50 datasets found
  1. N

    Income Distribution by Quintile: Mean Household Income in Lancaster County,...

    • neilsberg.com
    csv, json
    Updated Mar 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Income Distribution by Quintile: Mean Household Income in Lancaster County, PA // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/lancaster-county-pa-median-household-income/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Mar 3, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Pennsylvania, Lancaster County
    Variables measured
    Income Level, Mean Household Income
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It delineates income distributions across income quintiles (mentioned above) following an initial analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series via current methods (R-CPI-U-RS). For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the mean household income for each of the five quintiles in Lancaster County, PA, as reported by the U.S. Census Bureau. The dataset highlights the variation in mean household income across quintiles, offering valuable insights into income distribution and inequality.

    Key observations

    • Income disparities: The mean income of the lowest quintile (20% of households with the lowest income) is 22,178, while the mean income for the highest quintile (20% of households with the highest income) is 255,448. This indicates that the top earners earn 12 times compared to the lowest earners.
    • *Top 5%: * The mean household income for the wealthiest population (top 5%) is 448,457, which is 175.56% higher compared to the highest quintile, and 2022.08% higher compared to the lowest quintile.
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Income Levels:

    • Lowest Quintile
    • Second Quintile
    • Third Quintile
    • Fourth Quintile
    • Highest Quintile
    • Top 5 Percent

    Variables / Data Columns

    • Income Level: This column showcases the income levels (As mentioned above).
    • Mean Household Income: Mean household income, in 2023 inflation-adjusted dollars for the specific income level.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Lancaster County median household income. You can refer the same here

  2. N

    Income Distribution by Quintile: Mean Household Income in Middle Inlet,...

    • neilsberg.com
    csv, json
    Updated Jan 11, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Income Distribution by Quintile: Mean Household Income in Middle Inlet, Wisconsin [Dataset]. https://www.neilsberg.com/research/datasets/94c785c2-7479-11ee-949f-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Jan 11, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Wisconsin, Middle Inlet
    Variables measured
    Income Level, Mean Household Income
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. It delineates income distributions across income quintiles (mentioned above) following an initial analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series via current methods (R-CPI-U-RS). For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the mean household income for each of the five quintiles in Middle Inlet, Wisconsin, as reported by the U.S. Census Bureau. The dataset highlights the variation in mean household income across quintiles, offering valuable insights into income distribution and inequality.

    Key observations

    • Income disparities: The mean income of the lowest quintile (20% of households with the lowest income) is 21,360, while the mean income for the highest quintile (20% of households with the highest income) is 162,915. This indicates that the top earners earn 8 times compared to the lowest earners.
    • *Top 5%: * The mean household income for the wealthiest population (top 5%) is 282,509, which is 173.41% higher compared to the highest quintile, and 1322.61% higher compared to the lowest quintile.

    Mean household income by quintiles in Middle Inlet, Wisconsin (in 2022 inflation-adjusted dollars))

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Income Levels:

    • Lowest Quintile
    • Second Quintile
    • Third Quintile
    • Fourth Quintile
    • Highest Quintile
    • Top 5 Percent

    Variables / Data Columns

    • Income Level: This column showcases the income levels (As mentioned above).
    • Mean Household Income: Mean household income, in 2022 inflation-adjusted dollars for the specific income level.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Middle Inlet town median household income. You can refer the same here

  3. F

    Real Median Personal Income in the United States

    • fred.stlouisfed.org
    json
    Updated Sep 10, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Real Median Personal Income in the United States [Dataset]. https://fred.stlouisfed.org/series/MEPAINUSA672N
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Sep 10, 2024
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    United States
    Description

    Graph and download economic data for Real Median Personal Income in the United States (MEPAINUSA672N) from 1974 to 2023 about personal income, personal, median, income, real, and USA.

  4. U.S. median household income 2023, by education of householder

    • statista.com
    Updated Sep 17, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). U.S. median household income 2023, by education of householder [Dataset]. https://www.statista.com/statistics/233301/median-household-income-in-the-united-states-by-education/
    Explore at:
    Dataset updated
    Sep 17, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    United States
    Description

    U.S. citizens with a professional degree had the highest median household income in 2023, at 172,100 U.S. dollars. In comparison, those with less than a 9th grade education made significantly less money, at 35,690 U.S. dollars. Household income The median household income in the United States has fluctuated since 1990, but rose to around 70,000 U.S. dollars in 2021. Maryland had the highest median household income in the United States in 2021. Maryland’s high levels of wealth is due to several reasons, and includes the state's proximity to the nation's capital. Household income and ethnicity The median income of white non-Hispanic households in the United States had been on the rise since 1990, but declining since 2019. While income has also been on the rise, the median income of Hispanic households was much lower than those of white, non-Hispanic private households. However, the median income of Black households is even lower than Hispanic households. Income inequality is a problem without an easy solution in the United States, especially since ethnicity is a contributing factor. Systemic racism contributes to the non-White population suffering from income inequality, which causes the opportunity for growth to stagnate.

  5. Most populated cities in the U.S. - median household income 2022

    • statista.com
    Updated Aug 30, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Most populated cities in the U.S. - median household income 2022 [Dataset]. https://www.statista.com/statistics/205609/median-household-income-in-the-top-20-most-populated-cities-in-the-us/
    Explore at:
    Dataset updated
    Aug 30, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2022
    Area covered
    United States
    Description

    In 2022, San Francisco had the highest median household income of cities ranking within the top 25 in terms of population, with a median household income in of 136,692 U.S. dollars. In that year, San Jose in California was ranked second, and Seattle, Washington third.

    Following a fall after the great recession, median household income in the United States has been increasing in recent years. As of 2022, median household income by state was highest in Maryland, Washington, D.C., Utah, and Massachusetts. It was lowest in Mississippi, West Virginia, and Arkansas. Families with an annual income of 25,000 and 49,999 U.S. dollars made up the largest income bracket in America, with about 25.26 million households.

    Data on median household income can be compared to statistics on personal income in the U.S. released by the Bureau of Economic Analysis. Personal income rose to around 21.8 trillion U.S. dollars in 2022, the highest value recorded. Personal income is a measure of the total income received by persons from all sources, while median household income is “the amount with divides the income distribution into two equal groups,” according to the U.S. Census Bureau. Half of the population in question lives above median income and half lives below. Though total personal income has increased in recent years, this wealth is not distributed throughout the population. In practical terms, income of most households has decreased. One additional statistic illustrates this disparity: for the lowest quintile of workers, mean household income has remained more or less steady for the past decade at about 13 to 16 thousand constant U.S. dollars annually. Meanwhile, income for the top five percent of workers has actually risen from about 285,000 U.S. dollars in 1990 to about 499,900 U.S. dollars in 2020.

  6. N

    Income Distribution by Quintile: Mean Household Income in Minnesota // 2025...

    • neilsberg.com
    csv, json
    Updated Mar 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Income Distribution by Quintile: Mean Household Income in Minnesota // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/minnesota-median-household-income/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Mar 3, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Minnesota
    Variables measured
    Income Level, Mean Household Income
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It delineates income distributions across income quintiles (mentioned above) following an initial analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series via current methods (R-CPI-U-RS). For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the mean household income for each of the five quintiles in Minnesota, as reported by the U.S. Census Bureau. The dataset highlights the variation in mean household income across quintiles, offering valuable insights into income distribution and inequality.

    Key observations

    • Income disparities: The mean income of the lowest quintile (20% of households with the lowest income) is 21,058, while the mean income for the highest quintile (20% of households with the highest income) is 282,691. This indicates that the top earners earn 13 times compared to the lowest earners.
    • *Top 5%: * The mean household income for the wealthiest population (top 5%) is 497,204, which is 175.88% higher compared to the highest quintile, and 2361.12% higher compared to the lowest quintile.
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Income Levels:

    • Lowest Quintile
    • Second Quintile
    • Third Quintile
    • Fourth Quintile
    • Highest Quintile
    • Top 5 Percent

    Variables / Data Columns

    • Income Level: This column showcases the income levels (As mentioned above).
    • Mean Household Income: Mean household income, in 2023 inflation-adjusted dollars for the specific income level.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Minnesota median household income. You can refer the same here

  7. T

    Vital Signs: Jobs by Wage Level - Region

    • data.bayareametro.gov
    application/rdfxml +5
    Updated Jan 18, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2019). Vital Signs: Jobs by Wage Level - Region [Dataset]. https://data.bayareametro.gov/dataset/Vital-Signs-Jobs-by-Wage-Level-Region/dzb5-6m5a
    Explore at:
    json, csv, application/rdfxml, application/rssxml, tsv, xmlAvailable download formats
    Dataset updated
    Jan 18, 2019
    Description

    VITAL SIGNS INDICATOR Jobs by Wage Level (EQ1)

    FULL MEASURE NAME Distribution of jobs by low-, middle-, and high-wage occupations

    LAST UPDATED January 2019

    DESCRIPTION Jobs by wage level refers to the distribution of jobs by low-, middle- and high-wage occupations. In the San Francisco Bay Area, low-wage occupations have a median hourly wage of less than 80% of the regional median wage; median wages for middle-wage occupations range from 80% to 120% of the regional median wage, and high-wage occupations have a median hourly wage above 120% of the regional median wage.

    DATA SOURCE California Employment Development Department OES (2001-2017) http://www.labormarketinfo.edd.ca.gov/data/oes-employment-and-wages.html

    American Community Survey (2001-2017) http://api.census.gov

    CONTACT INFORMATION vitalsigns.info@bayareametro.gov

    METHODOLOGY NOTES (across all datasets for this indicator) Jobs are determined to be low-, middle-, or high-wage based on the median hourly wage of their occupational classification in the most recent year. Low-wage jobs are those that pay below 80% of the regional median wage. Middle-wage jobs are those that pay between 80% and 120% of the regional median wage. High-wage jobs are those that pay above 120% of the regional median wage. Regional median hourly wages are estimated from the American Community Survey and are published on the Vital Signs Income indicator page. For the national context analysis, occupation wage classifications are unique to each metro area. A low-wage job in New York, for instance, may be a middle-wage job in Miami. For the Bay Area in 2017, the median hourly wage for low-wage occupations was less than $20.86 per hour. For middle-wage jobs, the median ranged from $20.86 to $31.30 per hour; and for high-wage jobs, the median wage was above $31.30 per hour.

    Occupational employment and wage information comes from the Occupational Employment Statistics (OES) program. Regional and subregional data is published by the California Employment Development Department. Metro data is published by the Bureau of Labor Statistics. The OES program collects data on wage and salary workers in nonfarm establishments to produce employment and wage estimates for some 800 occupations. Data from non-incorporated self-employed persons are not collected, and are not included in these estimates. Wage estimates represent a three-year rolling average.

    Due to changes in reporting during the analysis period, subregion data from the EDD OES have been aggregated to produce geographies that can be compared over time. West Bay is San Mateo, San Francisco, and Marin counties. North Bay is Sonoma, Solano and Napa counties. East Bay is Alameda and Contra Costa counties. South Bay is Santa Clara County from 2001-2004 and Santa Clara and San Benito counties from 2005-2017.

    Due to changes in occupation classifications during the analysis period, all occupations have been reassigned to 2010 SOC codes. For pre-2009 reporting years, all employment in occupations that were split into two or more 2010 SOC occupations are assigned to the first 2010 SOC occupation listed in the crosswalk table provided by the Census Bureau. This method assumes these occupations always fall in the same wage category, and sensitivity analysis of this reassignment method shows this is true in most cases.

    In order to use OES data for time series analysis, several steps were taken to handle missing wage or employment data. For some occupations, such as airline pilots and flight attendants, no wage information was provided and these were removed from the analysis. Other occupations did not record a median hourly wage (mostly due to irregular work hours) but did record an annual average wage. Nearly all these occupations were in education (i.e. teachers). In this case, a 2080 hour-work year was assumed and [annual average wage/2080] was used as a proxy for median income. Most of these occupations were classified as high-wage, thus dispelling concern of underestimating a median wage for a teaching occupation that requires less than 2080 hours of work a year (equivalent to 12 months fulltime). Finally, the OES has missing employment data for occupations across the time series. To make the employment data comparable between years, gaps in employment data for occupations are ‘filled-in’ using linear interpolation if there are at least two years of employment data found in OES. Occupations with less than two years of employment data were dropped from the analysis. Over 80% of interpolated cells represent missing employment data for just one year in the time series. While this interpolating technique may impact year-over-year comparisons, the long-term trends represented in the analysis generally are accurate.

  8. Income of individuals by age group, sex and income source, Canada, provinces...

    • www150.statcan.gc.ca
    • open.canada.ca
    • +2more
    Updated Apr 26, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2024). Income of individuals by age group, sex and income source, Canada, provinces and selected census metropolitan areas [Dataset]. http://doi.org/10.25318/1110023901-eng
    Explore at:
    Dataset updated
    Apr 26, 2024
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Income of individuals by age group, sex and income source, Canada, provinces and selected census metropolitan areas, annual.

  9. F

    Households; Net Worth, Level

    • fred.stlouisfed.org
    json
    Updated Mar 13, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Households; Net Worth, Level [Dataset]. https://fred.stlouisfed.org/series/BOGZ1FL192090005Q
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Mar 13, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Description

    Graph and download economic data for Households; Net Worth, Level (BOGZ1FL192090005Q) from Q4 1987 to Q4 2024 about net worth, Net, households, and USA.

  10. d

    2008-09 Class Size - School-level Detail

    • catalog.data.gov
    • data.cityofnewyork.us
    • +1more
    Updated Nov 29, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofnewyork.us (2024). 2008-09 Class Size - School-level Detail [Dataset]. https://catalog.data.gov/dataset/2008-09-class-size-school-level-detail
    Explore at:
    Dataset updated
    Nov 29, 2024
    Dataset provided by
    data.cityofnewyork.us
    Description

    This file shows average class sizes and size of smallest and largest class for each school, broken out by grade and program type (General Education, Self-Contained Special Education, Collaborative Team Teaching (CTT)) for grades K-9 (where grade 9 is not reported by subject area), and for grades 5-9 (where available) and 9-12, aggregated by program type (General Education, CTT, and Self-Contained Special Education) and core course (e.g. English 9, Math A, US History, etc.). Official class size data for grades K-9 is based on October 31, 2008 Audited Registers; Core course class size data for MS CORE and grades 9-12 is based on January 23, 2009 active registers. Where ninth grade data is not reported by core course - For middle schools using MSPA (ATS) or HSST to program, average class size is reported by core course, as well as by official class. - For high schools, sections with matching day, period, room and core subject, and combined enrollment less than 34 are assumed to be co-teaching situations. In the report, duplicated sections are subtracted as "MATCHED SECTIONS" and paired sections are added back as "ASSUMED TEAM TEACHING".

  11. w

    County Estimates of the No of textbooks and textbook ratios for key PUBLIC...

    • data.wu.ac.at
    • cloud.csiss.gmu.edu
    csv, json, rdf, xml
    Updated Nov 25, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2015). County Estimates of the No of textbooks and textbook ratios for key PUBLIC and PRIVATE primary school level subjects (Class 1-3 & 4-8 ) [Dataset]. https://data.wu.ac.at/schema/africaopendata_org/MmQ5M2RlNjctNWE0ZS00ODVmLThkMDktYmIzODA2N2I3ZDEy
    Explore at:
    xml, rdf, csv, jsonAvailable download formats
    Dataset updated
    Nov 25, 2015
    Description

    The Ministry of Educations' - Basic Education Statistical Booklet captures national statistics for the Education Sector in totality.

    This dataset explores the no of textbook found at public and private primary schools by the core subjects of learning (Maths, English, Kiswahili, Social Studies and Science).

    Source data Table 53 ; Public Primary Lower Class Text Books (Class 1-3) Table 54 : Public Primary Lower Class Text Book Ratios (Class 1-3) Table 55: Private Primary Lower Class Text Books (Class 1-3) Table 56: Private Primary Lower Class Text Book Ratios (Class 1-3) Table 57: Public Primary Upper Class Text Books (Class 4-8) Table 58: Public Primary Upper Class Text Book Ratios (Class 4-8) Table 59: Private Primary Upper Class Text Books (Class 4-8) Table 60: Private Primary Upper Class Text Book Ratios (Class 4-8)

  12. s

    Disposable Income Ireland

    • spotzi.com
    csv
    Updated Mar 9, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Spotzi. Location Intelligence Dashboards for Businesses. (2023). Disposable Income Ireland [Dataset]. https://www.spotzi.com/en/data-catalog/datasets/disposable-income-ireland/
    Explore at:
    csvAvailable download formats
    Dataset updated
    Mar 9, 2023
    Dataset authored and provided by
    Spotzi. Location Intelligence Dashboards for Businesses.
    License

    https://www.spotzi.com/en/about/terms-of-service/https://www.spotzi.com/en/about/terms-of-service/

    Time period covered
    2022
    Area covered
    Ireland
    Description

    Disposable Income refers to an individual or household's net income once taxes and other employer deductions are taken into account. In other words, it is the amount of money an individual has for spending on essential and non-essential goods and services.

    What is included in this income dataset?

    All data is also calculated as a total (in Euros), a percentage (%) and as an index - with an index of 100 representing the average disposable income per selected administrative level. The disposable income data for Ireland is available at street and 4-digit postal code level.

    Our Irish Disposable Income datasets include the following variables:

    Income

    • Total Number of Inhabitants

    Households

    • Total Number of Households

    Disposable Income

    • Total Disposable Income
    • Average Disposable Income per Inhabitant
    • Average Disposable Income per Household
    • Disposable income is also known as purchasing power. Purchasing power simply is the amount of money a person has left to buy products. It is a good indicator of the economic wealth of certain areas. Having access to this data greatly improves strategic decisions you make.

      The Purchasing Power data highlights regions where high numbers of potential buyers live. By concentrating your marketing efforts on these regions, you can generate better results, increase efficiency, and conserve resources.

    • The chief data source used for the compilation of the purchasing power figures is each country's distribution of income-information obtained through an analysis of official tax statistics. In the case of countries for which this kind of information is only partially or not at all available, other factors are considered, such as data on demographics, the workforce, unemployment figures, etc.

      In the case of countries without official population statistics at the level of postcodes, population data is calculated. Area-based projections are being avoided as much as possible. The calculation of highly accurate purchasing power figures is possible using mathematical formulas that have been refined over the course of many years.

    • At the 4-digit postal code level, there are 139 areas in this dataset.

    • Spotzi's geomarketing tool, Spotzi Profiling, effectively leverages this data. It provides in-depth insights into income and other characteristics, enabling personalized marketing for various customer segments.

      Together, the Disposable Income dataset and Spotzi tools create a potent resource, empowering marketers to comprehend disposable income trends and income distribution across different regions of the country, guiding improved planning and more intelligent selling techniques.

      How does it work?

      Location is key to our geomarketing platform. It serves as the means by which we can link more data to your customers' locations, extracting valuable insights from your customer data.

      With Customer Profiling, you can enrich your customer list in just a few steps with this dataset on disposable income, gaining deeper insights into your most valuable customers.

    • Spotzi Targeting make excellent use of this data. Spotzi Targeting allows businesses to group people with similar locations and income levels, enabling the creation of ads that truly connect and result in better sales and returns on investment.

  13. F

    Bahasa Conversation Chat Dataset for Travel Domain

    • futurebeeai.com
    wav
    Updated Aug 1, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FutureBee AI (2022). Bahasa Conversation Chat Dataset for Travel Domain [Dataset]. https://www.futurebeeai.com/dataset/text-dataset/bahasa-travel-domain-conversation-text-dataset
    Explore at:
    wavAvailable download formats
    Dataset updated
    Aug 1, 2022
    Dataset provided by
    FutureBeeAI
    Authors
    FutureBee AI
    License

    https://www.futurebeeai.com/data-license-agreementhttps://www.futurebeeai.com/data-license-agreement

    Dataset funded by
    FutureBeeAI
    Description

    Introduction

    The dataset comprises over 10,000 chat conversations, each focusing on specific Travel related topics. Each conversation provides a detailed interaction between a call center agent and a customer, capturing real-life scenarios and language nuances.

    Participants Details: 150+ native Bahasa participants from the FutureBeeAI community.
    Word Count & Length: Chats are diverse, averaging 300 to 700 words and 50 to 150 turns across both speakers.

    Topic Diversity

    The chat dataset covers a wide range of conversations on Travel topics, ensuring that the dataset is comprehensive and relevant for training and fine-tuning models for various Travel use cases. It offers diversity in terms of conversation topics, chat types, and outcomes, including both inbound and outbound chats with positive, neutral, and negative outcomes.

    Inbound Calls:
    Booking Inquiries & Assistance
    Destination Information & Recommendations
    Flight Delays or Cancellation Assistance
    Assistance for Disable Passengers
    Travel-related Health & Safety Inquiry
    Lost or Delayed Baggage Assistance, and many more
    Outbound Calls:
    Promotional Offers & Package Deals
    Customer Satisfaction Surveys
    Booking Confirmations & Updates
    Flight Schedule Changes & Notifications
    Customer Feedback Collection
    Visa Expiration Reminders, and many more

    Language Variety & Nuances

    The conversations in this dataset capture the diverse language styles and expressions prevalent in Bahasa Travel interactions. This diversity ensures the dataset accurately represents the language used by Bahasa speakers in Travel contexts.

    The dataset encompasses a wide array of language elements, including:

    Naming Conventions: Chats include a variety of Bahasa personal and business names.
    Localized Details: Real-world addresses, emails, phone numbers, and other contact information as according to different Bahasa-speaking regions.
    Temporal and Numeric Expressions: Dates, times, currencies, and numbers in Bahasa forms, adhering to local conventions.
    Idiomatic Expressions and Slang: It includes local slang, idioms, and informal phrase present in Bahasa Travel conversations.

    This linguistic authenticity ensures that the dataset equips researchers and developers with a comprehensive understanding of the intricate language patterns, cultural references, and communication styles inherent to Bahasa Travel interactions.

    Conversational Flow and Interaction Types

    The dataset includes a broad range of conversations, from simple inquiries to detailed discussions, capturing the dynamic nature of Travel customer-agent interactions.

    Simple Inquiries
    Detailed Discussions
    Transactional Interactions
    Problem-Solving Dialogues
    Advisory Sessions
    Routine Checks and Follow-Ups

    Each of these conversations contains various aspects of conversation flow like:

    Greetings
    Authentication
    Information gathering
    Resolution identification
    Solution Delivery
    <span

  14. Table 3.1a Percentile points from 1 to 99 for total income before and after...

    • gov.uk
    Updated Mar 12, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Table 3.1a Percentile points from 1 to 99 for total income before and after tax [Dataset]. https://www.gov.uk/government/statistics/percentile-points-from-1-to-99-for-total-income-before-and-after-tax
    Explore at:
    Dataset updated
    Mar 12, 2025
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    HM Revenue & Customs
    Description

    The table only covers individuals who have some liability to Income Tax. The percentile points have been independently calculated on total income before tax and total income after tax.

    These statistics are classified as accredited official statistics.

    You can find more information about these statistics and collated tables for the latest and previous tax years on the Statistics about personal incomes page.

    Supporting documentation on the methodology used to produce these statistics is available in the release for each tax year.

    Note: comparisons over time may be affected by changes in methodology. Notably, there was a revision to the grossing factors in the 2018 to 2019 publication, which is discussed in the commentary and supporting documentation for that tax year. Further details, including a summary of significant methodological changes over time, data suitability and coverage, are included in the Background Quality Report.

  15. E

    Data from: Land Cover Map 2015 (1km dominant aggregate class, GB)

    • catalogue.ceh.ac.uk
    • data-search.nerc.ac.uk
    • +1more
    zip
    Updated Apr 11, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    C.S. Rowland; R.D. Morton; L. Carrasco; G. McShane; A.W. O'Neil; C.M. Wood (2017). Land Cover Map 2015 (1km dominant aggregate class, GB) [Dataset]. http://doi.org/10.5285/711c8dc1-0f4e-42ad-a703-8b5d19c92247
    Explore at:
    zipAvailable download formats
    Dataset updated
    Apr 11, 2017
    Dataset provided by
    NERC EDS Environmental Information Data Centre
    Authors
    C.S. Rowland; R.D. Morton; L. Carrasco; G. McShane; A.W. O'Neil; C.M. Wood
    License

    https://eidc.ceh.ac.uk/licences/lcm-raster/plainhttps://eidc.ceh.ac.uk/licences/lcm-raster/plain

    Time period covered
    Jan 1, 2014 - Dec 1, 2015
    Area covered
    Description

    This dataset consists of the 1km raster, dominant aggregate class version of the Land Cover Map 2015 (LCM2015) for Great Britain. The 1km dominant coverage product is based on the 1km percentage product and reports the aggregated habitat class with the highest percentage cover for each 1km pixel. The 10 aggregate classes are groupings of 21 target classes, which are based on the Joint Nature Conservation Committee (JNCC) Broad Habitats, which encompass the entire range of UK habitats. The aggregate classes group some of the more specialised classes into more general categories. For example, the five coastal classes in the target class are grouped into a single aggregate coastal class. This dataset is derived from the vector version of the Land Cover Map, which contains individual parcels of land cover and is the highest available spatial resolution. LCM2015 is a land cover map of the UK which was produced at the Centre for Ecology & Hydrology by classifying satellite images from 2014 and 2015 into 21 Broad Habitat-based classes. LCM2015 consists of a range of raster and vector products and users should familiarise themselves with the full range (see related records, the CEH web site and the LCM2015 Dataset documentation) to select the product most suited to their needs. LCM2015 was produced at the Centre for Ecology & Hydrology by classifying satellite images from 2014 and 2015 into 21 Broad Habitat-based classes. It is one of a series of land cover maps, produced by UKCEH since 1990. They include versions in 1990, 2000, 2007, 2015, 2017, 2018 and 2019.

  16. The National Longitudinal Study of the High School Class of 1972

    • catalog.data.gov
    • datasets.ai
    • +2more
    Updated Aug 13, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Center for Education Statistics (NCES) (2023). The National Longitudinal Study of the High School Class of 1972 [Dataset]. https://catalog.data.gov/dataset/the-national-longitudinal-study-of-the-high-school-class-of-1972-682a8
    Explore at:
    Dataset updated
    Aug 13, 2023
    Dataset provided by
    National Center for Education Statisticshttps://nces.ed.gov/
    Description

    The National Longitudinal Study of the High School Class of 1972 (NLS-72) is part of the Secondary Longitudinal Studies (SLS) program; program data is available since 1972 at https://nces.ed.gov/pubsearch/getpubcats.asp?sid=021. The National Longitudinal Study of the High School Class of 1972 (NLS-72) (https://nces.ed.gov/surveys/nls72/index.asp) is a longitudinal survey that follows high school seniors through 5 follow-ups in 1973, 1974, 1976, 1979, and 1986. The study was conducted using a national representative sample of 1972 high school seniors. Key statistics produced from the National Longitudinal Study of High School Class of 1972 are student's educational aspirations and attainment, family formation, and occupations.

  17. s

    Education and Occupation United States

    • spotzi.com
    csv
    Updated Mar 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Spotzi. Location Intelligence Dashboards for Businesses. (2025). Education and Occupation United States [Dataset]. https://www.spotzi.com/en/data-catalog/datasets/education-and-occupation-united-states/
    Explore at:
    csvAvailable download formats
    Dataset updated
    Mar 21, 2025
    Dataset authored and provided by
    Spotzi. Location Intelligence Dashboards for Businesses.
    License

    https://www.spotzi.com/en/about/terms-of-service/https://www.spotzi.com/en/about/terms-of-service/

    Time period covered
    2022
    Area covered
    United States
    Description

    Our Demographics package in the USA offers data pertaining to the education of residents of the United States of America at Census Block Level. Each data variable is available as a sum, or as a percentage of the total population within each selected area.

    What is included?

    At the Census Block level, this dataset includes some of the following key features:

    Highest Educational Attainment

    • High-school Diploma
    • College - No Degree
    • GED
    • Associates Degree
    • Bachelor's Degree
    • Master's Degree
    • Doctorate Degree
    • Professional School Degree

    Schooling In Child Population

    • No Schooling
    • Nursery School
    • Kindergarten
    • Primary School

    Bachelor's Degree Attained

    • Arts/Humanities/Other
    • Business
    • Education
    • Science/Engineering
      • Highest Educational Attainment: Marketers can use this data to tailor their campaigns based on the level of education achieved by their target audience. For instance, educational institutions may focus on promoting advanced degree programs to individuals with a bachelor's degree or higher, while brands offering products related to skill development might target those with a high-school diploma or college degree.
      • Schooling In Child Population: This data provides insights into the educational stages of the child population, allowing marketers to customize their strategies. For example, companies specializing in children's products can create targeted promotions for specific age groups, such as educational toys for those in nursery or kindergarten.
      • Bachelor's Degree Attained: Marketers can leverage this information to tailor campaigns based on the specific field of study for individuals with a bachelor's degree. For instance, businesses offering services aligned with certain disciplines, like technology or the arts, can refine their messaging to appeal to the interests and preferences associated with each academic field.
    • This demographic data is typically available at the census block level. These blocks are smaller, more detailed units designed for statistical purposes, enabling a more precise analysis of population, housing, and demographic data. Census blocks may vary in size and shape but are generally more localized compared to ZIP codes.

      Still looking for demographic data at the postal code level? Contact sales.

    • There are numerous other census data datasets available for the United States, covering a wide range of demographics. These include information on:

  18. Tree Point Classification

    • community-climatesolutions.hub.arcgis.com
    • cacgeoportal.com
    • +1more
    Updated Oct 8, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2020). Tree Point Classification [Dataset]. https://community-climatesolutions.hub.arcgis.com/content/58d77b24469d4f30b5f68973deb65599
    Explore at:
    Dataset updated
    Oct 8, 2020
    Dataset authored and provided by
    Esrihttp://esri.com/
    Description

    Classifying trees from point cloud data is useful in applications such as high-quality 3D basemap creation, urban planning, and forestry workflows. Trees have a complex geometrical structure that is hard to capture using traditional means. Deep learning models are highly capable of learning these complex structures and giving superior results.Using the modelFollow the guide to use the model. The model can be used with the 3D Basemaps solution and ArcGIS Pro's Classify Point Cloud Using Trained Model tool. Before using this model, ensure that the supported deep learning frameworks libraries are installed. For more details, check Deep Learning Libraries Installer for ArcGIS.InputThe model accepts unclassified point clouds with the attributes: X, Y, Z, and Number of Returns.Note: This model is trained to work on unclassified point clouds that are in a projected coordinate system, where the units of X, Y, and Z are based on the metric system of measurement. If the dataset is in degrees or feet, it needs to be re-projected accordingly. The provided deep learning model was trained using a training dataset with the full set of points. Therefore, it is important to make the full set of points available to the neural network while predicting - allowing it to better discriminate points of 'class of interest' versus background points. It is recommended to use 'selective/target classification' and 'class preservation' functionalities during prediction to have better control over the classification.This model was trained on airborne lidar datasets and is expected to perform best with similar datasets. Classification of terrestrial point cloud datasets may work but has not been validated. For such cases, this pre-trained model may be fine-tuned to save on cost, time and compute resources while improving accuracy. When fine-tuning this model, the target training data characteristics such as class structure, maximum number of points per block, and extra attributes should match those of the data originally used for training this model (see Training data section below).OutputThe model will classify the point cloud into the following 2 classes with their meaning as defined by the American Society for Photogrammetry and Remote Sensing (ASPRS) described below: 0 Background 5 Trees / High-vegetationApplicable geographiesThis model is expected to work well in all regions globally, with an exception of mountainous regions. However, results can vary for datasets that are statistically dissimilar to training data.Model architectureThis model uses the PointCNN model architecture implemented in ArcGIS API for Python.Accuracy metricsThe table below summarizes the accuracy of the predictions on the validation dataset. Class Precision Recall F1-score Trees / High-vegetation (5) 0.975374 0.965929 0.970628Training dataThis model is trained on a subset of UK Environment Agency's open dataset. The training data used has the following characteristics: X, Y and Z linear unit meter Z range -19.29 m to 314.23 m Number of Returns 1 to 5 Intensity 1 to 4092 Point spacing 0.6 ± 0.3 Scan angle -23 to +23 Maximum points per block 8192 Extra attributes Number of Returns Class structure [0, 5]Sample resultsHere are a few results from the model.

  19. E

    Data from: Land Cover Map 2015 (1km percentage target class, GB)

    • catalogue.ceh.ac.uk
    • data-search.nerc.ac.uk
    zip
    Updated Apr 11, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rowland, C.S.; Morton, R.D.; Carrasco, L.; McShane, G.; O'Neil, A.W.; Wood, C.M. (2017). Land Cover Map 2015 (1km percentage target class, GB) [Dataset]. http://doi.org/10.5285/505d1e0c-ab60-4a60-b448-68c5bbae403e
    Explore at:
    zipAvailable download formats
    Dataset updated
    Apr 11, 2017
    Dataset provided by
    NERC EDS Environmental Information Data Centre
    Authors
    Rowland, C.S.; Morton, R.D.; Carrasco, L.; McShane, G.; O'Neil, A.W.; Wood, C.M.
    License

    https://eidc.ceh.ac.uk/licences/lcm-raster/plainhttps://eidc.ceh.ac.uk/licences/lcm-raster/plain

    Time period covered
    Jan 1, 2014 - Dec 31, 2015
    Area covered
    Description

    This dataset consists of the 1km raster, percentage target class version of the Land Cover Map 2015 (LCM2015) for Great Britain. The 1km percentage product provides the percentage cover for each of 21 land cover classes for 1km x 1km pixels. This product contains one band per target habitat class (producing a 21 band image). The 21 target classes are based on the Joint Nature Conservation Committee (JNCC) Broad Habitats, which encompass the entire range of UK habitats. This dataset is derived from the vector version of the Land Cover Map, which contains individual parcels of land cover and is the highest available spatial resolution. LCM2015 is a land cover map of the UK which was produced at the Centre for Ecology & Hydrology by classifying satellite images from 2014 and 2015 into 21 Broad Habitat-based classes. LCM2015 consists of a range of raster and vector products and users should familiarise themselves with the full range (see related records, the CEH web site and the LCM2015 Dataset documentation) to select the product most suited to their needs. LCM2015 was produced at the Centre for Ecology & Hydrology by classifying satellite images from 2014 and 2015 into 21 Broad Habitat-based classes. It is one of a series of land cover maps, produced by UKCEH since 1990. They include versions in 1990, 2000, 2007, 2015, 2017, 2018 and 2019.

  20. A

    2010 County and City-Level Water-Use Data and Associated Explanatory...

    • data.amerigeoss.org
    • data.usgs.gov
    • +4more
    Updated Jul 30, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States[old] (2019). 2010 County and City-Level Water-Use Data and Associated Explanatory Variables [Dataset]. https://data.amerigeoss.org/dataset/2010-county-and-city-level-water-use-data-and-associated-explanatory-variables
    Explore at:
    Dataset updated
    Jul 30, 2019
    Dataset provided by
    United States[old]
    Description

    This data release contains the input-data files and R scripts associated with the analysis presented in [citation of manuscript]. The spatial extent of the data is the contiguous U.S. The input-data files include one comma separated value (csv) file of county-level data, and one csv file of city-level data. The county-level csv (“county_data.csv”) contains data for 3,109 counties. This data includes two measures of water use, descriptive information about each county, three grouping variables (climate region, urban class, and economic dependency), and contains 18 explanatory variables: proportion of population growth from 2000-2010, fraction of withdrawals from surface water, average daily water yield, mean annual maximum temperature from 1970-2010, 2005-2010 maximum temperature departure from the 40-year maximum, mean annual precipitation from 1970-2010, 2005-2010 mean precipitation departure from the 40-year mean, Gini income disparity index, percent of county population with at least some college education, Cook Partisan Voting Index, housing density, median household income, average number of people per household, median age of structures, percent of renters, percent of single family homes, percent apartments, and a numeric version of urban class. The city-level csv (city_data.csv) contains data for 83 cities. This data includes descriptive information for each city, water-use measures, one grouping variable (climate region), and 6 explanatory variables: type of water bill (increasing block rate, decreasing block rate, or uniform), average price of water bill, number of requirement-oriented water conservation policies, number of rebate-oriented water conservation policies, aridity index, and regional price parity. The R scripts construct fixed-effects and Bayesian Hierarchical regression models. The primary difference between these models relates to how they handle possible clustering in the observations that define unique water-use settings. Fixed-effects models address possible clustering in one of two ways. In a "fully pooled" fixed-effects model, any clustering by group is ignored, and a single, fixed estimate of the coefficient for each covariate is developed using all of the observations. Conversely, in an unpooled fixed-effects model, separate coefficient estimates are developed only using the observations in each group. A hierarchical model provides a compromise between these two extremes. Hierarchical models extend single-level regression to data with a nested structure, whereby the model parameters vary at different levels in the model, including a lower level that describes the actual data and an upper level that influences the values taken by parameters in the lower level. The county-level models were compared using the Watanabe-Akaike information criterion (WAIC) which is derived from the log pointwise predictive density of the models and can be shown to approximate out-of-sample predictive performance. All script files are intended to be used with R statistical software (R Core Team (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org) and Stan probabilistic modeling software (Stan Development Team. 2017. RStan: the R interface to Stan. R package version 2.16.2. http://mc-stan.org).

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Neilsberg Research (2025). Income Distribution by Quintile: Mean Household Income in Lancaster County, PA // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/lancaster-county-pa-median-household-income/

Income Distribution by Quintile: Mean Household Income in Lancaster County, PA // 2025 Edition

Explore at:
json, csvAvailable download formats
Dataset updated
Mar 3, 2025
Dataset authored and provided by
Neilsberg Research
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Area covered
Pennsylvania, Lancaster County
Variables measured
Income Level, Mean Household Income
Measurement technique
The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It delineates income distributions across income quintiles (mentioned above) following an initial analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series via current methods (R-CPI-U-RS). For additional information about these estimations, please contact us via email at research@neilsberg.com
Dataset funded by
Neilsberg Research
Description
About this dataset

Context

The dataset presents the mean household income for each of the five quintiles in Lancaster County, PA, as reported by the U.S. Census Bureau. The dataset highlights the variation in mean household income across quintiles, offering valuable insights into income distribution and inequality.

Key observations

  • Income disparities: The mean income of the lowest quintile (20% of households with the lowest income) is 22,178, while the mean income for the highest quintile (20% of households with the highest income) is 255,448. This indicates that the top earners earn 12 times compared to the lowest earners.
  • *Top 5%: * The mean household income for the wealthiest population (top 5%) is 448,457, which is 175.56% higher compared to the highest quintile, and 2022.08% higher compared to the lowest quintile.
Content

When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

Income Levels:

  • Lowest Quintile
  • Second Quintile
  • Third Quintile
  • Fourth Quintile
  • Highest Quintile
  • Top 5 Percent

Variables / Data Columns

  • Income Level: This column showcases the income levels (As mentioned above).
  • Mean Household Income: Mean household income, in 2023 inflation-adjusted dollars for the specific income level.

Good to know

Margin of Error

Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

Custom data

If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

Inspiration

Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

Recommended for further research

This dataset is a part of the main dataset for Lancaster County median household income. You can refer the same here

Search
Clear search
Close search
Google apps
Main menu