and metadata if not available in these data layer files. Much of the metadata for the files in the dataset are complete and were imported with the original file. In cases where there are discrepancies, metadata have been added where appropriate.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This archive contains a geology map of the general Roosevelt Hot Springs region, both in PDF and ArcGIS geodatabase formats, that was created as part of the Utah FORGE project.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Database maintained at http://waterisotopes.org containing measurements of the stable H- and O-isotopes in water. This includes
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This data set represents the liquefaction potential for Box Elder, Cache, Davis, Salt Lake, Utah and Weber Counties. Maps were digitized by the AGRC and Utah Geological Survey (UGS) from original mylars provided by Utah State University (USU). The maps were published in four UGS Contract Reports in 1994.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The tectonic earthquake data are primarily from a Uniform Moment Magnitude Earthquake Catalog developed for Utah and its surrounding region by Arabasz and others (2016) for the time period 1850 through September 2012. For the map, we extended the catalog through December 2016 and expanded it to include earthquakes smaller than magnitude 2.9. MIS was excluded from the compilation of Arabasz and others (2016) but has been added to the map to show its significance in east-central Utah. Data for the seismic events plotted on the map are listed in two separate catalogs in the form of an ArcGIS feature class within a file geodatabase. The catalog files are available in the Utah Geospatial Resource Center (UGRC) State Geographic Information Database (SGID, https://gis.utah.gov/data/geoscience/) and at https://ugspub.nr.utah.gov/publications/open_file_reports/ofr-667/ofr-667.zip. The primary catalog used for the map, termed the Earthquake Catalog (EQ Catalog, Utah_EQcat_1850_2016), comprises tectonic earthquakes located within the “Utah Region” (lat. 36.75° to 42.50° N, long. 108.75° to 114.25° W) from 1850 through 2016. This region is the standard region used by the University of Utah Seismograph Stations (UUSS) for the compilation and reporting of earthquakes within and surrounding Utah. Note that the map covers most, but not all, of the Utah Region. The map delineates two areas in east-central Utah that are characterized by predominantly (more than 90%) MIS. All seismic events (including both MIS and tectonic earthquakes) located in these two areas are listed in a separate catalog, termed the Coal-Mining-Region Catalog (CMR Catalog)(Utah_CMRcat_1928_2016), which extends from 1928 (the year of the first located event) through 2016. The EQ and CMR catalogs are mutually exclusive. The EQ Catalog does not include tectonic earthquakes located within the two delineated areas of predominantly MIS. More information about the earthquake epicenter data is contained in UGS OFR 667 (https://ugspub.nr.utah.gov/publications/open_file_reports/ofr-667/ofr-667.pdf).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset represents areas proposed for Wilderness designation by former Utah representative Wayne Owens in U.S. House of Representatives Bill HR1500 (1991). It was commonly referred to as the 5.7 million acres for wilderness. Rep. Owens' staff created this data set by directing the University of Utah, Geography Department DIGIT Lab in modification of the Utah Wilderness Coalition Proposed Wilderness boundaries received digitally from the Wilderness Society. The UWC boundaries were published in Wilderness at the Edge (1990).
This is a zipped GIS compatible shapefile of gravity data points used in the Milford, Utah FORGE project as of March 21st, 2016. The shapefile is native to ArcGIS, but can be used with many GIS software packages. Additionally, there is a .dbf (dBase) file that contains the dataset which can be read with Microsoft Excel. The Data was downloaded from the PACES (Pan American Center for Earth and Environmental Studies) hosted by University of Texas El Paso. A readme file is included in the archive with abbreviation explanations and units.
The data for the Utah dataset was primarily compiled from the Utah Division of Water Resources, Utah Automated Geographic Reference Center. Please visit https://gis.utah.gov/data/ for the source data, data disclaimers and metadata if not available in these data layer files. Much of the metadata for the files in the dataset are complete and were imported with the original file. In cases where there are discrepancies, metadata have been added where appropriate.
This submission includes a gravity data in text format and as a GIS point shapefile and transient electromagnetic (TEM) raw data. Each text file additionally contains _location data (UTM Zone 12, NAD83) and elevation (meters) data for that station. The gravity data shapefile was in part downloaded from PACES, University of Texas at El Paso, http://gis.utep.edu/subpages/GMData.html, and in part collected by the Utah Geological Survey (UGS) as part of the DOE GTO supported Utah FORGE geothermal energy project near Milford, Utah. The PACES data were examined and scrubbed to eliminate any questionable data. A 2.67 g/cm^3 reduction density was used for the Bouguer correction. The attribute table column headers for the gravity data shapefile are explained below. There is also metadata attached to the GIS shapefile. name: the individual gravity station name. HAE: height above ellipsoid [meter] NGVD29: vertical datum for geoid [meter] obs: observed gravity ERRG: gravity measurement error [mGal] IZTC: inner zone terrain correction [mGal] OZTC: outer zone terrain correction [mGal] Gfa: free air gravity gSBGA: Bouguer horizontal slab sCBGA: Complete Bouguer anomaly
This is a link to Utah geology maps in both pdf and GIS formats. This includes the geology of the Utah FORGE area. This site is maintained by the Utah Geological Survey.
AuthorityIn the 1963 general session, the Utah State Legislature charged the Division of Water Resources with the responsibility of developing a State Water Plan. This plan is to coordinate and direct the activities of state and federal agencies concerned with Utah’s water resources. As a part of this objective, the Division of Water Resources collects water-related land use data for the entire state. This data includes the types and extent of irrigated crops as well as information concerning phreatophytes, wet/open water areas, dry land agriculture and urban areas.The data produced by the water-related land use program are used for various planning purposes. Some of these include: determining cropland water use, evaluating irrigated land losses and conversion to urban uses, planning for new water development, estimating irrigated acreages for any area, and developing water budgets. Additionally, the data are used by many other state and federal agencies.Previous MethodsThe land use inventory methods used by the division in conducting water-related land use studies have varied with regard to the procedures used and the precision obtained. During the 1960s and 70s, inventories were prepared using large format vertical-aerial photographs supplemented with field surveys to label boundaries, vegetation types, and other water use information.After identifying crops and labeling photographs, the information was transferred onto a base map and then planimetered or "dot-counted" to determine the acreage. Tables for individual townships and ranges were prepared showing the amount of land in each land use category within each section. Data were then available for use in preparing water budgets.In the early 1980s, the division began updating its methodology for collecting water-related land use data to take advantage of the rapidly growing fields of Remote Sensing and computerized Geographic Information Systems (GIS).For several years during the early 1980’s, the division contracted with the University of Utah Research Institute, Center for Remote Sensing and Cartography (CRSC), to prepare water-related land use inventories. During this period, water-related land use data was obtained by using high altitude color infrared photography and laboratory interpretation, with field checking.In March 1984, several division staff members visited the California Department of Water Resources to observe its methodology for collecting water-related land use data for state water planning purposes.Based on its review of the California methodology and its own experience, the division developed a water-related land use inventory program. This program included the use of 35mm slides, United States Geological Survey (USGS) 7-1/2 minute quadrangle maps, field-mapping using base maps produced from the 35mm photography and a computerized GIS to process, store and retrieve land use data.Areas for survey were first identified from previous land use studies and any other available information. The identified areas were then photographed using an aircraft carrying a high quality 35mm single lens reflex camera mounted to focus along a vertical axis to the earth. Photos were taken between 6,000 and 6,500 feet above the ground using a 24mm lens. This procedure allowed each slide to cover a little more than one square mile with approximately 30 percent overlap on the wide side of the slide and 5 percent on the slide's narrow side.The slides were then indexed according to a flight-line number, slide number, latitude and longitude. All 35mm slides were stored in files at the division offices and cataloged according to township, range and section, and quadrangle map location.Water-related land use areas were then transferred from the slide to USGS 7-1/2 minute quadrangle maps using a standard slide projector with a 100-200mm zoom lens. This step allowed the technician to project the slide onto the back of a quadrangle map. The image showing through the map was adjusted to the map scale with the zoom lens. Field boundaries and other water-use boundaries were then traced on the 7-1/2 minute quadrangle map.Next, a team was sent to use the map in the field to check the boundaries and current year land use field data on the 7-1/2 minute quadrangles.The final step was to digitize and process the field data using ARC/INFO software developed by Environmental Systems Research Institute (ESRI).Starting in 2000 with the land use survey of the Uintah Basin, the division further improved its land use program by using digital data for the purposes of outlining agricultural and other land cover boundaries. The division used satellite data, USGS Digital Orthophoto Quadrangles (DOQs), National Agricultural Imagery Program (NAIP), and other digital images in a heads-up digitizing mode for this process. This allowed the division to use multiple technicians for the digitizing process.Digitizing was done as line and polygon files using ArcView 3.2 with a satellite image, DOQ or NAIP image as a background with other layers added for reference. Boundary files were created in logical groups so that the process of edge-matching along quad lines was eliminated and precision increased. Subsequent inventories were digitized in the ArcMap 9.x software versions. Using the latest statewide NAIP Imagery and ArcGIS 10, all boundaries of individual agricultural fields, urban areas, and significant riparian areas are precisely digitized.Once the process of boundary digitizing is done, the polygons are loaded onto tablet PCs. Field crews are then sent to field check the crop and irrigation type for each agricultural polygon and label the shapefiles accordingly. Each tablet PC is attached to a GPS unit for real-time tracking to continuously update the field crew’s location during the field labeling process. This improved process has saved the division much time and money and even greater savings will be realized as the new statewide field boundaries are completed.Once processed and quality checked, the data is filed in the State Geographic Information Database (SGID) maintained by the State Automated Geographic Reference Center (AGRC). Once in the SGID, the data becomes available to the public. At this point, the data is also ready for use in preparing various planning studies.Present Methodology2017 marked the first year of using the CDL Method for the whole state of Utah. This method utilizes the Cropland Data Layer from the USDA's National Ag. Statistics Service which provides acreage estimates major commodities and to produce crop-specific geo-referenced products at 30m resolution. The CDL Method utilizes past line work digitized by the division and reconciles changes that may have occurred, including new crop types or ag-to-urban conversions.In conducting water-related land use inventories, the division attempts to inventory all lands or areas that consume or evaporate water other than natural precipitation. Areas not inventoried are mainly desert, rangeland and forested areas.Wet/open water areas and dry land agriculture areas are mapped if they are within or border irrigated lands. As a result, the numbers of acres of wet/open water areas and dry land agriculture reported by the division may not represent all such areas in a basin or county.During land use inventories, the division uses 11 hydrologic basins as the basic collection units. County data is obtained from the basin data. The water-related land use data collected statewide covers more than 4.3 million acres of dry and irrigated agricultural land. This represents about 8 percent of the total land area in the state.Due to changes in methodology, improvements in imagery, and upgrades in software and hardware, increasingly more refined inventories have been made in each succeeding year of the Water-Related Land Use Inventory. While this improves the data we report, it also makes comparisons to past years difficult. Making comparisons between datasets is still useful; however, increases or decreases in acres reported should not be construed to represent definite trends or total amounts of change up or down. To estimate such trends or change, more analysis is required.
This dataset depicts the cooperative interagency 1:24,000 scale land ownership status for the State of Utah. Administrative ownership polygons are updated by The State of Utah School and Institutional Trust Lands Administration (SITLA) and the United States Bureau of Land Management (BLM) Salt Lake City office on a regular basis. Revisions are posted monthly. This data was originally digitized for the 1993 U. S. Fish and Wildlife Utah GAP Analysis project by the Remote Sensing and GIS Laboratories, Department of Geography and Earth Resources, Utah State University (RSGIS/USU). Maintenance of this data layer is performed by a cooperative federal and state effort. The Utah School and Institutional Trust Lands Administration (SITLA) revises this data regularly to reflect changes in State Trust Lands, other State Land and Private Land as needed. The BLM revises this data regularly to reflect changes in Federal Land as needed. Other information is edited and updated as needed but not on a regular schedule.
This archive contains a terrain slope image, in units of degrees, of the Utah FORGE area near Roosevelt Hot springs. The data was derived from 0.5 m resolution LiDAR DEM data and is in a GeoTiff format. It was processed using ArcGIS.
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
Authority In the 1963 general session, the Utah State Legislature charged the Division of Water Resources with the responsibility of developing a State Water Plan. This plan is to coordinate and direct the activities of state and federal agencies concerned with Utah’s water resources. As a part of this objective, the Division of Water Resources collects water-related land use data for the entire state. This data includes the types and extent of irrigated crops as well as information concerning phreatophytes, wet/open water areas, dry land agriculture and urban areas. The data produced by the water-related land use program are used for various planning purposes. Some of these include: determining cropland water use, evaluating irrigated land losses and conversion to urban uses, planning for new water development, estimating irrigated acreages for any area, and developing water budgets. Additionally, the data are used by many other state and federal agencies. Previous Methods The land use inventory methods used by the division in conducting water-related land use studies have varied with regard to the procedures used and the precision obtained. During the 1960s and 70s, inventories were prepared using large format vertical-aerial photographs supplemented with field surveys to label boundaries, vegetation types, and other water use information. After identifying crops and labeling photographs, the information was transferred onto a base map and then planimetered or "dot-counted" to determine the acreage. Tables for individual townships and ranges were prepared showing the amount of land in each land use category within each section. Data were then available for use in preparing water budgets. In the early 1980s, the division began updating its methodology for collecting water-related land use data to take advantage of the rapidly growing fields of Remote Sensing and computerized Geographic Information Systems (GIS). For several years during the early 1980’s, the division contracted with the University of Utah Research Institute, Center for Remote Sensing and Cartography (CRSC), to prepare water-related land use inventories. During this period, water-related land use data was obtained by using high altitude color infrared photography and laboratory interpretation, with field checking. In March 1984, several division staff members visited the California Department of Water Resources to observe its methodology for collecting water-related land use data for state water planning purposes. Based on its review of the California methodology and its own experience, the division developed a water-related land use inventory program. This program included the use of 35mm slides, United States Geological Survey (USGS) 7-1/2 minute quadrangle maps, field-mapping using base maps produced from the 35mm photography and a computerized GIS to process, store and retrieve land use data. Areas for survey were first identified from previous land use studies and any other available information. The identified areas were then photographed using an aircraft carrying a high quality 35mm single lens reflex camera mounted to focus along a vertical axis to the earth. Photos were taken between 6,000 and 6,500 feet above the ground using a 24mm lens. This procedure allowed each slide to cover a little more than one square mile with approximately 30 percent overlap on the wide side of the slide and 5 percent on the slide's narrow side. The slides were then indexed according to a flight-line number, slide number, latitude and longitude. All 35mm slides were stored in files at the division offices and cataloged according to township, range and section, and quadrangle map location. Water-related land use areas were then transferred from the slide to USGS 7-1/2 minute quadrangle maps using a standard slide projector with a 100-200mm zoom lens. This step allowed the technician to project the slide onto the back of a quadrangle map. The image showing through the map was adjusted to the map scale with the zoom lens. Field boundaries and other water-use boundaries were then traced on the 7-1/2 minute quadrangle map. Next, a team was sent to use the map in the field to check the boundaries and current year land use field data on the 7-1/2 minute quadrangles. The final step was to digitize and process the field data using ARC/INFO software developed by Environmental Systems Research Institute (ESRI). Starting in 2000 with the land use survey of the Uintah Basin, the division further improved its land use program by using digital data for the purposes of outlining agricultural and other land cover boundaries. The division used satellite data, USGS Digital Orthophoto Quadrangles (DOQs), National Agricultural Imagery Program (NAIP), and other digital images in a heads-up digitizing mode for this process. This allowed the division to use multiple technicians for the digitizing process. Digitizing was done as line and polygon files using ArcView 3.2 with a satellite image, DOQ or NAIP image as a background with other layers added for reference. Boundary files were created in logical groups so that the process of edge-matching along quad lines was eliminated and precision increased. Subsequent inventories were digitized in the ArcMap 9.x software versions. Present Methodology Using the latest statewide NAIP Imagery and ArcGIS 10, all boundaries of individual agricultural fields, urban areas, and significant riparian areas are precisely digitized. Once the process of boundary digitizing is done, the polygons are loaded onto tablet PCs. Field crews are then sent to field check the crop and irrigation type for each agricultural polygon and label the shapefiles accordingly. Each tablet PC is attached to a GPS unit for real-time tracking to continuously update the field crew’s location during the field labeling process. This improved process has saved the division much time and money and even greater savings will be realized as the new statewide field boundaries are completed. Once processed and quality checked, the data is filed in the State Geographic Information Database (SGID) maintained by the State Automated Geographic Reference Center (AGRC). Once in the SGID, the data becomes available to the public. At this point, the data is also ready for use in preparing various planning studies. In conducting water-related land use inventories, the division attempts to inventory all lands or areas that consume or evaporate water other than natural precipitation. Areas not inventoried are mainly desert, rangeland and forested areas. Wet/open water areas and dry land agriculture areas are mapped if they are within or border irrigated lands. As a result, the numbers of acres of wet/open water areas and dry land agriculture reported by the division may not represent all such areas in a basin or county. During land use inventories, the division uses 11 hydrologic basins as the basic collection units. County data is obtained from the basin data. The water-related land use data collected statewide covers more than 4.3 million acres of dry and irrigated agricultural land. This represents about 8 percent of the total land area in the state. Due to changes in methodology, improvements in imagery, and upgrades in software and hardware, increasingly more refined inventories have been made in each succeeding year of the Water-Related Land Use Inventory. While this improves the data we report, it also makes comparisons to past years difficult. Making comparisons between datasets is still useful; however, increases or decreases in acres reported should not be construed to represent definite trends or total amounts of change up or down. To estimate such trends or change, more analysis is required.
UTA TRAX Light Rail Stations Point.57 UTA TRAX station points. Stations include: Library, Trolley, 900 East, Stadium, Meadowbrook, Murray North, Murray Central, Fashion Place West, Midvale Fort Union, Midvale Center, Historic Sandy, Sandy Civic Center, Ballpark, Central Pointe, Millcreek, City Center, Gallivan Plaza, Temple Square, Arena, Courthouse, University South Campus, University Medical Center, Fort Douglas, 900 South, Sandy Expo, Old Greektown, Salt Lake Central, Planetarium, Draper Town Center, Kimballs Lane, Crescent View, Central Pointe Sugarhouse, Daybreak Parkway, South Jordan Parkway, 5600 W. Old Bingham Highway, 4800 W. Old Bingham Hwy, Jordan Valley, 2700 W. Sugar Factory Road, West Jordan City Center, Historic Gardner, Bingham Junction, West Valley Central, Decker Lane, Redwood Junction, River Trail, South Salt Lake City, 300 East, 500 East, 700 East, Sugarmont, Fairmont, North Temple Bridge, Jackson/Euclid, Fairpark, Power, 1940 W. North Temple, Airport, 600 South
Some of the highest grade uranium (U) deposits in the United States are hosted by solution-collapse breccia pipes in the Grand Canyon region of northern Arizona. These structures are named for their vertical, pipe-like shape and the broken rock (breccia) that fills them. Hundreds, perhaps thousands, of these structures exist. Not all of the breccia pipes are mineralized; only a small percentage of the identified breccia pipes are known to contain an economic uranium deposit. An unresolved question is how many undiscovered U-bearing breccia pipes of this type exist in northern Arizona, in the region sometimes referred to as the “Arizona Strip”. Two principal questions remain regarding the breccia pipe U deposits of northern Arizona are: (1) What processes combined to form these unusual structures and their U deposits? and (2) How many undiscovered U deposits hosted by breccia pipes exist in the region? A piece of information required to answer these questions is to define the area where these types of deposits could exist based on available geologic information. In order to determine the regional processes that led to their formation, the regional distribution of U-bearing breccia pipes must be considered. These geospatial datasets were assembled in support of this goal.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This HydroShare Resource is a term project proposal for the GIS course in the C E department at University of Texas at Austin. The project proposes to use GIS and DEMs to understand winter ski resorts in Utah. It will quantify both accessibility and difficulty of 6 resorts in Utah.
This is a link to the Automated Geographic Reference Center (AGRC) that houses GIS data for the state of Utah. This includes geoscience, cadastre, elevation and terrain, digital aerial photography, roads, aquifer data, etc. Several GIS datasets used in the Utah FORGE project originated from this site.