Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This dataset provides Census 2021 estimates that classify schoolchildren and full-time students aged 5 years and over in England and Wales by student accommodation and by age. The estimates are as at Census Day, 21 March 2021.
Estimates for single year of age between ages 90 and 100+ are less reliable than other ages. Estimation and adjustment at these ages was based on the age range 90+ rather than five-year age bands. Read more about this quality notice.
Area type
Census 2021 statistics are published for a number of different geographies. These can be large, for example the whole of England, or small, for example an output area (OA), the lowest level of geography for which statistics are produced.
For higher levels of geography, more detailed statistics can be produced. When a lower level of geography is used, such as output areas (which have a minimum of 100 persons), the statistics produced have less detail. This is to protect the confidentiality of people and ensure that individuals or their characteristics cannot be identified.
Coverage
Census 2021 statistics are published for the whole of England and Wales. Data are also available in these geographic types:
Student accommodation type
Combines the living situation of students and school children in full-time education, whether they are living:
It also includes whether these households contain one or multiple families.
This variable is comparable with the student accommodation variable but splits the communal establishment type into “university” and “other” categories.
Age
A person’s age on Census Day, 21 March 2021 in England and Wales. Infants aged under 1 year are classified as 0 years of age.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the College Corner population by gender and age. The dataset can be utilized to understand the gender distribution and demographics of College Corner.
The dataset constitues the following two datasets across these two themes
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Note: For information on data collection, confidentiality protection, nonsampling error, subject definitions, and guidance on using the data, visit the 2020 Census Demographic and Housing Characteristics File (DHC) Technical Documentation webpage..To protect respondent confidentiality, data have undergone disclosure avoidance methods which add "statistical noise" - small, random additions or subtractions - to the data so that no one can reliably link the published data to a specific person or household. The Census Bureau encourages data users to aggregate small populations and geographies to improve accuracy and diminish implausible results..For 2020 Group Quarters Definitions and Code List, see Appendix B in the 2020 Census Demographic and Housing Characteristics File (DHC) Technical Documentation..Source: U.S. Census Bureau, 2020 Census Demographic and Housing Characteristics File (DHC)
NOTE: As of 2/16/2023, this page is not being updated. For data on updated (bivalent) COVID-19 booster vaccination click here: https://app.powerbigov.us/view?r=eyJrIjoiODNhYzVkNGYtMzZkMy00YzA3LWJhYzUtYTVkOWFlZjllYTVjIiwidCI6IjExOGI3Y2ZhLWEzZGQtNDhiOS1iMDI2LTMxZmY2OWJiNzM4YiJ9 This table shows the number and percent of people that have initiated COVID-19 vaccination and are fully vaccinated by CT census tract (including residents of all ages). It also shows the number of people who have not received vaccine and who are not yet fully vaccinated. All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. A person who has received at least one dose of any vaccine is considered to have initiated vaccination. A person is considered fully vaccinated if they have completed a primary series by receiving 2 doses of the Pfizer, Novavax or Moderna vaccines or 1 dose of the Johnson & Johnson vaccine. The fully vaccinated are a subset of the number who have received at least one dose. The percent with at least one dose many be over-estimated and the percent fully vaccinated may be under-estimated because of vaccine administration records for individuals that cannot be linked because of differences in how names or date of birth are reported. Population data obtained from the 2019 Census ACS (www.census.gov) Geocoding is used to determine the census tract in which a person lives. People for who a census tract cannot be determined based on available address data are not included in this table. DPH recommends that these data are primarily used to identify areas that require additional attention rather than to establish and track the exact level of vaccine coverage. Census tract coverage estimates can play an important role in planning and evaluating vaccination strategies. However, inaccuracies in the data that are inherent to population surveillance may be magnified when analyses are performed down to the census tract level. We make every effort to provide accurate data, but inaccuracies may result from things like incomplete or inaccurate addresses, duplicate records, and sampling error in the American Community Survey that is used to estimate census tract population size and composition. These things may result in overestimates or underestimates of vaccine coverage. Some census tracts are suppressed. This is done if the number of people vaccinated is less than 5 or if the census population estimate is considered unreliable (coefficient of variance > 30%). Coverage estimates over 100% are shown as 100%. Connecticut COVID-19 Vaccine Program providers are required to report information on all COVID-19 vaccine doses administered to CT WiZ, the Connecticut Immunization Information System. Data on doses administered to CT residents out-of-state are being added to CT WiZ jurisdiction-by-jurisdiction. Doses administered by some Federal entities (including Department of Defense, Department of Correction, Department of Veteran’s Affairs, Indian Health Service) are not yet reported to CT WiZ. Data reported here reflect the vaccination records currently reported to CT WiZ. Caution should be used when interpreting coverage estimates in towns with large college/university populations since coverage may be underestimated. In the census, college/university students who live on or just off campus would be counted in the college/university town. However, if a student was vaccinated while studying remotely in his/her hometown, the student may be counted as a vaccine recipient in that town. As part of continuous data quality improvement efforts, duplicate records were removed from the COVID-19 vaccination data during the weeks of 4/19/2021 and 4/26/2021. As of 1/13/2021, census tract level data are provider by town for all ages. Data by age group is no longer available.
These statistics on student enrolments and qualifications obtained by higher education (HE) students at HE providers in the UK are produced by the Higher Education Statistics Agency (HESA). Information is available for:
Earlier higher education student statistics bulletins are available on the https://www.hesa.ac.uk/data-and-analysis/statistical-first-releases?date_filter%5Bvalue%5D%5Byear%5D=&topic%5B%5D=4" class="govuk-link">HESA website.
As of 1/13/2022, this dataset is no longer being updated and has been replaced with a new dataset, which can be accessed here: https://data.ct.gov/Health-and-Human-Services/COVID-19-Vaccinations-by-Census-Tract/ekim-wqrr COVID-19 Vaccinations by Census Tract and Age Groups, including Ages 16+, Ages 16-44, Ages 45-64, and Ages 65+. CT Vaccination Program (COVP) data obtained from CTWiZ. COVP Coverage data suppressed if the any of the following conditions were met: -Coefficient of Variation of Denominator is > 30% -Numerator is 30%). Coverage estimates over 100% are shown as 100%. We suggest that the data are used primarily to identify areas that require additional attention rather than to establish and track the exact level of vaccine coverage. All analyses are provisional and subject to change. Caution should be used when interpreting coverage estimates for towns with large college/university populations since coverage may be underestimated. In the census, college/university students who live on or just off campus would be counted in the college/university town. However, if a student was vaccinated while studying remotely in his/her hometown, the student may be counted as a vaccine recipient in that town.
In an impressive increase from years past, 39 percent of women in the United States had completed four years or more of college in 2022. This figure is up from 3.8 percent of women in 1940. A significant increase can also be seen in males, with 36.2 percent of the U.S. male population having completed four years or more of college in 2022, up from 5.5 percent in 1940.
4- and 2-year colleges
In the United States, college students are able to choose between attending a 2-year postsecondary program and a 4-year postsecondary program. Generally, attending a 2-year program results in an Associate’s Degree, and 4-year programs result in a Bachelor’s Degree.
Many 2-year programs are designed so that attendees can transfer to a college or university offering a 4-year program upon completing their Associate’s. Completion of a 4-year program is the generally accepted standard for entry-level positions when looking for a job.
Earnings after college
Factors such as gender, degree achieved, and the level of postsecondary education can have an impact on employment and earnings later in life. Some Bachelor’s degrees continue to attract more male students than female, particularly in STEM fields, while liberal arts degrees such as education, languages and literatures, and communication tend to see higher female attendance.
All of these factors have an impact on earnings after college, and despite nearly the same rate of attendance within the American population between males and females, men with a Bachelor’s Degree continue to have higher weekly earnings on average than their female counterparts.
The Unified Infrastructure for Canadian Census Research, or UNI·CEN, is a comprehensive database of historical and contemporary Canadian aggregate Census data, digital boundary files, and ancillary material, all provided in modern data formats. The goal of the project is to liberate Canadian Census data so that it can be easily used by academic researchers, students, and the public. The UNI·CEN Standardized Census Data Tables series contains reformatted versions of all publicly available digital Census data. This documentation report describes the data sources, tabular formats, and file types used. Citation: Taylor, Zack. 2022. "UNI·CEN Documentation Report 2: Standardized Census Data Tables.” London, Canada: Network for Economic and Social Trends, Western University. https://ir.lib.uwo.ca/nest_observatory_docs/3 Available at: https://ir.lib.uwo.ca/nest_observatory_docs/3
This layer contains a Vermont-only subset of block group level 2020 Decennial Census redistricting data as reported by the U.S. Census Bureau for all states plus DC and Puerto Rico. The attributes come from the 2020 Public Law 94-171 (P.L. 94-171) tables.Data download date: August 12, 2021Census tables: P1, P2, P3, P4, H1, P5, HeaderDownloaded from: Census FTP siteProcessing Notes:Data was downloaded from the U.S. Census Bureau FTP site, imported into SAS format and joined to the 2020 TIGER boundaries. Boundaries are sourced from the 2020 TIGER/Line Geodatabases. Boundaries have been projected into Web Mercator and each attribute has been given a clear descriptive alias name. No alterations have been made to the vertices of the data.Each attribute maintains it's specified name from Census, but also has a descriptive alias name and long description derived from the technical documentation provided by the Census. For a detailed list of the attributes contained in this layer, view the Data tab and select "Fields". The following alterations have been made to the tabular data:Joined all tables to create one wide attribute table:P1 - RaceP2 - Hispanic or Latino, and not Hispanic or Latino by RaceP3 - Race for the Population 18 Years and OverP4 - Hispanic or Latino, and not Hispanic or Latino by Race for the Population 18 Years and OverH1 - Occupancy Status (Housing)P5 - Group Quarters Population by Group Quarters Type (correctional institutions, juvenile facilities, nursing facilities/skilled nursing, college/university student housing, military quarters, etc.)HeaderAfter joining, dropped fields: FILEID, STUSAB, CHARITER, CIFSN, LOGRECNO, GEOVAR, GEOCOMP, LSADC, and BLOCK.GEOCOMP was renamed to GEOID and moved be the first column in the table, the original GEOID was dropped.Placeholder fields for future legislative districts have been dropped: CD118, CD119, CD120, CD121, SLDU22, SLDU24, SLDU26, SLDU28, SLDL22, SLDL24 SLDL26, SLDL28.P0020001 was dropped, as it is duplicative of P0010001. Similarly, P0040001 was dropped, as it is duplicative of P0030001.In addition to calculated fields, County_Name and State_Name were added.The following calculated fields have been added (see long field descriptions in the Data tab for formulas used): PCT_P0030001: Percent of Population 18 Years and OverPCT_P0020002: Percent Hispanic or LatinoPCT_P0020005: Percent White alone, not Hispanic or LatinoPCT_P0020006: Percent Black or African American alone, not Hispanic or LatinoPCT_P0020007: Percent American Indian and Alaska Native alone, not Hispanic or LatinoPCT_P0020008: Percent Asian alone, Not Hispanic or LatinoPCT_P0020009: Percent Native Hawaiian and Other Pacific Islander alone, not Hispanic or LatinoPCT_P0020010: Percent Some Other Race alone, not Hispanic or LatinoPCT_P0020011: Percent Population of Two or More Races, not Hispanic or LatinoPCT_H0010002: Percent of Housing Units that are OccupiedPCT_H0010003: Percent of Housing Units that are VacantPlease note these percentages might look strange at the individual block group level, since this data has been protected using differential privacy.*VCGI exported a Vermont-only subset of the nation-wide layer to produce this layer--with fields limited to this popular subset: OBJECTID: OBJECTID GEOID: Geographic Record Identifier NAME: Area Name-Legal/Statistical Area Description (LSAD) Term-Part Indicator County_Name: County Name State_Name: State Name P0010001: Total Population P0010003: Population of one race: White alone P0010004: Population of one race: Black or African American alone P0010005: Population of one race: American Indian and Alaska Native alone P0010006: Population of one race: Asian alone P0010007: Population of one race: Native Hawaiian and Other Pacific Islander alone P0010008: Population of one race: Some Other Race alone P0020002: Hispanic or Latino Population P0020003: Non-Hispanic or Latino Population P0030001: Total population 18 years and over H0010001: Total housing units H0010002: Total occupied housing units H0010003: Total vacant housing units P0050001: Total group quarters population PCT_P0030001: Percent of Population 18 Years and Over PCT_P0020002: Percent Hispanic or Latino PCT_P0020005: Percent White alone, not Hispanic or Latino PCT_P0020006: Percent Black or African American alone, not Hispanic or Latino PCT_P0020007: Percent American Indian and Alaska Native alone, not Hispanic or Latino PCT_P0020008: Percent Asian alone, not Hispanic or Latino PCT_P0020009: Percent Native Hawaiian and Other Pacific Islander alone, not Hispanic or Latino PCT_P0020010: Percent Some Other Race alone, not Hispanic or Latino PCT_P0020011: Percent Population of two or more races, not Hispanic or Latino PCT_H0010002: Percent of Housing Units that are Occupied PCT_H0010003: Percent of Housing Units that are Vacant SUMLEV: Summary Level REGION: Region DIVISION: Division COUNTY: County (FIPS) COUNTYNS: County (NS) TRACT: Census Tract BLKGRP: Block Group AREALAND: Area (Land) AREAWATR: Area (Water) INTPTLAT: Internal Point (Latitude) INTPTLON: Internal Point (Longitude) BASENAME: Area Base Name POP100: Total Population Count HU100: Total Housing Count *To protect the privacy and confidentiality of respondents, data has been protected using differential privacy techniques by the U.S. Census Bureau. This means that some individual block groups will have values that are inconsistent or improbable. However, when aggregated up, these issues become minimized.Download Census redistricting data in this layer as a file geodatabase.Additional links:U.S. Census BureauU.S. Census Bureau Decennial CensusAbout the 2020 Census2020 Census2020 Census data qualityDecennial Census P.L. 94-171 Redistricting Data Program
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This dataset provides Census 2022 estimates for distance travelled to place of study of people aged 4 and over studying by age (in 4 categories) in Scotland.
A person's age on Census Day, 20 March 2022. Infants aged under 1 year are classified as 0 years of age.
The distance between a person’s home address and their main place of work or study (Grouped).
Address of place of work or study is used (along with home address) to explore the relationship between where people live and where they work or study. Used in conjunction with information from the method of travel question, the data helps to identify commuter patterns and routes and provide a reliable indicator for the demands placed on public and private transport.
It is used to inform the balance of housing and jobs in particular areas and assess the need for services such as new schools. Information on where people live and work is used by government departments to define “Travel to Work Areas” - these are approximations of self-contained labour markets and are the smallest areas for which unemployment rates are published. Collecting information on both work and study address enables a more accurate count of daytime populations to be obtained, which is particularly useful for areas accommodating universities and businesses. It also allows the differences in travel patterns between these groups to be compared.
Details of classification can be found here
The quality assurance report can be found here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
In 2001, the proportion of the population (individuals aged 15 and older) with non-university post-secondary credentials had more than doubled since 1971 to 36%. This, added to the 15% with university qualifications, meant that more than one-half (51%) of all Canadians aged 15 and over had post-secondary qualifications in 2001.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Data Sources- Scanned copies of the U.S. Census for various years (including 1920 and 1930) available from Ancestry Library Edition database.- Sanborn shapefiles were created by Bednar student interns at Penn State's Pattee Library. They are based on the collection of PA Sanborns housed at the same library.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the University Heights median household income by race. The dataset can be utilized to understand the racial distribution of University Heights income.
The dataset will have the following datasets when applicable
Please note: The 2020 1-Year ACS estimates data was not reported by the Census Bureau due to the impact on survey collection and analysis caused by COVID-19. Consequently, median household income data for 2020 is unavailable for large cities (population 65,000 and above).
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
Explore our comprehensive data analysis and visual representations for a deeper understanding of University Heights median household income by race. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the University Heights household income by gender. The dataset can be utilized to understand the gender-based income distribution of University Heights income.
The dataset will have the following datasets when applicable
Please note: The 2020 1-Year ACS estimates data was not reported by the Census Bureau due to the impact on survey collection and analysis caused by COVID-19. Consequently, median household income data for 2020 is unavailable for large cities (population 65,000 and above).
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
Explore our comprehensive data analysis and visual representations for a deeper understanding of University Heights income distribution by gender. You can refer the same here
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The census is undertaken by the Office for National Statistics every 10 years and gives us a picture of all the people and households in England and Wales. The most recent census took place in March of 2021.The census asks every household questions about the people who live there and the type of home they live in. In doing so, it helps to build a detailed snapshot of society. Information from the census helps the government and local authorities to plan and fund local services, such as education, doctors' surgeries and roads.Key census statistics for Leicester are published on the open data platform to make information accessible to local services, voluntary and community groups, and residents. There is also a dashboard published showcasing various datasets from the census allowing users to view data for Leicester and compare this with national statistics.Further information about the census and full datasets can be found on the ONS website - https://www.ons.gov.uk/census/aboutcensus/censusproductsPopulation by household and communal establishmentThis dataset provides Census 2021 estimates that classify the population into residents of households and those residing in communal establishments. The estimates are as at Census Day, 21 March 2021.Definitions: Households - one person or a group of people (not necessarily related) living at the same address who share cooking facilities and share a living room or sitting room, or dining area. Examples include: A house or flatA caravan or other mobile or temporary structureSheltered accommodation units within an establishmentCommunal establishments - A place that provides managed full-time or part-time supervision of residential accommodation. Examples include:University halls of residence and boarding schoolsCare homes, hospitals, hospices and maternity unitsPrisons and other secure facilitiesNew communal establishments do not count as new households. For example, the building of a new block of supervised student flats would not count as an increase in the number of households.
The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. ZIP Code Tabulation Areas (ZCTAs) are approximate area representations of U.S. Postal Service (USPS) ZIP Code service areas that the Census Bureau creates to present statistical data for each decennial census. The Census Bureau delineates ZCTA boundaries for the United States, Puerto Rico, American Samoa, Guam, the Commonwealth of the Northern Mariana Islands, and the U.S. Virgin Islands once each decade following the decennial census. Data users should not use ZCTAs to identify the official USPS ZIP Code for mail delivery. The USPS makes periodic changes to ZIP Codes to support more efficient mail delivery. The Census Bureau uses tabulation blocks as the basis for defining each ZCTA. Tabulation blocks are assigned to a ZCTA based on the most frequently occurring ZIP Code for the addresses contained within that block. The most frequently occurring ZIP Code also becomes the five-digit numeric code of the ZCTA. These codes may contain leading zeros. Blocks that do not contain addresses but are surrounded by a single ZCTA (enclaves) are assigned to the surrounding ZCTA. Because the Census Bureau only uses the most frequently occurring ZIP Code to assign blocks, a ZCTA may not exist for every USPS ZIP Code. Some ZIP Codes may not have a matching ZCTA because too few addresses were associated with the specific ZIP Code or the ZIP Code was not the most frequently occurring ZIP Code within any of the blocks where it exists. The ZCTA boundaries in this release are those delineated following the 2010 Census.
Colleges and Universities; January 1, 2016
© Source: U.S. Census Bureau
This layer contains census tract level 2020 Decennial Census redistricting data as reported by the U.S. Census Bureau for all states plus DC and Puerto Rico. The attributes come from the 2020 Public Law 94-171 (P.L. 94-171) tables.Data download date: August 12, 2021Census tables: P1, P2, P3, P4, H1, P5, HeaderDownloaded from: Census FTP siteProcessing Notes:Data was downloaded from the U.S. Census Bureau FTP site, imported into SAS format and joined to the 2020 TIGER boundaries. Boundaries are sourced from the 2020 TIGER/Line Geodatabases. Boundaries have been projected into Web Mercator and each attribute has been given a clear descriptive alias name. No alterations have been made to the vertices of the data.Each attribute maintains it's specified name from Census, but also has a descriptive alias name and long description derived from the technical documentation provided by the Census. For a detailed list of the attributes contained in this layer, view the Data tab and select "Fields". The following alterations have been made to the tabular data:Joined all tables to create one wide attribute table:P1 - RaceP2 - Hispanic or Latino, and not Hispanic or Latino by RaceP3 - Race for the Population 18 Years and OverP4 - Hispanic or Latino, and not Hispanic or Latino by Race for the Population 18 Years and OverH1 - Occupancy Status (Housing)P5 - Group Quarters Population by Group Quarters Type (correctional institutions, juvenile facilities, nursing facilities/skilled nursing, college/university student housing, military quarters, etc.)HeaderAfter joining, dropped fields: FILEID, STUSAB, CHARITER, CIFSN, LOGRECNO, GEOVAR, GEOCOMP, LSADC, BLOCK, BLKGRP, and TBLKGRP.GEOCOMP was renamed to GEOID and moved be the first column in the table, the original GEOID was dropped.Placeholder fields for future legislative districts have been dropped: CD118, CD119, CD120, CD121, SLDU22, SLDU24, SLDU26, SLDU28, SLDL22, SLDL24 SLDL26, SLDL28.P0020001 was dropped, as it is duplicative of P0010001. Similarly, P0040001 was dropped, as it is duplicative of P0030001.In addition to calculated fields, County_Name and State_Name were added.The following calculated fields have been added (see long field descriptions in the Data tab for formulas used): PCT_P0030001: Percent of Population 18 Years and OverPCT_P0020002: Percent Hispanic or LatinoPCT_P0020005: Percent White alone, not Hispanic or LatinoPCT_P0020006: Percent Black or African American alone, not Hispanic or LatinoPCT_P0020007: Percent American Indian and Alaska Native alone, not Hispanic or LatinoPCT_P0020008: Percent Asian alone, Not Hispanic or LatinoPCT_P0020009: Percent Native Hawaiian and Other Pacific Islander alone, not Hispanic or LatinoPCT_P0020010: Percent Some Other Race alone, not Hispanic or LatinoPCT_P0020011: Percent Population of Two or More Races, not Hispanic or LatinoPCT_H0010002: Percent of Housing Units that are OccupiedPCT_H0010003: Percent of Housing Units that are VacantPlease note these percentages might look strange at the individual tract level, since this data has been protected using differential privacy.**To protect the privacy and confidentiality of respondents, data has been protected using differential privacy techniques by the U.S. Census Bureau. This means that some individual tracts will have values that are inconsistent or improbable. However, when aggregated up, these issues become minimized. The pop-up on this layer uses Arcade to display aggregated values for the surrounding area rather than values for the tract itself.Download Census redistricting data in this layer as a file geodatabase.Additional links:U.S. Census BureauU.S. Census Bureau Decennial CensusAbout the 2020 Census2020 Census2020 Census data qualityDecennial Census P.L. 94-171 Redistricting Data Program
https://www.icpsr.umich.edu/web/ICPSR/studies/13241/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/13241/terms
Summary File 2 contains 100-percent United States decennial Census data, which is the information compiled from the questions asked of all people and about every housing unit. Population items include sex, age, race, Hispanic or Latino origin, household relationship, and group quarters occupancy. Housing items include occupancy status, vacancy status, and tenure (owner occupied or renter occupied). The 100-percent data are presented in 36 population tables ("PCT") and 11 housing tables ("HCT") down to the census tract level. Each table is iterated for 250 population groups: the total population, 132 race groups, 78 American Indian and Alaska Native tribe categories (reflecting 39 individual tribes), and 39 Hispanic or Latino groups. The presentation of tables for any of the 250 population groups is subject to a population threshold of 100 or more people. That is, if there were fewer than 100 people in a specific population group in a specific geographic area, their population and housing characteristics data are not available for that geographic area.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This dataset provides Census 2021 estimates that classify schoolchildren and full-time students aged 5 years and over in England and Wales by student accommodation and by age. The estimates are as at Census Day, 21 March 2021.
Estimates for single year of age between ages 90 and 100+ are less reliable than other ages. Estimation and adjustment at these ages was based on the age range 90+ rather than five-year age bands. Read more about this quality notice.
Area type
Census 2021 statistics are published for a number of different geographies. These can be large, for example the whole of England, or small, for example an output area (OA), the lowest level of geography for which statistics are produced.
For higher levels of geography, more detailed statistics can be produced. When a lower level of geography is used, such as output areas (which have a minimum of 100 persons), the statistics produced have less detail. This is to protect the confidentiality of people and ensure that individuals or their characteristics cannot be identified.
Coverage
Census 2021 statistics are published for the whole of England and Wales. Data are also available in these geographic types:
Student accommodation type
Combines the living situation of students and school children in full-time education, whether they are living:
It also includes whether these households contain one or multiple families.
This variable is comparable with the student accommodation variable but splits the communal establishment type into “university” and “other” categories.
Age
A person’s age on Census Day, 21 March 2021 in England and Wales. Infants aged under 1 year are classified as 0 years of age.