29 datasets found
  1. f

    Petre_Slide_CategoricalScatterplotFigShare.pptx

    • figshare.com
    pptx
    Updated Sep 19, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Benj Petre; Aurore Coince; Sophien Kamoun (2016). Petre_Slide_CategoricalScatterplotFigShare.pptx [Dataset]. http://doi.org/10.6084/m9.figshare.3840102.v1
    Explore at:
    pptxAvailable download formats
    Dataset updated
    Sep 19, 2016
    Dataset provided by
    figshare
    Authors
    Benj Petre; Aurore Coince; Sophien Kamoun
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Categorical scatterplots with R for biologists: a step-by-step guide

    Benjamin Petre1, Aurore Coince2, Sophien Kamoun1

    1 The Sainsbury Laboratory, Norwich, UK; 2 Earlham Institute, Norwich, UK

    Weissgerber and colleagues (2015) recently stated that ‘as scientists, we urgently need to change our practices for presenting continuous data in small sample size studies’. They called for more scatterplot and boxplot representations in scientific papers, which ‘allow readers to critically evaluate continuous data’ (Weissgerber et al., 2015). In the Kamoun Lab at The Sainsbury Laboratory, we recently implemented a protocol to generate categorical scatterplots (Petre et al., 2016; Dagdas et al., 2016). Here we describe the three steps of this protocol: 1) formatting of the data set in a .csv file, 2) execution of the R script to generate the graph, and 3) export of the graph as a .pdf file.

    Protocol

    • Step 1: format the data set as a .csv file. Store the data in a three-column excel file as shown in Powerpoint slide. The first column ‘Replicate’ indicates the biological replicates. In the example, the month and year during which the replicate was performed is indicated. The second column ‘Condition’ indicates the conditions of the experiment (in the example, a wild type and two mutants called A and B). The third column ‘Value’ contains continuous values. Save the Excel file as a .csv file (File -> Save as -> in ‘File Format’, select .csv). This .csv file is the input file to import in R.

    • Step 2: execute the R script (see Notes 1 and 2). Copy the script shown in Powerpoint slide and paste it in the R console. Execute the script. In the dialog box, select the input .csv file from step 1. The categorical scatterplot will appear in a separate window. Dots represent the values for each sample; colors indicate replicates. Boxplots are superimposed; black dots indicate outliers.

    • Step 3: save the graph as a .pdf file. Shape the window at your convenience and save the graph as a .pdf file (File -> Save as). See Powerpoint slide for an example.

    Notes

    • Note 1: install the ggplot2 package. The R script requires the package ‘ggplot2’ to be installed. To install it, Packages & Data -> Package Installer -> enter ‘ggplot2’ in the Package Search space and click on ‘Get List’. Select ‘ggplot2’ in the Package column and click on ‘Install Selected’. Install all dependencies as well.

    • Note 2: use a log scale for the y-axis. To use a log scale for the y-axis of the graph, use the command line below in place of command line #7 in the script.

    7 Display the graph in a separate window. Dot colors indicate

    replicates

    graph + geom_boxplot(outlier.colour='black', colour='black') + geom_jitter(aes(col=Replicate)) + scale_y_log10() + theme_bw()

    References

    Dagdas YF, Belhaj K, Maqbool A, Chaparro-Garcia A, Pandey P, Petre B, et al. (2016) An effector of the Irish potato famine pathogen antagonizes a host autophagy cargo receptor. eLife 5:e10856.

    Petre B, Saunders DGO, Sklenar J, Lorrain C, Krasileva KV, Win J, et al. (2016) Heterologous Expression Screens in Nicotiana benthamiana Identify a Candidate Effector of the Wheat Yellow Rust Pathogen that Associates with Processing Bodies. PLoS ONE 11(2):e0149035

    Weissgerber TL, Milic NM, Winham SJ, Garovic VD (2015) Beyond Bar and Line Graphs: Time for a New Data Presentation Paradigm. PLoS Biol 13(4):e1002128

    https://cran.r-project.org/

    http://ggplot2.org/

  2. d

    Randomized Hourly Load Data for use with Taxonomy Distribution Feeders.

    • datadiscoverystudio.org
    • data.wu.ac.at
    Updated Aug 29, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2017). Randomized Hourly Load Data for use with Taxonomy Distribution Feeders. [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/bc873dbf6a1f44c190153d3345fbbafd/html
    Explore at:
    Dataset updated
    Aug 29, 2017
    Description

    description: This dataset was developed by NREL's distributed energy systems integration group as part of a study on high penetrations of distributed solar PV [1]. It consists of hourly load data in CSV format for use with the PNNL taxonomy of distribution feeders [2]. These feeders were developed in the open source GridLAB-D modelling language [3]. In this dataset each of the load points in the taxonomy feeders is populated with hourly averaged load data from a utility in the feeder s geographical region, scaled and randomized to emulate real load profiles. For more information on the scaling and randomization process, see [1]. The taxonomy feeders are statistically representative of the various types of distribution feeders found in five geographical regions of the U.S. Efforts are underway (possibly complete) to translate these feeders into the OpenDSS modelling language. This data set consists of one large CSV file for each feeder. Within each CSV, each column represents one load bus on the feeder. The header row lists the name of the load bus. The subsequent 8760 rows represent the loads for each hour of the year. The loads were scaled and randomized using a Python script, so each load series represents only one of many possible randomizations. In the header row, "rl" = residential load and "cl" = commercial load. Commercial loads are followed by a phase letter (A, B, or C). For regions 1-3, the data is from 2009. For regions 4-5, the data is from 2000. For use in GridLAB-D, each column will need to be separated into its own CSV file without a header. The load value goes in the second column, and corresponding datetime values go in the first column, as shown in the sample file, sample_individual_load_file.csv. Only the first value in the time column needs to written as an absolute time; subsequent times may be written in relative format (i.e. "+1h", as in the sample). The load should be written in P+Qj format, as seen in the sample CSV, in units of Watts (W) and Volt-amps reactive (VAr). This dataset was derived from metered load data and hence includes only real power; reactive power can be generated by assuming an appropriate power factor. These loads were used with GridLAB-D version 2.2. Browse files in this dataset, accessible as individual files and as a single ZIP file. This dataset is approximately 242MB compressed or 475MB uncompressed. For questions about this dataset, contact andy.hoke@nrel.gov. If you find this dataset useful, please mention NREL and cite [1] in your work. References: [1] A. Hoke, R. Butler, J. Hambrick, and B. Kroposki, Steady-State Analysis of Maximum Photovoltaic Penetration Levels on Typical Distribution Feeders, IEEE Transactions on Sustainable Energy, April 2013, available at http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6357275 . [2] K. Schneider, D. P. Chassin, R. Pratt, D. Engel, and S. Thompson, Modern Grid Initiative Distribution Taxonomy Final Report, PNNL, Nov. 2008. Accessed April 27, 2012: http://www.gridlabd.org/models/feeders/taxonomy of prototypical feeders.pdf [3] K. Schneider, D. Chassin, Y. Pratt, and J. C. Fuller, Distribution power flow for smart grid technologies, IEEE/PES Power Systems Conference and Exposition, Seattle, WA, Mar. 2009, pp. 1-7, 15-18.; abstract: This dataset was developed by NREL's distributed energy systems integration group as part of a study on high penetrations of distributed solar PV [1]. It consists of hourly load data in CSV format for use with the PNNL taxonomy of distribution feeders [2]. These feeders were developed in the open source GridLAB-D modelling language [3]. In this dataset each of the load points in the taxonomy feeders is populated with hourly averaged load data from a utility in the feeder s geographical region, scaled and randomized to emulate real load profiles. For more information on the scaling and randomization process, see [1]. The taxonomy feeders are statistically representative of the various types of distribution feeders found in five geographical regions of the U.S. Efforts are underway (possibly complete) to translate these feeders into the OpenDSS modelling language. This data set consists of one large CSV file for each feeder. Within each CSV, each column represents one load bus on the feeder. The header row lists the name of the load bus. The subsequent 8760 rows represent the loads for each hour of the year. The loads were scaled and randomized using a Python script, so each load series represents only one of many possible randomizations. In the header row, "rl" = residential load and "cl" = commercial load. Commercial loads are followed by a phase letter (A, B, or C). For regions 1-3, the data is from 2009. For regions 4-5, the data is from 2000. For use in GridLAB-D, each column will need to be separated into its own CSV file without a header. The load value goes in the second column, and corresponding datetime values go in the first column, as shown in the sample file, sample_individual_load_file.csv. Only the first value in the time column needs to written as an absolute time; subsequent times may be written in relative format (i.e. "+1h", as in the sample). The load should be written in P+Qj format, as seen in the sample CSV, in units of Watts (W) and Volt-amps reactive (VAr). This dataset was derived from metered load data and hence includes only real power; reactive power can be generated by assuming an appropriate power factor. These loads were used with GridLAB-D version 2.2. Browse files in this dataset, accessible as individual files and as a single ZIP file. This dataset is approximately 242MB compressed or 475MB uncompressed. For questions about this dataset, contact andy.hoke@nrel.gov. If you find this dataset useful, please mention NREL and cite [1] in your work. References: [1] A. Hoke, R. Butler, J. Hambrick, and B. Kroposki, Steady-State Analysis of Maximum Photovoltaic Penetration Levels on Typical Distribution Feeders, IEEE Transactions on Sustainable Energy, April 2013, available at http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6357275 . [2] K. Schneider, D. P. Chassin, R. Pratt, D. Engel, and S. Thompson, Modern Grid Initiative Distribution Taxonomy Final Report, PNNL, Nov. 2008. Accessed April 27, 2012: http://www.gridlabd.org/models/feeders/taxonomy of prototypical feeders.pdf [3] K. Schneider, D. Chassin, Y. Pratt, and J. C. Fuller, Distribution power flow for smart grid technologies, IEEE/PES Power Systems Conference and Exposition, Seattle, WA, Mar. 2009, pp. 1-7, 15-18.

  3. d

    Replication Data for: Revisiting 'The Rise and Decline' in a Population of...

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 22, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TeBlunthuis, Nathan; Aaron Shaw; Benjamin Mako Hill (2023). Replication Data for: Revisiting 'The Rise and Decline' in a Population of Peer Production Projects [Dataset]. http://doi.org/10.7910/DVN/SG3LP1
    Explore at:
    Dataset updated
    Nov 22, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    TeBlunthuis, Nathan; Aaron Shaw; Benjamin Mako Hill
    Description

    This archive contains code and data for reproducing the analysis for “Replication Data for Revisiting ‘The Rise and Decline’ in a Population of Peer Production Projects”. Depending on what you hope to do with the data you probabbly do not want to download all of the files. Depending on your computation resources you may not be able to run all stages of the analysis. The code for all stages of the analysis, including typesetting the manuscript and running the analysis, is in code.tar. If you only want to run the final analysis or to play with datasets used in the analysis of the paper, you want intermediate_data.7z or the uncompressed tab and csv files. The data files are created in a four-stage process. The first stage uses the program “wikiq” to parse mediawiki xml dumps and create tsv files that have edit data for each wiki. The second stage generates all.edits.RDS file which combines these tsvs into a dataset of edits from all the wikis. This file is expensive to generate and at 1.5GB is pretty big. The third stage builds smaller intermediate files that contain the analytical variables from these tsv files. The fourth stage uses the intermediate files to generate smaller RDS files that contain the results. Finally, knitr and latex typeset the manuscript. A stage will only run if the outputs from the previous stages do not exist. So if the intermediate files exist they will not be regenerated. Only the final analysis will run. The exception is that stage 4, fitting models and generating plots, always runs. If you only want to replicate from the second stage onward, you want wikiq_tsvs.7z. If you want to replicate everything, you want wikia_mediawiki_xml_dumps.7z.001 wikia_mediawiki_xml_dumps.7z.002, and wikia_mediawiki_xml_dumps.7z.003. These instructions work backwards from building the manuscript using knitr, loading the datasets, running the analysis, to building the intermediate datasets. Building the manuscript using knitr This requires working latex, latexmk, and knitr installations. Depending on your operating system you might install these packages in different ways. On Debian Linux you can run apt install r-cran-knitr latexmk texlive-latex-extra. Alternatively, you can upload the necessary files to a project on Overleaf.com. Download code.tar. This has everything you need to typeset the manuscript. Unpack the tar archive. On a unix system this can be done by running tar xf code.tar. Navigate to code/paper_source. Install R dependencies. In R. run install.packages(c("data.table","scales","ggplot2","lubridate","texreg")) On a unix system you should be able to run make to build the manuscript generalizable_wiki.pdf. Otherwise you should try uploading all of the files (including the tables, figure, and knitr folders) to a new project on Overleaf.com. Loading intermediate datasets The intermediate datasets are found in the intermediate_data.7z archive. They can be extracted on a unix system using the command 7z x intermediate_data.7z. The files are 95MB uncompressed. These are RDS (R data set) files and can be loaded in R using the readRDS. For example newcomer.ds <- readRDS("newcomers.RDS"). If you wish to work with these datasets using a tool other than R, you might prefer to work with the .tab files. Running the analysis Fitting the models may not work on machines with less than 32GB of RAM. If you have trouble, you may find the functions in lib-01-sample-datasets.R useful to create stratified samples of data for fitting models. See line 89 of 02_model_newcomer_survival.R for an example. Download code.tar and intermediate_data.7z to your working folder and extract both archives. On a unix system this can be done with the command tar xf code.tar && 7z x intermediate_data.7z. Install R dependencies. install.packages(c("data.table","ggplot2","urltools","texreg","optimx","lme4","bootstrap","scales","effects","lubridate","devtools","roxygen2")). On a unix system you can simply run regen.all.sh to fit the models, build the plots and create the RDS files. Generating datasets Building the intermediate files The intermediate files are generated from all.edits.RDS. This process requires about 20GB of memory. Download all.edits.RDS, userroles_data.7z,selected.wikis.csv, and code.tar. Unpack code.tar and userroles_data.7z. On a unix system this can be done using tar xf code.tar && 7z x userroles_data.7z. Install R dependencies. In R run install.packages(c("data.table","ggplot2","urltools","texreg","optimx","lme4","bootstrap","scales","effects","lubridate","devtools","roxygen2")). Run 01_build_datasets.R. Building all.edits.RDS The intermediate RDS files used in the analysis are created from all.edits.RDS. To replicate building all.edits.RDS, you only need to run 01_build_datasets.R when the int... Visit https://dataone.org/datasets/sha256%3Acfa4980c107154267d8eb6dc0753ed0fde655a73a062c0c2f5af33f237da3437 for complete metadata about this dataset.

  4. P

    titanic5 Dataset Dataset

    • paperswithcode.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    titanic5 Dataset Dataset [Dataset]. https://paperswithcode.com/dataset/titanic5-dataset
    Explore at:
    Description

    titanic5 Dataset Created by David Beltran del Rio March 2016.

    Notes This is the final (for now) version of my update to the Titanic data. I think it’s finally ready for publishing if you’d like. What I did was to strip all the passenger and crew data from the Encyclopedia Titanica (ET) web pages (excluding channel crossing passengers), create a unique ID for each passenger and crew member (Name_ID), then (painstakingly and hopefully 100% correctly) match to your earlier titanic3 dataset, in order to compare the two and to get your sibsp and parch variables. Since the ET is updated occasionally the work put into the ID and matching can be reused and refined later. I did eventually hear back from the ET people, they are willing to make the underlying database available in the future, I have not yet taken them up on it.

    The two datasets line up nicely, most of the differences in the newer titanic5 dataset are in the age variable, as I had mentioned before - the new set has less missing ages - 51 missing (vs 263) out of 1309.

    I am in the process of refining my analysis of the data as well, based on your comments below and your Regression Modeling Strategies example.

    titanic3_wID data can be matched to titanic5 using the Name_ID variable. Tab titanic5 Metadata has the variable descriptions and allowable values for Class and Class/Dept.

    A note about the ages - instead of using the add 0.5 trick to indicate estimated birth day / date I have a flag that indicates how the “final” age (Age_F) was arrived at. It’s the Age_F_Code variable - the allowable values are in the Titanic5_metadata tab in the attached excel. The reason for this is that I already had some fractional ages for infants where I had age in months instead of years and I wanted to avoid confusion for 6 month old infants, although I don’t think there are any in the data! Also, I was thinking to make fractional ages or age in days for all passengers for whom I have DoB, but I have not yet done so.

    Here’s what the tabs are:

    Titanic5_all - all (mostly cleaned) Titanic passenger and crew records Titanic5_work - working dataset, crew removed, unnecessary variables removed - this is the one I import into SAS / R to work on Titanic5_metadata - Variable descriptions and allowable values titanic3_wID - Original Titanic3 dataset with Name_ID added for merging to Titanic5 I have a csv, R dataset, and SAS dataset, but the variable names are an older version, so I won’t send those along for now to avoid confusion.

    If it helps send my contact info along to your student in case any questions arise. Gmail address probably best, on weekends for sure: davebdr@gmail.com

    The tabs in titanic5.xls are

    Titanic5_all Titanic5_passenger (the one to be used for analysis) Titanic5_metadata (used during analysis file creation) Titanic3_wID

  5. Crop classification dataset for testing domain adaptation or distributional...

    • zenodo.org
    • data.niaid.nih.gov
    bin, csv
    Updated May 13, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dan M. Kluger; Dan M. Kluger; Sherrie Wang; Sherrie Wang; David B. Lobell; David B. Lobell (2022). Crop classification dataset for testing domain adaptation or distributional shift methods [Dataset]. http://doi.org/10.5281/zenodo.6376160
    Explore at:
    bin, csvAvailable download formats
    Dataset updated
    May 13, 2022
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Dan M. Kluger; Dan M. Kluger; Sherrie Wang; Sherrie Wang; David B. Lobell; David B. Lobell
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    In this upload we share processed crop type datasets from both France and Kenya. These datasets can be helpful for testing and comparing various domain adaptation methods. The datasets are processed, used, and described in this paper: https://doi.org/10.1016/j.rse.2021.112488 (arXiv version: https://arxiv.org/pdf/2109.01246.pdf).

    In summary, each point in the uploaded datasets corresponds to a particular location. The label is the crop type grown at that location in 2017. The 70 processed features are based on Sentinel-2 satellite measurements at that location in 2017. The points in the France dataset come from 11 different departments (regions) in Occitanie, France, and the points in the Kenya dataset come from 3 different regions in Western Province, Kenya. Within each dataset there are notable shifts in the distribution of the labels and in the distribution of the features between regions. Therefore, these datasets can be helpful for testing for testing and comparing methods that are designed to address such distributional shifts.

    More details on the dataset and processing steps can be found in Kluger et. al. (2021). Much of the processing steps were taken to deal with Sentinel-2 measurements that were corrupted by cloud cover. For users interested in the raw multi-spectral time series data and dealing with cloud cover issues on their own (rather than using the 70 processed features provided here), the raw dataset from Kenya can be found in Yeh et. al. (2021), and the raw dataset from France can be made available upon request from the authors of this Zenodo upload.

    All of the data uploaded here can be found in "CropTypeDatasetProcessed.RData". We also post the dataframes and tables within that .RData file as separate .csv files for users who do not have R. The contents of each R object (or .csv file) is described in the file "Metadata.rtf".

    Preferred Citation:

    -Kluger, D.M., Wang, S., Lobell, D.B., 2021. Two shifts for crop mapping: Leveraging aggregate crop statistics to improve satellite-based maps in new regions. Remote Sens. Environ. 262, 112488. https://doi.org/10.1016/j.rse.2021.112488.

    -URL to this Zenodo post https://zenodo.org/record/6376160

  6. Market Basket Analysis

    • kaggle.com
    Updated Dec 9, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Aslan Ahmedov (2021). Market Basket Analysis [Dataset]. https://www.kaggle.com/datasets/aslanahmedov/market-basket-analysis
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 9, 2021
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Aslan Ahmedov
    Description

    Market Basket Analysis

    Market basket analysis with Apriori algorithm

    The retailer wants to target customers with suggestions on itemset that a customer is most likely to purchase .I was given dataset contains data of a retailer; the transaction data provides data around all the transactions that have happened over a period of time. Retailer will use result to grove in his industry and provide for customer suggestions on itemset, we be able increase customer engagement and improve customer experience and identify customer behavior. I will solve this problem with use Association Rules type of unsupervised learning technique that checks for the dependency of one data item on another data item.

    Introduction

    Association Rule is most used when you are planning to build association in different objects in a set. It works when you are planning to find frequent patterns in a transaction database. It can tell you what items do customers frequently buy together and it allows retailer to identify relationships between the items.

    An Example of Association Rules

    Assume there are 100 customers, 10 of them bought Computer Mouth, 9 bought Mat for Mouse and 8 bought both of them. - bought Computer Mouth => bought Mat for Mouse - support = P(Mouth & Mat) = 8/100 = 0.08 - confidence = support/P(Mat for Mouse) = 0.08/0.09 = 0.89 - lift = confidence/P(Computer Mouth) = 0.89/0.10 = 8.9 This just simple example. In practice, a rule needs the support of several hundred transactions, before it can be considered statistically significant, and datasets often contain thousands or millions of transactions.

    Strategy

    • Data Import
    • Data Understanding and Exploration
    • Transformation of the data – so that is ready to be consumed by the association rules algorithm
    • Running association rules
    • Exploring the rules generated
    • Filtering the generated rules
    • Visualization of Rule

    Dataset Description

    • File name: Assignment-1_Data
    • List name: retaildata
    • File format: . xlsx
    • Number of Row: 522065
    • Number of Attributes: 7

      • BillNo: 6-digit number assigned to each transaction. Nominal.
      • Itemname: Product name. Nominal.
      • Quantity: The quantities of each product per transaction. Numeric.
      • Date: The day and time when each transaction was generated. Numeric.
      • Price: Product price. Numeric.
      • CustomerID: 5-digit number assigned to each customer. Nominal.
      • Country: Name of the country where each customer resides. Nominal.

    imagehttps://user-images.githubusercontent.com/91852182/145270162-fc53e5a3-4ad1-4d06-b0e0-228aabcf6b70.png">

    Libraries in R

    First, we need to load required libraries. Shortly I describe all libraries.

    • arules - Provides the infrastructure for representing, manipulating and analyzing transaction data and patterns (frequent itemsets and association rules).
    • arulesViz - Extends package 'arules' with various visualization. techniques for association rules and item-sets. The package also includes several interactive visualizations for rule exploration.
    • tidyverse - The tidyverse is an opinionated collection of R packages designed for data science.
    • readxl - Read Excel Files in R.
    • plyr - Tools for Splitting, Applying and Combining Data.
    • ggplot2 - A system for 'declaratively' creating graphics, based on "The Grammar of Graphics". You provide the data, tell 'ggplot2' how to map variables to aesthetics, what graphical primitives to use, and it takes care of the details.
    • knitr - Dynamic Report generation in R.
    • magrittr- Provides a mechanism for chaining commands with a new forward-pipe operator, %>%. This operator will forward a value, or the result of an expression, into the next function call/expression. There is flexible support for the type of right-hand side expressions.
    • dplyr - A fast, consistent tool for working with data frame like objects, both in memory and out of memory.
    • tidyverse - This package is designed to make it easy to install and load multiple 'tidyverse' packages in a single step.

    imagehttps://user-images.githubusercontent.com/91852182/145270210-49c8e1aa-9753-431b-a8d5-99601bc76cb5.png">

    Data Pre-processing

    Next, we need to upload Assignment-1_Data. xlsx to R to read the dataset.Now we can see our data in R.

    imagehttps://user-images.githubusercontent.com/91852182/145270229-514f0983-3bbb-4cd3-be64-980e92656a02.png"> imagehttps://user-images.githubusercontent.com/91852182/145270251-6f6f6472-8817-435c-a995-9bc4bfef10d1.png">

    After we will clear our data frame, will remove missing values.

    imagehttps://user-images.githubusercontent.com/91852182/145270286-05854e1a-2b6c-490e-ab30-9e99e731eacb.png">

    To apply Association Rule mining, we need to convert dataframe into transaction data to make all items that are bought together in one invoice will be in ...

  7. Database of Uniaxial Cyclic and Tensile Coupon Tests for Structural Metallic...

    • zenodo.org
    • data.niaid.nih.gov
    bin, csv, zip
    Updated Dec 24, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alexander R. Hartloper; Alexander R. Hartloper; Selimcan Ozden; Albano de Castro e Sousa; Dimitrios G. Lignos; Dimitrios G. Lignos; Selimcan Ozden; Albano de Castro e Sousa (2022). Database of Uniaxial Cyclic and Tensile Coupon Tests for Structural Metallic Materials [Dataset]. http://doi.org/10.5281/zenodo.6965147
    Explore at:
    bin, zip, csvAvailable download formats
    Dataset updated
    Dec 24, 2022
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Alexander R. Hartloper; Alexander R. Hartloper; Selimcan Ozden; Albano de Castro e Sousa; Dimitrios G. Lignos; Dimitrios G. Lignos; Selimcan Ozden; Albano de Castro e Sousa
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Database of Uniaxial Cyclic and Tensile Coupon Tests for Structural Metallic Materials

    Background

    This dataset contains data from monotonic and cyclic loading experiments on structural metallic materials. The materials are primarily structural steels and one iron-based shape memory alloy is also included. Summary files are included that provide an overview of the database and data from the individual experiments is also included.

    The files included in the database are outlined below and the format of the files is briefly described. Additional information regarding the formatting can be found through the post-processing library (https://github.com/ahartloper/rlmtp/tree/master/protocols).

    Usage

    • The data is licensed through the Creative Commons Attribution 4.0 International.
    • If you have used our data and are publishing your work, we ask that you please reference both:
      1. this database through its DOI, and
      2. any publication that is associated with the experiments. See the Overall_Summary and Database_References files for the associated publication references.

    Included Files

    • Overall_Summary_2022-08-25_v1-0-0.csv: summarises the specimen information for all experiments in the database.
    • Summarized_Mechanical_Props_Campaign_2022-08-25_v1-0-0.csv: summarises the average initial yield stress and average initial elastic modulus per campaign.
    • Unreduced_Data-#_v1-0-0.zip: contain the original (not downsampled) data
      • Where # is one of: 1, 2, 3, 4, 5, 6. The unreduced data is broken into separate archives because of upload limitations to Zenodo. Together they provide all the experimental data.
      • We recommend you un-zip all the folders and place them in one "Unreduced_Data" directory similar to the "Clean_Data"
      • The experimental data is provided through .csv files for each test that contain the processed data. The experiments are organised by experimental campaign and named by load protocol and specimen. A .pdf file accompanies each test showing the stress-strain graph.
      • There is a "db_tag_clean_data_map.csv" file that is used to map the database summary with the unreduced data.
      • The computed yield stresses and elastic moduli are stored in the "yield_stress" directory.
    • Clean_Data_v1-0-0.zip: contains all the downsampled data
      • The experimental data is provided through .csv files for each test that contain the processed data. The experiments are organised by experimental campaign and named by load protocol and specimen. A .pdf file accompanies each test showing the stress-strain graph.
      • There is a "db_tag_clean_data_map.csv" file that is used to map the database summary with the clean data.
      • The computed yield stresses and elastic moduli are stored in the "yield_stress" directory.
    • Database_References_v1-0-0.bib
      • Contains a bibtex reference for many of the experiments in the database. Corresponds to the "citekey" entry in the summary files.

    File Format: Downsampled Data

    These are the "LP_

    • The header of the first column is empty: the first column corresponds to the index of the sample point in the original (unreduced) data
    • Time[s]: time in seconds since the start of the test
    • e_true: true strain
    • Sigma_true: true stress in MPa
    • (optional) Temperature[C]: the surface temperature in degC

    These data files can be easily loaded using the pandas library in Python through:

    import pandas
    data = pandas.read_csv(data_file, index_col=0)

    The data is formatted so it can be used directly in RESSPyLab (https://github.com/AlbanoCastroSousa/RESSPyLab). Note that the column names "e_true" and "Sigma_true" were kept for backwards compatibility reasons with RESSPyLab.

    File Format: Unreduced Data

    These are the "LP_

    • The first column is the index of each data point
    • S/No: sample number recorded by the DAQ
    • System Date: Date and time of sample
    • Time[s]: time in seconds since the start of the test
    • C_1_Force[kN]: load cell force
    • C_1_Déform1[mm]: extensometer displacement
    • C_1_Déplacement[mm]: cross-head displacement
    • Eng_Stress[MPa]: engineering stress
    • Eng_Strain[]: engineering strain
    • e_true: true strain
    • Sigma_true: true stress in MPa
    • (optional) Temperature[C]: specimen surface temperature in degC

    The data can be loaded and used similarly to the downsampled data.

    File Format: Overall_Summary

    The overall summary file provides data on all the test specimens in the database. The columns include:

    • hidden_index: internal reference ID
    • grade: material grade
    • spec: specifications for the material
    • source: base material for the test specimen
    • id: internal name for the specimen
    • lp: load protocol
    • size: type of specimen (M8, M12, M20)
    • gage_length_mm_: unreduced section length in mm
    • avg_reduced_dia_mm_: average measured diameter for the reduced section in mm
    • avg_fractured_dia_top_mm_: average measured diameter of the top fracture surface in mm
    • avg_fractured_dia_bot_mm_: average measured diameter of the bottom fracture surface in mm
    • fy_n_mpa_: nominal yield stress
    • fu_n_mpa_: nominal ultimate stress
    • t_a_deg_c_: ambient temperature in degC
    • date: date of test
    • investigator: person(s) who conducted the test
    • location: laboratory where test was conducted
    • machine: setup used to conduct test
    • pid_force_k_p, pid_force_t_i, pid_force_t_d: PID parameters for force control
    • pid_disp_k_p, pid_disp_t_i, pid_disp_t_d: PID parameters for displacement control
    • pid_extenso_k_p, pid_extenso_t_i, pid_extenso_t_d: PID parameters for extensometer control
    • citekey: reference corresponding to the Database_References.bib file
    • yield_stress_mpa_: computed yield stress in MPa
    • elastic_modulus_mpa_: computed elastic modulus in MPa
    • fracture_strain: computed average true strain across the fracture surface
    • c,si,mn,p,s,n,cu,mo,ni,cr,v,nb,ti,al,b,zr,sn,ca,h,fe: chemical compositions in units of %mass
    • file: file name of corresponding clean (downsampled) stress-strain data

    File Format: Summarized_Mechanical_Props_Campaign

    Meant to be loaded in Python as a pandas DataFrame with multi-indexing, e.g.,

    tab1 = pd.read_csv('Summarized_Mechanical_Props_Campaign_' + date + version + '.csv',
              index_col=[0, 1, 2, 3], skipinitialspace=True, header=[0, 1],
              keep_default_na=False, na_values='')
    • citekey: reference in "Campaign_References.bib".
    • Grade: material grade.
    • Spec.: specifications (e.g., J2+N).
    • Yield Stress [MPa]: initial yield stress in MPa
      • size, count, mean, coefvar: number of experiments in campaign, number of experiments in mean, mean value for campaign, coefficient of variation for campaign
    • Elastic Modulus [MPa]: initial elastic modulus in MPa
      • size, count, mean, coefvar: number of experiments in campaign, number of experiments in mean, mean value for campaign, coefficient of variation for campaign

    Caveats

    • The files in the following directories were tested before the protocol was established. Therefore, only the true stress-strain is available for each:
      • A500
      • A992_Gr50
      • BCP325
      • BCR295
      • HYP400
      • S460NL
      • S690QL/25mm
      • S355J2_Plates/S355J2_N_25mm and S355J2_N_50mm
  8. Z

    Storage and Transit Time Data and Code

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jun 12, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Andrew Felton (2024). Storage and Transit Time Data and Code [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_8136816
    Explore at:
    Dataset updated
    Jun 12, 2024
    Dataset authored and provided by
    Andrew Felton
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Author: Andrew J. FeltonDate: 5/5/2024

    This R project contains the primary code and data (following pre-processing in python) used for data production, manipulation, visualization, and analysis and figure production for the study entitled:

    "Global estimates of the storage and transit time of water through vegetation"

    Please note that 'turnover' and 'transit' are used interchangeably in this project.

    Data information:

    The data folder contains key data sets used for analysis. In particular:

    "data/turnover_from_python/updated/annual/multi_year_average/average_annual_turnover.nc" contains a global array summarizing five year (2016-2020) averages of annual transit, storage, canopy transpiration, and number of months of data. This is the core dataset for the analysis; however, each folder has much more data, including a dataset for each year of the analysis. Data are also available is separate .csv files for each land cover type. Oterh data can be found for the minimum, monthly, and seasonal transit time found in their respective folders. These data were produced using the python code found in the "supporting_code" folder given the ease of working with .nc and EASE grid in the xarray python module. R was used primarily for data visualization purposes. The remaining files in the "data" and "data/supporting_data"" folder primarily contain ground-based estimates of storage and transit found in public databases or through a literature search, but have been extensively processed and filtered here.

    Code information

    Python scripts can be found in the "supporting_code" folder.

    Each R script in this project has a particular function:

    01_start.R: This script loads the R packages used in the analysis, sets thedirectory, and imports custom functions for the project. You can also load in the main transit time (turnover) datasets here using the source() function.

    02_functions.R: This script contains the custom function for this analysis, primarily to work with importing the seasonal transit data. Load this using the source() function in the 01_start.R script.

    03_generate_data.R: This script is not necessary to run and is primarilyfor documentation. The main role of this code was to import and wranglethe data needed to calculate ground-based estimates of aboveground water storage.

    04_annual_turnover_storage_import.R: This script imports the annual turnover andstorage data for each landcover type. You load in these data from the 01_start.R scriptusing the source() function.

    05_minimum_turnover_storage_import.R: This script imports the minimum turnover andstorage data for each landcover type. Minimum is defined as the lowest monthlyestimate.You load in these data from the 01_start.R scriptusing the source() function.

    06_figures_tables.R: This is the main workhouse for figure/table production and supporting analyses. This script generates the key figures and summary statistics used in the study that then get saved in the manuscript_figures folder. Note that allmaps were produced using Python code found in the "supporting_code"" folder.

  9. case study 1 bike share

    • kaggle.com
    Updated Oct 8, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    mohamed osama (2022). case study 1 bike share [Dataset]. https://www.kaggle.com/ososmm/case-study-1-bike-share/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Oct 8, 2022
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    mohamed osama
    Description

    Cyclistic: Google Data Analytics Capstone Project

    Cyclistic - Google Data Analytics Certification Capstone Project Moirangthem Arup Singh How Does a Bike-Share Navigate Speedy Success? Background: This project is for the Google Data Analytics Certification capstone project. I am wearing the hat of a junior data analyst working in the marketing analyst team at Cyclistic, a bike-share company in Chicago. Cyclistic is a bike-share program that features more than 5,800 bicycles and 600 docking stations. Cyclistic sets itself apart by also offering reclining bikes, hand tricycles, and cargo bikes, making bike-share more inclusive to people with disabilities and riders who can’t use a standard two-wheeled bike. The majority of riders opt for traditional bikes; about 8% of riders use the assistive options. Cyclistic users are more likely to ride for leisure, but about 30% use them to commute to work each day. Customers who purchase single-ride or full-day passes are referred to as casual riders. Customers who purchase annual memberships are Cyclistic members. The director of marketing believes the company’s future success depends on maximizing the number of annual memberships. Therefore,my team wants to understand how casual riders and annual members use Cyclistic bikes differently. From these insights, my team will design a new marketing strategy to convert casual riders into annual members. But first, Cyclistic executives must approve the recommendations, so they must be backed up with compelling data insights and professional data visualizations. This project will be completed by using the 6 Data Analytics stages: Ask: Identify the business task and determine the key stakeholders. Prepare: Collect the data, identify how it’s organized, determine the credibility of the data. Process: Select the tool for data cleaning, check for errors and document the cleaning process. Analyze: Organize and format the data, aggregate the data so that it’s useful, perform calculations and identify trends and relationships. Share: Use design thinking principles and data-driven storytelling approach, present the findings with effective visualization. Ensure the analysis has answered the business task. Act: Share the final conclusion and the recommendations. Ask: Business Task: Recommend marketing strategies aimed at converting casual riders into annual members by better understanding how annual members and casual riders use Cyclistic bikes differently. Stakeholders: Lily Moreno: The director of marketing and my manager. Cyclistic executive team: A detail-oriented executive team who will decide whether to approve the recommended marketing program. Cyclistic marketing analytics team: A team of data analysts responsible for collecting, analyzing, and reporting data that helps guide Cyclistic’s marketing strategy. Prepare: For this project, I will use the public data of Cyclistic’s historical trip data to analyze and identify trends. The data has been made available by Motivate International Inc. under the license. I downloaded the ZIP files containing the csv files from the above link but while uploading the files in kaggle (as I am using kaggle notebook), it gave me a warning that the dataset is already available in kaggle. So I will be using the dataset cyclictic-bike-share dataset from kaggle. The dataset has 13 csv files from April 2020 to April 2021. For the purpose of my analysis I will use the csv files from April 2020 to March 2021. The source csv files are in Kaggle so I can rely on it's integrity. I am using Microsoft Excel to get a glimpse of the data. There is one csv file for each month and has information about the bike ride which contain details of the ride id, rideable type, start and end time, start and end station, latitude and longitude of the start and end stations. Process: I will use R as language in kaggle to import the dataset to check how it’s organized, whether all the columns have appropriate data type, find outliers and if any of these data have sampling bias. I will be using below R libraries

    Load the tidyverse, lubridate, ggplot2, sqldf and psych libraries

    library(tidyverse) library(lubridate) library(ggplot2) library(plotrix) ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.1 ──

    ✔ ggplot2 3.3.5 ✔ purrr 0.3.4 ✔ tibble 3.1.4 ✔ dplyr 1.0.7 ✔ tidyr 1.1.3 ✔ stringr 1.4.0 ✔ readr 2.0.1 ✔ forcats 0.5.1

    ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ── ✖ dplyr::filter() masks stats::filter() ✖ dplyr::lag() masks stats::lag()

    Attaching package: ‘lubridate’

    The following objects are masked from ‘package:base’:

    date, intersect, setdiff, union
    

    Set the working directory

    setwd("/kaggle/input/cyclistic-bike-share")

    Import the csv files

    r_202004 <- read.csv("202004-divvy-tripdata.csv") r_202005 <- read.csv("20...

  10. Z

    Data from: A dataset to model Levantine landcover and land-use change...

    • data.niaid.nih.gov
    • zenodo.org
    Updated Dec 16, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kempf, Michael (2023). A dataset to model Levantine landcover and land-use change connected to climate change, the Arab Spring and COVID-19 [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_10396147
    Explore at:
    Dataset updated
    Dec 16, 2023
    Dataset authored and provided by
    Kempf, Michael
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Levant
    Description

    Overview

    This dataset is the repository for the following paper submitted to Data in Brief:

    Kempf, M. A dataset to model Levantine landcover and land-use change connected to climate change, the Arab Spring and COVID-19. Data in Brief (submitted: December 2023).

    The Data in Brief article contains the supplement information and is the related data paper to:

    Kempf, M. Climate change, the Arab Spring, and COVID-19 - Impacts on landcover transformations in the Levant. Journal of Arid Environments (revision submitted: December 2023).

    Description/abstract

    The Levant region is highly vulnerable to climate change, experiencing prolonged heat waves that have led to societal crises and population displacement. Since 2010, the area has been marked by socio-political turmoil, including the Syrian civil war and currently the escalation of the so-called Israeli-Palestinian Conflict, which strained neighbouring countries like Jordan due to the influx of Syrian refugees and increases population vulnerability to governmental decision-making. Jordan, in particular, has seen rapid population growth and significant changes in land-use and infrastructure, leading to over-exploitation of the landscape through irrigation and construction. This dataset uses climate data, satellite imagery, and land cover information to illustrate the substantial increase in construction activity and highlights the intricate relationship between climate change predictions and current socio-political developments in the Levant.

    Folder structure

    The main folder after download contains all data, in which the following subfolders are stored are stored as zipped files:

    “code” stores the above described 9 code chunks to read, extract, process, analyse, and visualize the data.

    “MODIS_merged” contains the 16-days, 250 m resolution NDVI imagery merged from three tiles (h20v05, h21v05, h21v06) and cropped to the study area, n=510, covering January 2001 to December 2022 and including January and February 2023.

    “mask” contains a single shapefile, which is the merged product of administrative boundaries, including Jordan, Lebanon, Israel, Syria, and Palestine (“MERGED_LEVANT.shp”).

    “yield_productivity” contains .csv files of yield information for all countries listed above.

    “population” contains two files with the same name but different format. The .csv file is for processing and plotting in R. The .ods file is for enhanced visualization of population dynamics in the Levant (Socio_cultural_political_development_database_FAO2023.ods).

    “GLDAS” stores the raw data of the NASA Global Land Data Assimilation System datasets that can be read, extracted (variable name), and processed using code “8_GLDAS_read_extract_trend” from the respective folder. One folder contains data from 1975-2022 and a second the additional January and February 2023 data.

    “built_up” contains the landcover and built-up change data from 1975 to 2022. This folder is subdivided into two subfolder which contain the raw data and the already processed data. “raw_data” contains the unprocessed datasets and “derived_data” stores the cropped built_up datasets at 5 year intervals, e.g., “Levant_built_up_1975.tif”.

    Code structure

    1_MODIS_NDVI_hdf_file_extraction.R

    This is the first code chunk that refers to the extraction of MODIS data from .hdf file format. The following packages must be installed and the raw data must be downloaded using a simple mass downloader, e.g., from google chrome. Packages: terra. Download MODIS data from after registration from: https://lpdaac.usgs.gov/products/mod13q1v061/ or https://search.earthdata.nasa.gov/search (MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V061, last accessed, 09th of October 2023). The code reads a list of files, extracts the NDVI, and saves each file to a single .tif-file with the indication “NDVI”. Because the study area is quite large, we have to load three different (spatially) time series and merge them later. Note that the time series are temporally consistent.

    2_MERGE_MODIS_tiles.R

    In this code, we load and merge the three different stacks to produce large and consistent time series of NDVI imagery across the study area. We further use the package gtools to load the files in (1, 2, 3, 4, 5, 6, etc.). Here, we have three stacks from which we merge the first two (stack 1, stack 2) and store them. We then merge this stack with stack 3. We produce single files named NDVI_final_*consecutivenumber*.tif. Before saving the final output of single merged files, create a folder called “merged” and set the working directory to this folder, e.g., setwd("your directory_MODIS/merged").

    3_CROP_MODIS_merged_tiles.R

    Now we want to crop the derived MODIS tiles to our study area. We are using a mask, which is provided as .shp file in the repository, named "MERGED_LEVANT.shp". We load the merged .tif files and crop the stack with the vector. Saving to individual files, we name them “NDVI_merged_clip_*consecutivenumber*.tif. We now produced single cropped NDVI time series data from MODIS. The repository provides the already clipped and merged NDVI datasets.

    4_TREND_analysis_NDVI.R

    Now, we want to perform trend analysis from the derived data. The data we load is tricky as it contains 16-days return period across a year for the period of 22 years. Growing season sums contain MAM (March-May), JJA (June-August), and SON (September-November). December is represented as a single file, which means that the period DJF (December-February) is represented by 5 images instead of 6. For the last DJF period (December 2022), the data from January and February 2023 can be added. The code selects the respective images from the stack, depending on which period is under consideration. From these stacks, individual annually resolved growing season sums are generated and the slope is calculated. We can then extract the p-values of the trend and characterize all values with high confidence level (0.05). Using the ggplot2 package and the melt function from reshape2 package, we can create a plot of the reclassified NDVI trends together with a local smoother (LOESS) of value 0.3.To increase comparability and understand the amplitude of the trends, z-scores were calculated and plotted, which show the deviation of the values from the mean. This has been done for the NDVI values as well as the GLDAS climate variables as a normalization technique.

    5_BUILT_UP_change_raster.R

    Let us look at the landcover changes now. We are working with the terra package and get raster data from here: https://ghsl.jrc.ec.europa.eu/download.php?ds=bu (last accessed 03. March 2023, 100 m resolution, global coverage). Here, one can download the temporal coverage that is aimed for and reclassify it using the code after cropping to the individual study area. Here, I summed up different raster to characterize the built-up change in continuous values between 1975 and 2022.

    6_POPULATION_numbers_plot.R

    For this plot, one needs to load the .csv-file “Socio_cultural_political_development_database_FAO2023.csv” from the repository. The ggplot script provided produces the desired plot with all countries under consideration.

    7_YIELD_plot.R

    In this section, we are using the country productivity from the supplement in the repository “yield_productivity” (e.g., "Jordan_yield.csv". Each of the single country yield datasets is plotted in a ggplot and combined using the patchwork package in R.

    8_GLDAS_read_extract_trend

    The last code provides the basis for the trend analysis of the climate variables used in the paper. The raw data can be accessed https://disc.gsfc.nasa.gov/datasets?keywords=GLDAS%20Noah%20Land%20Surface%20Model%20L4%20monthly&page=1 (last accessed 9th of October 2023). The raw data comes in .nc file format and various variables can be extracted using the [“^a variable name”] command from the spatraster collection. Each time you run the code, this variable name must be adjusted to meet the requirements for the variables (see this link for abbreviations: https://disc.gsfc.nasa.gov/datasets/GLDAS_CLSM025_D_2.0/summary, last accessed 09th of October 2023; or the respective code chunk when reading a .nc file with the ncdf4 package in R) or run print(nc) from the code or use names(the spatraster collection). Choosing one variable, the code uses the MERGED_LEVANT.shp mask from the repository to crop and mask the data to the outline of the study area.From the processed data, trend analysis are conducted and z-scores were calculated following the code described above. However, annual trends require the frequency of the time series analysis to be set to value = 12. Regarding, e.g., rainfall, which is measured as annual sums and not means, the chunk r.sum=r.sum/12 has to be removed or set to r.sum=r.sum/1 to avoid calculating annual mean values (see other variables). Seasonal subset can be calculated as described in the code. Here, 3-month subsets were chosen for growing seasons, e.g. March-May (MAM), June-July (JJA), September-November (SON), and DJF (December-February, including Jan/Feb of the consecutive year).From the data, mean values of 48 consecutive years are calculated and trend analysis are performed as describe above. In the same way, p-values are extracted and 95 % confidence level values are marked with dots on the raster plot. This analysis can be performed with a much longer time series, other variables, ad different spatial extent across the globe due to the availability of the GLDAS variables.

    (9_workflow_diagramme) this simple code can be used to plot a workflow diagram and is detached from the actual analysis.

    Conceptualization, Methodology, Software, Validation, Formal analysis, Investigation, Resources, Data Curation, Writing - Original Draft, Writing - Review & Editing, Visualization, Supervision, Project administration, and Funding acquisition: Michael

  11. A KL Divergence-Based Loss for In Vivo Ultrafast Ultrasound Image...

    • zenodo.org
    bin, zip
    Updated Feb 2, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Roser Viñals; Roser Viñals; Jean-Philippe Thiran; Jean-Philippe Thiran (2024). A KL Divergence-Based Loss for In Vivo Ultrafast Ultrasound Image Enhancement with Deep Learning: Dataset (2/6) [Dataset]. http://doi.org/10.5281/zenodo.10608742
    Explore at:
    bin, zipAvailable download formats
    Dataset updated
    Feb 2, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Roser Viñals; Roser Viñals; Jean-Philippe Thiran; Jean-Philippe Thiran
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset contains a collection of ultrafast ultrasound acquisitions from nine volunteers and the CIRS 054G phantom. For a comprehensive understanding of the dataset, please refer to the paper: Viñals, R.; Thiran, J.-P. A KL Divergence-Based Loss for In Vivo Ultrafast Ultrasound Image Enhancement with Deep Learning. J. Imaging 2023, 9, 256. https://doi.org/10.3390/jimaging9120256. Please cite the original paper when using this dataset.

    Due to data size restriction, the dataset has been divided into six subdatasets, each one published into a separate entry in Zenodo. This repository contains subdataset 2.

    Structure

    In Vivo Data

    • Number of Acquisitions: 20,000

    • Volunteers: Nine volunteers

    • File Structure: Each volunteer's data is compressed in a separate zip file.

      • Note: For volunteer 1, due to a higher number of acquisitions, data for this volunteer is distributed across multiple zip files, each containing acquisitions from different body regions.
    • Regions :

      • Abdomen: 6599 acquisitions
      • Neck: 3294 acquisitions
      • Breast: 3291 acquisitions
      • Lower limbs: 2616 acquisitions
      • Upper limbs: 2110 acquisitions
      • Back: 2090 acquisitions
    • File Naming Convention: Incremental IDs from acquisition_00000 to acquisition_19999.

    In Vitro Data

    • Number of Acquisitions: 32 from CIRS model 054G phantom
    • File Structure: The in vitro data is compressed in the cirs-phantom.zip file.
    • File Naming Convention: Incremental IDs from invitro_00000 to invitro_00031.

    CSV Files

    Two CSV files are provided:

    • invivo_dataset.csv :

      • Contains a list of all in vivo acquisitions.
      • Columns: id, path, volunteer id, body region.
    • invitro_dataset.csv :

      • Contains a list of all in vitro acquisitions.
      • Columns: id, path

    Zenodo dataset splits and files

    The dataset has been divided into six subdatasets, each one published in a separate entry on Zenodo. The following table indicates, for each file or compressed folder, the Zenodo dataset split where it has been uploaded along with its size. Each dataset split is named "A KL Divergence-Based Loss for In Vivo Ultrafast Ultrasound Image Enhancement with Deep Learning: Dataset (ii/6)", where ii represents the split number. This repository contains the 2nd split.

    File nameSizeZenodo subdataset number
    invivo_dataset.csv995.9 kB1
    invitro_dataset.csv1.1 kB1
    cirs-phantom.zip418.2 MB1
    volunteer-1-lowerLimbs.zip29.7 GB1
    volunteer-1-carotids.zip8.8 GB1
    volunteer-1-back.zip7.1 GB1
    volunteer-1-abdomen.zip34.0 GB2
    volunteer-1-breast.zip15.7 GB2
    volunteer-1-upperLimbs.zip25.0 GB3
    volunteer-2.zip26.5 GB4
    volunteer-3.zip20.3 GB3
    volunteer-4.zip24.1 GB5
    volunteer-5.zip6.5 GB5
    volunteer-6.zip11.5 GB5
    volunteer-7.zip11.1 GB6
    volunteer-8.zip21.2 GB6
    volunteer-9.zip23.2 GB4

    Normalized RF Images

    • Beamforming:

      • Depth from 1 mm to 55 mm

      • Width spanning the probe aperture

      • Grid: 𝜆/8 × 𝜆/8

      • Resulting images shape: 1483 × 1189

      • Two beamformed RF images from each acquisition:

        • Input image: single unfocused acquisition obtained from a single plane wave (PW) steered at 0° (acquisition-xxxx-1PW)
        • Target image: coherently compounded image from 87 PWs acquisitions steered at different angles (acquisition-xxxx-87PWs)
    • Normalization:

      • The two RF images have been normalized
    • To display the images:

      • Perform the envelop detection (to obtain the IQ images)
      • Log-compress (to obtain the B-mode images)
    • File Format: Saved in npy format, loadable using Python and numpy.load(file).

    Training and Validation Split in the paper

    For the volunteer-based split used in the paper:

    • Training set: volunteers 1, 2, 3, 6, 7, 9
    • Validation set: volunteer 4
    • Test set: volunteers 5, 8
    • Images analyzed in the paper
      • Carotid acquisition (from volunteer 5): acquisition_12397
      • Back acquisition (from volunteer 8): acquisition_19764
      • In vitro acquisition: invitro-00030

    License

    This dataset is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0).

    Please cite the original paper when using this dataset :

    Viñals, R.; Thiran, J.-P. A KL Divergence-Based Loss for In Vivo Ultrafast Ultrasound Image Enhancement with Deep Learning. J. Imaging 2023, 9, 256. DOI: 10.3390/jimaging9120256

    Contact

    For inquiries or issues related to this dataset, please contact:

    • Name: Roser Viñals
    • Email: roser.vinalsterres@epfl.ch
  12. u

    Dawnn benchmarking dataset: Mouse embryo cells processing and label...

    • rdr.ucl.ac.uk
    txt
    Updated May 4, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    George Hall; Sergi Castellano Hereza (2023). Dawnn benchmarking dataset: Mouse embryo cells processing and label simulation [Dataset]. http://doi.org/10.5522/04/22614004.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    May 4, 2023
    Dataset provided by
    University College London
    Authors
    George Hall; Sergi Castellano Hereza
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    This project is a collection of files to allow users to reproduce the model development and benchmarking in "Dawnn: single-cell differential abundance with neural networks" (Hall and Castellano, under review). Dawnn is a tool for detecting differential abundance in single-cell RNAseq datasets. It is available as an R package here. Please contact us if you are unable to reproduce any of the analysis in our paper. The files in this collection correspond to the benchmarking dataset based on single-cell RNAseq of mouse emrbyo cells.

    FILES: Input data Dataset from: "A single-cell molecular map of mouse gastrulation and early organogenesis". Nature 566, pp490–495 (2019). The input data is loaded from the MouseGastrulationData R package. We upload here the RDS file generated by loading the dataset in process_mouse_cells.R in case the R package becomes unavailable

    MouseGastrulationData_loaded_dataset.RDS Dataset loaded from MouseGastrulationData R package in process_mouse_cells.R (in call to EmbryoAtlasData function).

    Data processing code

    process_mouse_cells.R Generates benchmarking dataset from input data. (Loads input data; Runs the standard single-cell RNAseq pipeline). Follows Dann et al. Resulting dataset saved as mouse_gastrulation_data_regen.RDS. simulate_mouse_pc1_Rscript.R R code to simulate P(Condition_1)s for benchmarking. simulate_mouse_pc1_bash.sh Bash script to execute simulate_mouse_pc1_Rscript.R. Outputs stored in benchmark_dataset_mouse_pc1s_regen.csv. simulate_mouse_labels_Rscript.R R code to simulate labels for benchmarking. simulate_mouse_labels_bash.sh Bash script to execute simulate_mouse_labels_Rscript.R. Outputs stored in benchmark_dataset_mouse.csv.

    Resulting datasets

    mouse_gastrulation_data_regen.RDS Seurat dataset generated by process_mouse_cells.R. benchmark_dataset_mouse.csv Cell labels generated by simulate_mouse_labels_bash.sh. benchmark_dataset_mouse_pc1s_regen.csv P(Condition_1)s generated by simulate_mouse_pc1_bash.sh.

  13. Part 1: Includes the code (PT1-Analysis-022825) and data files needed to run...

    • figshare.com
    txt
    Updated Mar 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Laurel Philpott (2025). Part 1: Includes the code (PT1-Analysis-022825) and data files needed to run code [Dataset]. http://doi.org/10.6084/m9.figshare.28550489.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Mar 7, 2025
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Laurel Philpott
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    PT1-Analysis-022825: This file takes a dataframe containing climatic, economic, and species richness data for the 149 countries included in this study and uses structural equation modeling to explore the relationships between these variables. The script includes data cleaning, log transformations, detecting spatial autocorrelation, AIC model selection, SEM analysis, and ultimately visualization (making the figures in this manuscript).To run this script, the following pieces of data are needed: a. final.comps.country.table.csv: This includes the following column names: Country (the name), Population, area (in km^2), island (whether the country is island or mainland. Countries that have islands were categorized as mainland-- the US, for example), plantNum (which is the total number of native plants, which was collected from literature on country level floral surveys or convention on biological diversity reports), region (North Africa, Eastern Europe, etc), climate (tropics vs temperate), nias (number of invasive species according to GRIIS*), and naliens (number of alien species according to GRIIS*)b. KOFGI_2021.csv: This is a file that has the KOF indices for each country from 2021. This was sourced from https://kof.ethz.ch/en/forecasts-and indicators/indicators/kof-globalisation-index.htmlc. per capita gdp 2021- correct.csv: This is a file that has the per capita GDP values for each country from 2021. This was sourced from https://data.worldbank.org/indicator/NY.GDP.PCAP.CDd. *GRIIS csv files for 149 countries, sourced from griis.org: NOTE: You do NOT need this to run the code. We used the GRIIS files to find the number of alien and invasive species in each country. This data has been added to the final.comps.country.table.csv (see above). However, the GRIIS files are still uploaded to figshare, and the code that counts the number of alien and invasive plants in each country IS available in this R script. To bypass the species counts (so you do not have to upload all 149 csv files), simply go to the section that says “START” and make sure you have your working directory set correctly, and the country table downloaded and read in.

  14. Mammal occurrence records (2020-23) in the Valparai Plateau and Anamalai...

    • zenodo.org
    • data.niaid.nih.gov
    bin, csv, jpeg, txt
    Updated Oct 10, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    T. R. Shankar Raman; T. R. Shankar Raman; Divya Mudappa; Divya Mudappa (2024). Mammal occurrence records (2020-23) in the Valparai Plateau and Anamalai Tiger Reserve, Western Ghats, India [Dataset]. http://doi.org/10.5281/zenodo.11903722
    Explore at:
    jpeg, csv, txt, binAvailable download formats
    Dataset updated
    Oct 10, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    T. R. Shankar Raman; T. R. Shankar Raman; Divya Mudappa; Divya Mudappa
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jun 17, 2024
    Area covered
    Western Ghats, Valparai, India
    Description

    This dataset contains Mammal occurrence records (January 2020 - June 2023) in the Valparai Plateau and Anamalai Tiger Reserve, Western Ghats, India. It includes a few occurrence records of reptiles. Occurrence records were gathered in the field by researchers of the Nature Conservation Foundation, India, using a mobile data collection application. Suggested citation is:
    Nature Conservation Foundation (2024). Mammal occurrence records (2020-23) in the Valparai Plateau and Anamalai Tiger Reserve, Western Ghats, India. Nature Conservation Foundation, India. Dataset, Zenodo. DOI: 10.5281/zenodo.11903722

    CONTACT #1
    1. Name: T. R. Shankar Raman
    2. Work Address: Nature Conservation Foundation, 1311, 12th A Main, Vijayanagar 1st Stage, Mysuru 570017, Karnataka, India
    3. Work Phone: +91 821 2515601
    4. Email address: trsr@ncf-india.org
    5. ORCID: https://orcid.org/0000-0002-1347-3953

    CONTACT #2
    1. Name: Divya Mudappa
    2. Work Address: Nature Conservation Foundation, 1311, 12th A Main, Vijayanagar 1st Stage, Mysuru 570017, Karnataka, India
    3. Work Phone: +91 821 2515601
    4. Email address: divya@ncf-india.org
    5. ORCID: https://orcid.org/0000-0001-9708-4826

    Keywords: tropical rainforest, plantations, Anamalai Hills, Western Ghats, animal distribution, mammals

    Geographic Coverage:
    1. Location/Study Area: Valparai Plateau, Tamil Nadu, India; Anamalai Tiger Reserve, Tamil Nadu, India
    2. GPS coordinates: Valparai Plateau (10°15'- 10°22'N, 76°52' - 76°59'E); Anamalai Tiger Reserve (10°12' - 10°35'N, 76°49' - 77°24'E)

    Temporal Coverage:
    1. Begins: 2020-01-11 (Year, Month, Day)
    2. Ends: 2023-06-02 (Year, Month, Day)

    Besides the 000_readMe.txt file containing this information, the dataset includes 60 images (photographs), three comma-delimited text (csv) files, and one R markdown text file with R code as explained below:
    1) 001_mammalData.csv -- This file has the main mammal occurrence data with relevant and renamed columns derived from the original downloaded Excel worksheet file

    2) 002_placeLocs.csv -- This file lists names places for which the GPS location was unavailable from the mobile phone application, and was manually assigned to coordinates with 500 m accuracy

    3) 003_nameMatch.csv -- This file matches the name as originally recorded with the correct common name and scientific name

    4) 004_mammup.Rmd -- R code for processing the files to create a file for upload as an occurrence dataset on the Global Biodiversity Information Facility (GBIF.org)

    +60 image files (with ".jpg" file extension)

    FILES INCLUDED IN DATASET

    001_mammdata.csv
    This file has the main mammal occurrence data with relevant and renamed columns derived from the original downloaded Excel worksheet file
    recordedBy: Observer who recorded/made the observation
    username: Username of person on whose mobile phone the data were noted
    timestamp: Automatic time stamp of date and time when app was used
    date: Date of observation
    time: Time of observation
    decimalLatitude: Latitude in decimal degrees N
    decimalLongitude: Longitude in decimal degrees E
    GPSaltitude: Altitude in metres
    GPSaccuracy: Horizontal accuracy of GPS location in metres
    place: Name of locality
    habitat: Habitat type
    species: Species common name
    count: Number of individuals observed
    countType: Total (solitary or fully counted groups) or Partial (incompletely counted groups)
    obsType: Type of observation: sighting, sign (droppings or vocalisation), death, roadkill, electrocution, other
    notes: Notes or remarks on observation
    imageID: Image filename if available (NA, if not available)
    instanceID: Automatically generated unique identifier of observation

    002_placeLocs.csv
    This file lists names places for which the GPS location was unavailable from the mobile phone application, and was manually assigned to coordinates with 500 m accuracy
    place: Name of locality as recorded
    lat: Assigned latitude in decimal degrees N
    long: Assigned longitude in decimal degrees E
    GPSaccuracy: Assigned as 500 m – Horizontal accuracy of GPS location in metres

    003_nameMatch.csv
    This file matches the name as originally recorded with the correct common name and scientific name.
    verbatimIdentification: Identification as originally recorded in the ‘species’ column of the mammdata.csv file
    vernacularName: Common or engish name
    scientificName: Scientific name

    004_mammup.Rmd
    R code for processing the files to create a file for upload as an occurrence dataset on the Global Biodiversity Information Facility (GBIF.org)

  15. d

    Data from: Generalizable EHR-R-REDCap pipeline for a national...

    • datadryad.org
    • explore.openaire.eu
    • +2more
    zip
    Updated Jan 9, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sophia Shalhout; Farees Saqlain; Kayla Wright; Oladayo Akinyemi; David Miller (2022). Generalizable EHR-R-REDCap pipeline for a national multi-institutional rare tumor patient registry [Dataset]. http://doi.org/10.5061/dryad.rjdfn2zcm
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jan 9, 2022
    Dataset provided by
    Dryad
    Authors
    Sophia Shalhout; Farees Saqlain; Kayla Wright; Oladayo Akinyemi; David Miller
    Time period covered
    2021
    Description

    Objective: To develop a clinical informatics pipeline designed to capture large-scale structured EHR data for a national patient registry.

    Materials and Methods: The EHR-R-REDCap pipeline is implemented using R-statistical software to remap and import structured EHR data into the REDCap-based multi-institutional Merkel Cell Carcinoma (MCC) Patient Registry using an adaptable data dictionary.

    Results: Clinical laboratory data were extracted from EPIC Clarity across several participating institutions. Labs were transformed, remapped and imported into the MCC registry using the EHR labs abstraction (eLAB) pipeline. Forty-nine clinical tests encompassing 482,450 results were imported into the registry for 1,109 enrolled MCC patients. Data-quality assessment revealed highly accurate, valid labs. Univariate modeling was performed for labs at baseline on overall survival (N=176) using this clinical informatics pipeline.

    Conclusion: We demonstrate feasibility of the facile eLAB workflow. EHR...

  16. d

    R-LOADEST files to produce results in the Heart River Basin, North Dakota,...

    • catalog.data.gov
    • data.usgs.gov
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). R-LOADEST files to produce results in the Heart River Basin, North Dakota, 1970-2020 [Dataset]. https://catalog.data.gov/dataset/r-loadest-files-to-produce-results-in-the-heart-river-basin-north-dakota-1970-2020
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    North Dakota, Heart River
    Description

    This child page contains a zipped folder which contains all of the items necessary to run load estimation using R-LOADEST to produce results that are published in U.S. Geological Survey Investigations Report 2021-XXXX [Tatge, W.S., Nustad, R.A., and Galloway, J.M., 2021, Evaluation of Salinity and Nutrient Conditions in the Heart River Basin, North Dakota, 1970-2020: U.S. Geological Survey Scientific Investigations Report 2021-XXXX, XX p]. The folder contains an allsiteinfo.table.csv file, a "datain" folder, and a "scripts" folder. The allsiteinfo.table.csv file can be used to cross reference the sites with the main report (Tatge and others, 2021). The "datain" folder contains all the input data necessary to reproduce the load estimation results. The naming convention in the "datain" folder is site_MI_rloadest or site_NUT_rloadest for either the major ion loads or the nutrient loads. The .Rdata files are used in the scripts to run the estimations and the .csv files can be used to look at the data. The "scripts" folder contains the written R scripts to produce the results of the load estimation from the main report. R-LOADEST is a software package for analyzing loads in streams and an accompanying report (Runkel and others, 2004) serves as the formal documentation for R-LOADEST. The package is a collection of functions written in R (R Development Core Team, 2019), an open source language and a general environment for statistical computing and graphics. The following system requirements are necessary for producing results: Windows 10 operating system R (version 3.4 or later; 64-bit recommended) RStudio (version 1.1.456 or later) R-LOADEST program (available at https://github.com/USGS-R/rloadest). Runkel, R.L., Crawford, C.G., and Cohn, T.A., 2004, Load Estimator (LOADEST): A FORTRAN Program for Estimating Constituent Loads in Streams and Rivers: U.S. Geological Survey Techniques and Methods Book 4, Chapter A5, 69 p., [Also available at https://pubs.usgs.gov/tm/2005/tm4A5/pdf/508final.pdf.] R Development Core Team, 2019, R—A language and environment for statistical computing: Vienna, Austria, R Foundation for Statistical Computing, accessed December 7, 2020, at https://www.r-project.org.

  17. F

    Data from: Solar self-sufficient households as a driving factor for...

    • data.uni-hannover.de
    .zip, r, rdata +2
    Updated Dec 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Institut für Kartographie und Geoinformatik (2024). Solar self-sufficient households as a driving factor for sustainability transformation [Dataset]. https://data.uni-hannover.de/eu/dataset/19503682-5752-4352-97f6-511ae31d97df
    Explore at:
    rdata(426), rdata(1024592), r(21968), txt(1431), rdata(408277), text/x-sh(183), .zip, r(63854), r(24773), r(3406), r(6280)Available download formats
    Dataset updated
    Dec 12, 2024
    Dataset authored and provided by
    Institut für Kartographie und Geoinformatik
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    To get the consumption model from Section 3.1, one needs load execute the file consumption_data.R. Load the data for the 3 Phases ./data/CONSUMPTION/PL1.csv, PL2.csv, PL3.csv, transform the data and build the model (starting line 225). The final consumption data can be found in one file for each year in ./data/CONSUMPTION/MEGA_CONS_list.Rdata

    To get the results for the optimization problem, one needs to execute the file analyze_data.R. It provides the functions to compare production and consumption data, and to optimize for the different values (PV, MBC,).

    To reproduce the figures one needs to execute the file visualize_results.R. It provides the functions to reproduce the figures.

    To calculate the solar radiation that is needed in the Section Production Data, follow file calculate_total_radiation.R.

    To reproduce the radiation data from from ERA5, that can be found in data.zip, do the following steps: 1. ERA5 - download the reanalysis datasets as GRIB file. For FDIR select "Total sky direct solar radiation at surface", for GHI select "Surface solar radiation downwards", and for ALBEDO select "Forecast albedo". 2. convert GRIB to csv with the file era5toGRID.sh 3. convert the csv file to the data that is used in this paper with the file convert_year_to_grid.R

  18. Data from: Data and code from: Cover crop and crop rotation effects on...

    • catalog.data.gov
    Updated Apr 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Agricultural Research Service (2025). Data and code from: Cover crop and crop rotation effects on tissue and soil population dynamics of Macrophomina phaseolina and yield in no-till system - V2 [Dataset]. https://catalog.data.gov/dataset/data-and-code-from-cover-crop-and-crop-rotation-effects-on-tissue-and-soil-population-dyna-831b9
    Explore at:
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    Agricultural Research Servicehttps://www.ars.usda.gov/
    Description

    [Note 2023-08-14 - Supersedes version 1, https://doi.org/10.15482/USDA.ADC/1528086 ] This dataset contains all code and data necessary to reproduce the analyses in the manuscript: Mengistu, A., Read, Q. D., Sykes, V. R., Kelly, H. M., Kharel, T., & Bellaloui, N. (2023). Cover crop and crop rotation effects on tissue and soil population dynamics of Macrophomina phaseolina and yield under no-till system. Plant Disease. https://doi.org/10.1094/pdis-03-23-0443-re The .zip archive cropping-systems-1.0.zip contains data and code files. Data stem_soil_CFU_by_plant.csv: Soil disease load (SoilCFUg) and stem tissue disease load (StemCFUg) for individual plants in CFU per gram, with columns indicating year, plot ID, replicate, row, plant ID, previous crop treatment, cover crop treatment, and comments. Missing data are indicated with . yield_CFU_by_plot.csv: Yield data (YldKgHa) at the plot level in units of kg/ha, with columns indicating year, plot ID, replicate, and treatments, as well as means of soil and stem disease load at the plot level. Code cropping_system_analysis_v3.0.Rmd: RMarkdown notebook with all data processing, analysis, and visualization code equations.Rmd: RMarkdown notebook with formatted equations formatted_figs_revision.R: R script to produce figures formatted exactly as they appear in the manuscript The Rproject file cropping-systems.Rproj is used to organize the RStudio project. Scripts and notebooks used in older versions of the analysis are found in the testing/ subdirectory. Excel spreadsheets containing raw data from which the cleaned CSV files were created are found in the raw_data subdirectory.

  19. Students Test Data

    • kaggle.com
    Updated Sep 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ATHARV BHARASKAR (2023). Students Test Data [Dataset]. https://www.kaggle.com/datasets/atharvbharaskar/students-test-data
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 12, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    ATHARV BHARASKAR
    License

    ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
    License information was derived automatically

    Description

    Dataset Overview: This dataset pertains to the examination results of students who participated in a series of academic assessments at a fictitious educational institution named "University of Exampleville." The assessments were administered across various courses and academic levels, with a focus on evaluating students' performance in general management and domain-specific topics.

    Columns: The dataset comprises 12 columns, each representing specific attributes and performance indicators of the students. These columns encompass information such as the students' names (which have been anonymized), their respective universities, academic program names (including BBA and MBA), specializations, the semester of the assessment, the type of examination domain (general management or domain-specific), general management scores (out of 50), domain-specific scores (out of 50), total scores (out of 100), student ranks, and percentiles.

    Data Collection: The examination data was collected during a standardized assessment process conducted by the University of Exampleville. The exams were designed to assess students' knowledge and skills in general management and their chosen domain-specific subjects. It involved students from both BBA and MBA programs who were in their final year of study.

    Data Format: The dataset is available in a structured format, typically as a CSV file. Each row represents a unique student's performance in the examination, while columns contain specific information about their results and academic details.

    Data Usage: This dataset is valuable for analyzing and gaining insights into the academic performance of students pursuing BBA and MBA degrees. It can be used for various purposes, including statistical analysis, performance trend identification, program assessment, and comparison of scores across domains and specializations. Furthermore, it can be employed in predictive modeling or decision-making related to curriculum development and student support.

    Data Quality: The dataset has undergone preprocessing and anonymization to protect the privacy of individual students. Nevertheless, it is essential to use the data responsibly and in compliance with relevant data protection regulations when conducting any analysis or research.

    Data Format: The exam data is typically provided in a structured format, commonly as a CSV (Comma-Separated Values) file. Each row in the dataset represents a unique student's examination performance, and each column contains specific attributes and scores related to the examination. The CSV format allows for easy import and analysis using various data analysis tools and programming languages like Python, R, or spreadsheet software like Microsoft Excel.

    Here's a column-wise description of the dataset:

    Name OF THE STUDENT: The full name of the student who took the exam. (Anonymized)

    UNIVERSITY: The university where the student is enrolled.

    PROGRAM NAME: The name of the academic program in which the student is enrolled (BBA or MBA).

    Specialization: If applicable, the specific area of specialization or major that the student has chosen within their program.

    Semester: The semester or academic term in which the student took the exam.

    Domain: Indicates whether the exam was divided into two parts: general management and domain-specific.

    GENERAL MANAGEMENT SCORE (OUT of 50): The score obtained by the student in the general management part of the exam, out of a maximum possible score of 50.

    Domain-Specific Score (Out of 50): The score obtained by the student in the domain-specific part of the exam, also out of a maximum possible score of 50.

    TOTAL SCORE (OUT of 100): The total score obtained by adding the scores from the general management and domain-specific parts, out of a maximum possible score of 100.

  20. t

    Solar self-sufficient households as a driving factor for sustainability...

    • service.tib.eu
    Updated Nov 14, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Solar self-sufficient households as a driving factor for sustainability transformation - Vdataset - LDM [Dataset]. https://service.tib.eu/ldmservice/dataset/luh-solar-self-sufficient-households-as-a-driving-factor-for-sustainability-transformation
    Explore at:
    Dataset updated
    Nov 14, 2024
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    To get the consumption model from Section 3.1, one needs load execute the file consumption_data.R. Load the data for the 3 Phases ./data/CONSUMPTION/PL1.csv, PL2.csv, PL3.csv, transform the data and build the model (starting line 225). The final consumption data can be found in one file for each year in ./data/CONSUMPTION/MEGA_CONS_list.Rdata To get the results for the optimization problem, one needs to execute the file analyze_data.R. It provides the functions to compare production and consumption data, and to optimize for the different values (PV, MBC,). To reproduce the figures one needs to execute the file visualize_results.R. It provides the functions to reproduce the figures. To calculate the solar radiation that is needed in the Section Production Data, follow file calculate_total_radiation.R. To reproduce the radiation data from from ERA5, that can be found in data.zip, do the following steps: 1. ERA5 - download the reanalysis datasets as GRIB file. For FDIR select "Total sky direct solar radiation at surface", for GHI select "Surface solar radiation downwards", and for ALBEDO select "Forecast albedo". 2. convert GRIB to csv with the file era5toGRID.sh 3. convert the csv file to the data that is used in this paper with the file convert_year_to_grid.R

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Benj Petre; Aurore Coince; Sophien Kamoun (2016). Petre_Slide_CategoricalScatterplotFigShare.pptx [Dataset]. http://doi.org/10.6084/m9.figshare.3840102.v1

Petre_Slide_CategoricalScatterplotFigShare.pptx

Explore at:
pptxAvailable download formats
Dataset updated
Sep 19, 2016
Dataset provided by
figshare
Authors
Benj Petre; Aurore Coince; Sophien Kamoun
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

Categorical scatterplots with R for biologists: a step-by-step guide

Benjamin Petre1, Aurore Coince2, Sophien Kamoun1

1 The Sainsbury Laboratory, Norwich, UK; 2 Earlham Institute, Norwich, UK

Weissgerber and colleagues (2015) recently stated that ‘as scientists, we urgently need to change our practices for presenting continuous data in small sample size studies’. They called for more scatterplot and boxplot representations in scientific papers, which ‘allow readers to critically evaluate continuous data’ (Weissgerber et al., 2015). In the Kamoun Lab at The Sainsbury Laboratory, we recently implemented a protocol to generate categorical scatterplots (Petre et al., 2016; Dagdas et al., 2016). Here we describe the three steps of this protocol: 1) formatting of the data set in a .csv file, 2) execution of the R script to generate the graph, and 3) export of the graph as a .pdf file.

Protocol

• Step 1: format the data set as a .csv file. Store the data in a three-column excel file as shown in Powerpoint slide. The first column ‘Replicate’ indicates the biological replicates. In the example, the month and year during which the replicate was performed is indicated. The second column ‘Condition’ indicates the conditions of the experiment (in the example, a wild type and two mutants called A and B). The third column ‘Value’ contains continuous values. Save the Excel file as a .csv file (File -> Save as -> in ‘File Format’, select .csv). This .csv file is the input file to import in R.

• Step 2: execute the R script (see Notes 1 and 2). Copy the script shown in Powerpoint slide and paste it in the R console. Execute the script. In the dialog box, select the input .csv file from step 1. The categorical scatterplot will appear in a separate window. Dots represent the values for each sample; colors indicate replicates. Boxplots are superimposed; black dots indicate outliers.

• Step 3: save the graph as a .pdf file. Shape the window at your convenience and save the graph as a .pdf file (File -> Save as). See Powerpoint slide for an example.

Notes

• Note 1: install the ggplot2 package. The R script requires the package ‘ggplot2’ to be installed. To install it, Packages & Data -> Package Installer -> enter ‘ggplot2’ in the Package Search space and click on ‘Get List’. Select ‘ggplot2’ in the Package column and click on ‘Install Selected’. Install all dependencies as well.

• Note 2: use a log scale for the y-axis. To use a log scale for the y-axis of the graph, use the command line below in place of command line #7 in the script.

7 Display the graph in a separate window. Dot colors indicate

replicates

graph + geom_boxplot(outlier.colour='black', colour='black') + geom_jitter(aes(col=Replicate)) + scale_y_log10() + theme_bw()

References

Dagdas YF, Belhaj K, Maqbool A, Chaparro-Garcia A, Pandey P, Petre B, et al. (2016) An effector of the Irish potato famine pathogen antagonizes a host autophagy cargo receptor. eLife 5:e10856.

Petre B, Saunders DGO, Sklenar J, Lorrain C, Krasileva KV, Win J, et al. (2016) Heterologous Expression Screens in Nicotiana benthamiana Identify a Candidate Effector of the Wheat Yellow Rust Pathogen that Associates with Processing Bodies. PLoS ONE 11(2):e0149035

Weissgerber TL, Milic NM, Winham SJ, Garovic VD (2015) Beyond Bar and Line Graphs: Time for a New Data Presentation Paradigm. PLoS Biol 13(4):e1002128

https://cran.r-project.org/

http://ggplot2.org/

Search
Clear search
Close search
Google apps
Main menu