CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Note: Updates to this data product are discontinued. Dozens of definitions are currently used by Federal and State agencies, researchers, and policymakers. The ERS Rural Definitions data product allows users to make comparisons among nine representative rural definitions.
Methods of designating the urban periphery range from the use of municipal boundaries to definitions based on counties. Definitions based on municipal boundaries may classify as rural much of what would typically be considered suburban. Definitions that delineate the urban periphery based on counties may include extensive segments of a county that many would consider rural.
We have selected a representative set of nine alternative rural definitions and compare social and economic indicators from the 2000 decennial census across the nine definitions. We chose socioeconomic indicators (population, education, poverty, etc.) that are commonly used to highlight differences between urban and rural areas.This record was taken from the USDA Enterprise Data Inventory that feeds into the https://data.gov catalog. Data for this record includes the following resources: Webpage with links to Excel files State-Level Maps For complete information, please visit https://data.gov.
https://datafinder.stats.govt.nz/license/attribution-4-0-international/https://datafinder.stats.govt.nz/license/attribution-4-0-international/
Refer to the current geographies boundaries table for a list of all current geographies and recent updates.
This dataset is the definitive version of the annually released urban rural (UR) boundaries as at 1 January 2025 as defined by Stats NZ. This version contains 689 UR areas, including 195 urban areas and 402 rural settlements.
Urban rural (UR) is an output geography that classifies New Zealand into areas that share common urban or rural characteristics and is used to disseminate a broad range of Stats NZ’s social, demographic and economic statistics.
The UR separately identifies urban areas, rural settlements, other rural areas, and water areas. Urban areas and rural settlements are form-based geographies delineated by the inspection of aerial imagery, local government land designations on district plan maps, address registers, property title data, and any other available information. However, because the underlying meshblock pattern is used to define the geographies, boundaries may not align exactly with local government land designations or what can be seen in aerial images. Other rural areas, and bodies of water represent areas not included within an urban area.
Urban areas are built from the statistical area 2 (SA2) geography, while rural and water areas are built from the statistical area 1 (SA1) geography.
Urban areas
Urban areas are statistically defined areas with no administrative or legal basis. They are characterised by high population density with many built environment features where people and buildings are located close together for residential, cultural, productive, trade and social purposes.
Urban areas are delineated using the following criteria. They:
form a contiguous cluster of one or more SA2s,
contain an estimated resident population of more than 1,000 people and usually have a population density of more than 400 residents or 200 address points per square kilometre,
have a high coverage of built physical structures and artificial landscapes such as:
have strong economic ties where people gather together to work, and for social, cultural, and recreational interaction,
have planned development within the next 5–8 years.
Urban boundaries are independent of local government and other administrative boundaries. However, the Richmond urban area, which is mainly in the Tasman District, is the only urban area that crosses territorial authority boundaries
Rural areas
Rural areas are classified as rural settlements or other rural.
Rural settlements
Rural settlements are statistically defined areas with no administrative or legal basis. A rural settlement is a cluster of residential dwellings about a place that usually contains at least one community or public building.
Rural settlements are delineated using the following criteria. They:
form a contiguous cluster of one or more SA1s,
contain an estimated resident population of 200–1,000, or at least 40 residential dwellings,
represent a reasonably compact area or have a visible centre of population with a population density of at least 200 residents per square kilometre or 100 address points per square kilometre,
contain at least one community or public building, such as a church, school, or shop.
To reach the target SA2 population size of more than 1,000 residents, rural settlements are usually included with other rural SA1s to form an SA2. In some instances, the settlement and the SA2 have the same name, for example, Kirwee rural settlement is part of the Kirwee SA2.
Some rural settlements whose populations are just under 1,000 are a single SA2. Creating separate SA2s for these rural settlements allows for easy reclassification to urban areas if their populations grow beyond 1,000.
Other rural
Other rural areas are the mainland areas and islands located outside urban areas or rural settlements. Other rural areas include land used for agriculture and forestry, conservation areas, and regional and national parks. Other rural areas are defined by territorial authority.
Water
Bodies of water are classified separately, using the land/water demarcation classification described in the Statistical standard for meshblock. These water areas are not named and are defined by territorial authority or regional council.
The water classes include:
inland water – non-contiguous, defined by territorial authority,
inlets (which also includes tidal areas and harbours) – non-contiguous, defined by territorial authority,
oceanic – non-contiguous, defined by regional council.
To minimise suppression of population data, separate meshblocks have been created for marinas. These meshblocks are attached to adjacent land in the UR geography.
Non-digitised
The following 4 non-digitised UR areas have been aggregated from the 16 non-digitised meshblocks/SA2s.
6901; Oceanic outside region, 6902; Oceanic oil rigs, 6903; Islands outside region, 6904; Ross Dependency outside region.
UR numbering and naming
Each urban area and rural settlement is a single geographic entity with a name and a numeric code.
Other rural areas, inland water areas, and inlets are defined by territorial authority; oceanic areas are defined by regional council; and each have a name and a numeric code.
Urban rural codes have four digits. North Island locations start with a 1, South Island codes start with a 2, oceanic codes start with a 6 and non-digitised codes start with 69.
Urban rural indicator (IUR)
The accompanying urban rural indicator (IUR) classifies the urban, rural, and water areas by type. Urban areas are further classified by the size of their estimated resident population:
This was based on 2018 Census data and 2021 population estimates. Their IUR status (urban area size/rural settlement) may change if the 2025 Census population count moves them up or down a category.
The indicators, by name, with their codes in brackets, are:
urban area – major urban (11), large urban (12), medium urban (13), small urban (14),
rural area – rural settlement (21), rural other (22),
water – inland water (31), inlet (32), oceanic (33).
High definition version
This high definition (HD) version is the most detailed geometry, suitable for use in GIS for geometric analysis operations and for the computation of areas, centroids and other metrics. The HD version is aligned to the LINZ cadastre.
Macrons
Names are provided with and without tohutō/macrons. The column name for those without macrons is suffixed ‘ascii’.
Digital data
Digital boundary data became freely available on 1 July 2007.
Further information
To download geographic classifications in table formats such as CSV please use Ariā
For more information please refer to the Statistical standard for geographic areas 2023.
Contact: geography@stats.govt.nz
https://datafinder.stats.govt.nz/license/attribution-4-0-international/https://datafinder.stats.govt.nz/license/attribution-4-0-international/
Urban rural 2023 update
UR 2023 is the first major update of the geography since it was first created in 2018. The update is to ensure UR geographies are relevant and meet criteria before each five-yearly population and dwelling census. UR 2023 contains 13 new rural settlements and 7 new small urban areas. Updates were made to reflect real world change including new subdivisions and motorways, and to improve delineation of urban areas and rural settlements. The Wānaka urban area, whose population has grown to be more than 10,000 based on population estimates, has been reclassified to a medium urban area in the 2023 urban rural indicator.
In the 2023 classification there are:
This dataset is the definitive version of the annually released urban rural (UR) boundaries as at 1 January 2023 as defined by Stats NZ. This version contains 745 UR areas, including 195 urban areas and 402 rural settlements.
Urban rural (UR) is an output geography that classifies New Zealand into areas that share common urban or rural characteristics and is used to disseminate a broad range of Stats NZ’s social, demographic and economic statistics.
The UR separately identifies urban areas, rural settlements, other rural areas, and water areas. Urban areas and rural settlements are form-based geographies delineated by the inspection of aerial imagery, local government land designations on district plan maps, address registers, property title data, and any other available information. However, because the underlying meshblock pattern is used to define the geographies, boundaries may not align exactly with local government land designations or what can be seen in aerial images. Other rural areas, and bodies of water represent areas not included within an urban area.
Urban areas are built from the statistical area 2 (SA2) geography, while rural and water areas are built from the statistical area 1 (SA1) geography.
Non-digitised
The following 4 non-digitised UR areas have been aggregated from the 16 non-digitised meshblocks/SA2s.
6901; Oceanic outside region, 6902; Oceanic oil rigs, 6903; Islands outside region, 6904; Ross Dependency outside region.
UR numbering and naming
Each urban area and rural settlement is a single geographic entity with a name and a numeric code.
Other rural areas, inland water areas, and inlets are defined by territorial authority; oceanic areas are defined by regional council; and each have a name and a numeric code.
Urban rural codes have four digits. North Island locations start with a 1, South Island codes start with a 2, oceanic codes start with a 6 and non-digitised codes start with 69.
Urban rural indicator (IUR)
The accompanying urban rural indicator (IUR) classifies the urban, rural, and water areas by type. Urban areas are further classified by the size of their estimated resident population:
This was based on 2018 Census data and 2021 population estimates. Their IUR status (urban area size/rural settlement) may change if the 2023 Census population count moves them up or down a category.
The indicators, by name, with their codes in brackets, are:
urban area – major urban (11), large urban (12), medium urban (13), small urban (14),
rural area – rural settlement (21), rural other (22),
water – inland water (31), inlet (32), oceanic (33).
The urban rural indicator complements the urban rural geography and is an attribute in this dataset. Further information on the urban rural indicator is available on the Stats NZ classification and coding tool ARIA.
For more information please refer to the Statistical standard for geographic areas 2023.
Generalised version
This generalised version has been simplified for rapid drawing and is designed for thematic or web mapping purposes.
Macrons
Names are provided with and without tohutō/macrons. The column name for those without macrons is suffixed ‘ascii’.
Digital data
Digital boundary data became freely available on 1 July 2007.
To download geographic classifications in table formats such as CSV please use Ariā
Definitions of “urban” and “rural” are abundant in government, academic literature, and data-driven journalism. Equally abundant are debates about what is urban or rural and which factors should be used to define these terms. Absent from most of this discussion is evidence about how people perceive or describe their neighborhood. Moreover, as several housing and demographic researchers have noted, the lack of an official or unofficial definition of suburban obscures the stylized fact that a majority of Americans live in a suburban setting. In 2017, the U.S. Department of Housing and Urban Development added a simple question to the 2017 American Housing Survey (AHS) asking respondents to describe their neighborhood as urban, suburban, or rural. This service provides a tract-level dataset illustrating the outcome of analysis techniques applied to neighborhood classification reported by the American Housing Survey (AHS) as either urban, suburban, or rural.
To create this data, analysts first applied machine learning techniques to the AHS neighborhood description question to build a model that predicts how out-of-sample households would describe their neighborhood (urban, suburban, or rural), given regional and neighborhood characteristics. Analysts then applied the model to the American Community Survey (ACS) aggregate tract-level regional and neighborhood measures, thereby creating a predicted likelihood the average household in a census tract would describe their neighborhood as urban, suburban, and rural. This last step is commonly referred to as small area estimation. The approach is an example of the use of existing federal data to create innovative new data products of substantial interest to researchers and policy makers alike.
If aggregating tract-level probabilities to larger areas, users are strongly encouraged to use occupied household counts as weights.
We recommend users read Section 7 of the working paper before using the raw probabilities. Likewise, we recognize that some users may:
prefer to use an uncontrolled classification, or
prefer to create more than three categories.
To accommodate these uses, our final tract-level output dataset includes the "raw" probability an average household would describe their neighborhood as urban, suburban, and rural. These probability values can be used to create an uncontrolled classification or additional categories.
The final classification is controlled to AHS national estimates (26.9% urban; 52.1% suburban, 21.0% rural).
For more information about the 2017 AHS Neighborhood Description Study click on the following visit: https://www.hud.gov/program_offices/comm_planning/communitydevelopment/programs/, for questions about the spatial attribution of this dataset, please reach out to us at GISHelpdesk@hud.gov.
Data Dictionary: DD_Urbanization Perceptions Small Area Index.
This service provides a tract-level dataset illustrating the outcome of machine learning techniques applied to neighborhood classification reported by the American Housing Survey (AHS) as either urban, suburban, or rural. Definitions of “urban” and “rural” are abundant in government, academic literature, and data-driven journalism. Equally abundant are debates about what is urban or rural and which factors should be used to define these terms. Absent from most of this discussion is evidence about how people perceive or describe their neighborhood. Moreover, as several housing and demographic researchers have noted, the lack of an official or unofficial definition of suburban obscures the stylized fact that a majority of Americans live in a suburban setting. In 2017, the U.S. Department of Housing and Urban Development added a simple question to the 2017 American Housing Survey (AHS) asking respondents to describe their neighborhood as urban, suburban, or rural.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is described here:https://www.reddit.com/r/datasets/comments/63spoc/19gb_of_urban_dictionary_definitions_1999_may_2016/
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This data is the global urban boundary of 222 scenarios combined by different population data sets, population density and population size thresholds, and the GIS model builder for calculating these data. See the README file for details.Reference:Li, W., Zhang, Y., Li, M., & Long, Y. (2024). Rethinking the country-level percentage of population residing in urban area with a global harmonized urban definition. iScience, 27(6), 110125. https://doi.org/10.1016/j.isci.2024.110125.The UN (United Nations) collects global data on the country-level Percentage of Population Residing in Urban Area (PPRUA); however, variations in definitions of urban areas make these data incomparable across countries. This paper evaluates the numbers of national defined PPRUA within UN statistics, by comparing them with the numbers of PPRUA we estimated through global comparable definitions. Refer to the Degree of Urbanization framework from the UN, we propose 90 global harmonized methods to estimating PPRUA by combining different configurations of three global population datasets, six urban total population thresholds, and five urban population density thresholds. This approach demonstrated significant variations in country-level PPRUA estimations, with a wide 95% confidence interval (CI) range. When comparing the national defined PPRUA with the global harmonized estimations, we found that most lie between the upper 95% CI and the median of the estimations. This study highlights the need for globally harmonious PPRUA estimates, calling for a reassessment of datasets and thresholds in the future and investigating urbanization on a scale beyond the country level.
This dataset classifies statistical areas (lower super output areas or LSOAs) in Cheshire East on either a two level classification - rural or urban - or a six level classification; rural, predominantly rural, more rural than urban, more urban than rural, predominantly urban and urban. A methodology document explains how the classifications were created. A map of the classifications is also available.Six variables are used to create the classification, four of these come from the census:1. Proportion (aged 16-74) of employment in agriculture 2. Average number of cars per household 3. Population density - people per hectare 4. Proportion (aged 16-74) self-employed of those economically active 5. Access to services – this includes road distances to; a GP surgery, a supermarket or convenience store, a primary school and distance to a Post Office6. Buildings as a proportion of all land useThe classification will be updated following the release of the 2021 Census in 2022-23.There are many definitions of areas within Cheshire East classifying them into varying degrees of rural or urban. Organisations such as the Countryside Agency, DEFRA, the Office for National Statistics and central government each produced their own classification. The indicators used and available geographies are different. Several local definitions also existed. To remedy this, a local classification was developed.
https://datafinder.stats.govt.nz/license/attribution-4-0-international/https://datafinder.stats.govt.nz/license/attribution-4-0-international/
Refer to the current geographies boundaries table for a list of all current geographies and recent updates.
This dataset is the definitive version of the annually released urban rural (UR) boundaries as at 1 January 2025 as defined by Stats NZ, clipped to the coastline. This clipped version has been created for cartographic purposes and so does not fully represent the official full extent boundaries. This version contains 689 UR areas, including 195 urban areas and 402 rural settlements.
Urban rural (UR) is an output geography that classifies New Zealand into areas that share common urban or rural characteristics and is used to disseminate a broad range of Stats NZ’s social, demographic and economic statistics.
The UR separately identifies urban areas, rural settlements, other rural areas, and water areas. Urban areas and rural settlements are form-based geographies delineated by the inspection of aerial imagery, local government land designations on district plan maps, address registers, property title data, and any other available information. However, because the underlying meshblock pattern is used to define the geographies, boundaries may not align exactly with local government land designations or what can be seen in aerial images. Other rural areas, and bodies of water represent areas not included within an urban area.
Urban areas are built from the statistical area 2 (SA2) geography, while rural and water areas are built from the statistical area 1 (SA1) geography.
Urban areas
Urban areas are statistically defined areas with no administrative or legal basis. They are characterised by high population density with many built environment features where people and buildings are located close together for residential, cultural, productive, trade and social purposes.
Urban areas are delineated using the following criteria. They:
form a contiguous cluster of one or more SA2s,
contain an estimated resident population of more than 1,000 people and usually have a population density of more than 400 residents or 200 address points per square kilometre,
have a high coverage of built physical structures and artificial landscapes such as:
residential dwellings and apartments,
commercial structures, such as factories, office complexes, and shopping centres,
transport and communication facilities, such as airports, ports and port facilities, railway stations, bus stations and similar transport hubs, and communications infrastructure,
medical, education, and community facilities,
tourist attractions and accommodation facilities,
waste disposal and sewerage facilities,
cemeteries,
sports and recreation facilities, such as stadiums, golf courses, racecourses, showgrounds, and fitness centres,
green spaces, such as community parks, gardens, and reserves,
have strong economic ties where people gather together to work, and for social, cultural, and recreational interaction,
have planned development within the next 5–8 years.
Urban boundaries are independent of local government and other administrative boundaries. However, the Richmond urban area, which is mainly in the Tasman District, is the only urban area that crosses territorial authority boundaries
Rural areas
Rural areas are classified as rural settlements or other rural.
Rural settlements
Rural settlements are statistically defined areas with no administrative or legal basis. A rural settlement is a cluster of residential dwellings about a place that usually contains at least one community or public building.
Rural settlements are delineated using the following criteria. They:
form a contiguous cluster of one or more SA1s,
contain an estimated resident population of 200–1,000, or at least 40 residential dwellings,
represent a reasonably compact area or have a visible centre of population with a population density of at least 200 residents per square kilometre or 100 address points per square kilometre,
contain at least one community or public building, such as a church, school, or shop.
To reach the target SA2 population size of more than 1,000 residents, rural settlements are usually included with other rural SA1s to form an SA2. In some instances, the settlement and the SA2 have the same name, for example, Kirwee rural settlement is part of the Kirwee SA2.
Some rural settlements whose populations are just under 1,000 are a single SA2. Creating separate SA2s for these rural settlements allows for easy reclassification to urban areas if their populations grow beyond 1,000.
Other rural
Other rural areas are the mainland areas and islands located outside urban areas or rural settlements. Other rural areas include land used for agriculture and forestry, conservation areas, and regional and national parks. Other rural areas are defined by territorial authority.
Water
Bodies of water are classified separately, using the land/water demarcation classification described in the Statistical standard for meshblock. These water areas are not named and are defined by territorial authority or regional council.
The water classes include:
inland water – non-contiguous, defined by territorial authority,
inlets (which also includes tidal areas and harbours) – non-contiguous, defined by territorial authority,
oceanic – non-contiguous, defined by regional council.
To minimise suppression of population data, separate meshblocks have been created for marinas. These meshblocks are attached to adjacent land in the UR geography.
Non-digitised
The following 4 non-digitised UR areas have been aggregated from the 16 non-digitised meshblocks/SA2s.
6901; Oceanic outside region, 6902; Oceanic oil rigs, 6903; Islands outside region, 6904; Ross Dependency outside region.
UR numbering and naming
Each urban area and rural settlement is a single geographic entity with a name and a numeric code.
Other rural areas, inland water areas, and inlets are defined by territorial authority; oceanic areas are defined by regional council; and each have a name and a numeric code.
Urban rural codes have four digits. North Island locations start with a 1, South Island codes start with a 2, oceanic codes start with a 6 and non-digitised codes start with 69.
Urban rural indicator (IUR)
The accompanying urban rural indicator (IUR) classifies the urban, rural, and water areas by type. Urban areas are further classified by the size of their estimated resident population:
major urban area – 100,000 or more residents,
large urban area – 30,000–99,999 residents,
medium urban area – 10,000–29,999 residents,
small urban area – 1,000–9,999 residents.
This was based on 2018 Census data and 2021 population estimates. Their IUR status (urban area size/rural settlement) may change if the 2025 Census population count moves them up or down a category.
The indicators, by name, with their codes in brackets, are:
urban area – major urban (11), large urban (12), medium urban (13), small urban (14),
rural area – rural settlement (21), rural other (22),
water – inland water (31), inlet (32), oceanic (33).
Clipped Version
This clipped version has been created for cartographic purposes and so does not fully represent the official full extent boundaries.
High definition version
This high definition (HD) version is the most detailed geometry, suitable for use in GIS for geometric analysis operations and for the computation of areas, centroids and other metrics. The HD version is aligned to the LINZ cadastre.
Macrons
Names are provided with and without tohutō/macrons. The column name for those without macrons is suffixed ‘ascii’.
Digital data
Digital boundary data became freely available on 1 July 2007.
Further information
To download geographic classifications in table formats such as CSV please use Ariā
For more information please refer to the Statistical standard for geographic areas 2023.
Contact: geography@stats.govt.nz
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Frontier and Remote Area (FAR) codes provide a statistically-based, nationally-consistent, and adjustable definition of territory in the U.S. characterized by low population density and high geographic remoteness.
To assist in providing policy-relevant information about conditions in sparsely settled, remote areas of the U.S. to public officials, researchers, and the general public, ERS has developed ZIP-code-level frontier and remote (FAR) area codes. The aim is not to provide a single definition. Instead, it is to meet the demand for a delineation that is both geographically detailed and adjustable within reasonable ranges, in order to be usefully applied in diverse research and policy contexts. This initial set, based on urban-rural data from the 2000 decennial census, provides four separate FAR definition levels, ranging from one that is relatively inclusive (18 million FAR residents) to one that is more restrictive (4.8 million FAR residents).This record was taken from the USDA Enterprise Data Inventory that feeds into the https://data.gov catalog. Data for this record includes the following resources: State and ZIP code level tables For complete information, please visit https://data.gov.
The regional definition of the rural vs urban character of the municipalities was recorded in 2016.A municipality is considered rural if it has less than 10000 inhabitants and is located outside the metropolis of Greater Paris.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Changes in NZ Garden Bird counts for 14 common garden birds for urban rural areas for the last 10 years (2008 to 2018) and last 5 years (2013 to 2018). Barplots are only provided for locations where there were at least 20 garden records available for the 5-year period. Spatial boundaries are defined by the Statistics NZ 2018 high definition meshblock spatial layer. Citation: MacLeod CJ, Howard S, Gormley AM, Spurr EB. 2019. State of NZ Garden Birds 2018 | Te Ahua o nga Manu o te Ka i Aotearoa. Manaaki Wheuna - Landcare Research, Lincoln. ISBN 978-0-947525-63-7.
A computerized data set of demographic, economic and social data for 227 countries of the world. Information presented includes population, health, nutrition, mortality, fertility, family planning and contraceptive use, literacy, housing, and economic activity data. Tabular data are broken down by such variables as age, sex, and urban/rural residence. Data are organized as a series of statistical tables identified by country and table number. Each record consists of the data values associated with a single row of a given table. There are 105 tables with data for 208 countries. The second file is a note file, containing text of notes associated with various tables. These notes provide information such as definitions of categories (i.e. urban/rural) and how various values were calculated. The IDB was created in the U.S. Census Bureau''s International Programs Center (IPC) to help IPC staff meet the needs of organizations that sponsor IPC research. The IDB provides quick access to specialized information, with emphasis on demographic measures, for individual countries or groups of countries. The IDB combines data from country sources (typically censuses and surveys) with IPC estimates and projections to provide information dating back as far as 1950 and as far ahead as 2050. Because the IDB is maintained as a research tool for IPC sponsor requirements, the amount of information available may vary by country. As funding and research activity permit, the IPC updates and expands the data base content. Types of data include: * Population by age and sex * Vital rates, infant mortality, and life tables * Fertility and child survivorship * Migration * Marital status * Family planning Data characteristics: * Temporal: Selected years, 1950present, projected demographic data to 2050. * Spatial: 227 countries and areas. * Resolution: National population, selected data by urban/rural * residence, selected data by age and sex. Sources of data include: * U.S. Census Bureau * International projects (e.g., the Demographic and Health Survey) * United Nations agencies Links: * ICPSR: http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/08490
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This database provides construction of Large Urban Regions (LUR) in Russia. A Large Urban Region (LUR) can be defined as an aggregation of continuous statistical units around a core that are economically dependent on this core and linked to it by economic and social strong interdependences. The main purpose of this delineation is to make cities comparable on the national and world scales and to make comparative social-economic urban studies. Aggregating different municipal districts around a core city, we construct a single large urban region, which allows to include all the area of economic influence of a core into one statistical unit (see Rogov & Rozenblat, 2020 for more details) thus, changing a city position in a global urban hierarchy. In doing so we use four principal urban concepts (Pumain et al., 1992): political definition, morphological definition, functional definition and conurbation that we call Large Urban Region. We constructed Russian LURs using criteria such as population distribution, road networks, access to an airport, distance from a core, presence of multinational firms. In this database, we provide population data for LURs and their administrative units.
The Census Bureau's urban-rural classification is fundamentally a classification of areas, identifying individual urban areas and, as a residual, the rural area of the nation. The Census Bureau�s urban area definitions represent densely developed territory, encompassing residential, commercial, and other non-residential urban land uses. The Census Bureau defines urban areas after each decennial census by applying specified criteria with decennial census and other data. The Census Bureau classifies as urban all territory, population, and housing units located within urbanized areas (UAs) and urban clusters (UCs), both defined using the same criteria. The Census Bureau delineates UA and UC boundaries to encompass densely settled territory.Urban Clusters (UCs)-An urban cluster consists of densely settled territory that has at least 2,500 people but fewer than 50,000 people. The Census Bureau introduced the UC concept for Census 2000 to provide a more consistent and accurate measure of urban population, housing, and territory throughout the United States, Puerto Rico, and the Island Areas. Prior to Census 2000, urban places of 2,500 or more population were identified outside UAs without regard to population density. In addition, densely settled populations located outside places and outside UAs were classified as rural prior to Census 2000.For More Information go to: https://tigerweb.geo.census.gov/tigerwebmain/TIGERweb_geography_details.html
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The "Forest Proximate People" (FPP) dataset is one of the data layers contributing to the development of indicator #13, “number of forest-dependent people in extreme poverty,” of the Collaborative Partnership on Forests (CPF) Global Core Set of forest-related indicators (GCS). The FPP dataset provides an estimate of the number of people living in or within 5 kilometers of forests (forest-proximate people) for the year 2019 with a spatial resolution of 100 meters at a global level.
For more detail, such as the theory behind this indicator and the definition of parameters, and to cite this data, see: Newton, P., Castle, S.E., Kinzer, A.T., Miller, D.C., Oldekop, J.A., Linhares-Juvenal, T., Pina, L. Madrid, M., & de Lamo, J. 2022. The number of forest- and tree-proximate people: A new methodology and global estimates. Background Paper to The State of the World’s Forests 2022 report. Rome, FAO.
Contact points:
Maintainer: Leticia Pina
Maintainer: Sarah E., Castle
Data lineage:
The FPP data are generated using Google Earth Engine. Forests are defined by the Copernicus Global Land Cover (CGLC) (Buchhorn et al. 2020) classification system’s definition of forests: tree cover ranging from 15-100%, with or without understory of shrubs and grassland, and including both open and closed forests. Any area classified as forest sized ≥ 1 ha in 2019 was included in this definition. Population density was defined by the WorldPop global population data for 2019 (WorldPop 2018). High density urban populations were excluded from the analysis. High density urban areas were defined as any contiguous area with a total population (using 2019 WorldPop data for population) of at least 50,000 people and comprised of pixels all of which met at least one of two criteria: either the pixel a) had at least 1,500 people per square km, or b) was classified as “built-up” land use by the CGLC dataset (where “built-up” was defined as land covered by buildings and other manmade structures) (Dijkstra et al. 2020). Using these datasets, any rural people living in or within 5 kilometers of forests in 2019 were classified as forest proximate people. Euclidean distance was used as the measure to create a 5-kilometer buffer zone around each forest cover pixel. The scripts for generating the forest-proximate people and the rural-urban datasets using different parameters or for different years are published and available to users. For more detail, such as the theory behind this indicator and the definition of parameters, and to cite this data, see: Newton, P., Castle, S.E., Kinzer, A.T., Miller, D.C., Oldekop, J.A., Linhares-Juvenal, T., Pina, L., Madrid, M., & de Lamo, J. 2022. The number of forest- and tree-proximate people: a new methodology and global estimates. Background Paper to The State of the World’s Forests 2022. Rome, FAO.
References:
Buchhorn, M., Smets, B., Bertels, L., De Roo, B., Lesiv, M., Tsendbazar, N.E., Herold, M., Fritz, S., 2020. Copernicus Global Land Service: Land Cover 100m: collection 3 epoch 2019. Globe.
Dijkstra, L., Florczyk, A.J., Freire, S., Kemper, T., Melchiorri, M., Pesaresi, M. and Schiavina, M., 2020. Applying the degree of urbanisation to the globe: A new harmonised definition reveals a different picture of global urbanisation. Journal of Urban Economics, p.103312.
WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University, 2018. Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00645
Online resources:
GEE asset for "Forest proximate people - 5km cutoff distance"
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The data set is composed of 2,285 definitions gathered from the Urban Dictionary platform from 1999 to 2006. The data was classified as misogynistic and non- misogynistic by three independent researchers with domain knowledge. The data set is available in public repository in a table containing two columns: the text-based definition from Urban Dictionary and its respective classification (1 for misogynistic and 0 for non- misogynistic).
Content warning: sexual violence, extreme misogyny, scatology, ‘scat porn’
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
The Rural Access Index (RAI) is a measure of access, developed by the World Bank in 2006. It was adopted as Sustainable Development Goal (SDG) indicator 9.1.1 in 2015, to measure the accessibility of rural populations. It is currently the only indicator for the SDGs that directly measures rural access.The RAI measures the proportion of the rural population that lives within 2 km of an all-season road. An all-season road is one that is motorable all year, but may be temporarily unavailable during inclement weather (Roberts, Shyam, & Rastogi, 2006). This dataset implements and expands on the most recent official methodology put forward by the World Bank, ReCAP's 2019 RAI Supplemental Guidelines. This is, to date, the only publicly available application of this method at a global scale.MethodologyReCAP's methodology provided new insight on what makes a road all-season and how this data should be handled: instead of removing unpaved roads from the network, the ones that are classified as unpaved are to be intersected with topographic and climatic conditions and, whenever there’s an overlap with excess precipitation and slope, a multiplying factor ranging from 0% to 100% is applied to the population that would access to that road. This present dataset developed by SDSN's SDG Transformation Centre proposes that authorities ability to maintain and remediate road conditions also be taken into account.Data sourcesThe indicator relies on four major items of geospatial data: land cover (rural or urban), population distribution, road network extent and the “all-season” status of those roads.Land cover data (urban/rural distinction)Since the indicator measures the acess rural populations, it's necessary to define what is and what isn't rural. This dataset uses the DegUrba Methodology, proposed by the United Nations Expert Group on Statistical Methodology for Delineating Cities and Rural Areas (United Nations Expert Group, 2019). This approach has been developed by the European Commission Global Human Settlement Layer (GHSL-SMOD) project, and is designed to instil some consistency into the definitions based on population density on a 1-km grid, but adjusted for local situations.Population distributionThe source for population distribution data is WorldPop. This uses national census data, projections and other ancillary data from countries to produce aggregated, 100 m2 population data. Road extentTwo widely recognized road datasets are used: the real-time updated crowd-sourced OpenStreetMap (OSM) or the GLOBIO’s 2018 GRIP database, which draws data from official national sources. The reasons for picking the latter are mostly related to its ability to provide information on the surface (pavement) of these roads, to the detriment of the timeliness of the data, which is restrained to the year 2018. Additionally, data from Microsoft Bing's recent Road Detection project is used to ensure completeness. This dataset is completely derived from machine learning methods applied over satellite imagery, and detected 1,165 km of roads missing from OSM.Roads’ all-season statusThe World Bank's original 2006 methodology defines the term all-season as “… a road that is motorable all year round by the prevailing means of rural transport, allowing for occasional interruptions of short duration”. ReCAP's 2019 methodology makes a case for passability equating to the all-season status of a road, along with the assumption that typically the wet season is when roads become impassable, especially so in steep roads that are more exposed to landslides.This dataset follows the ReCAP methodology by creating an passability index. The proposed use of passability factors relies on the following three aspects:• Surface type. Many rural roads in LICs (and even in large high-income countries including the USA and Australia) are unpaved. As mentioned before, unpaved roads deteriorate rapidly and in a different way to paved roads. They are very susceptible to water ingress to the surface, which softens the materials and makes them very vulnerable to the action of traffic. So, when a road surface becomes saturated and is subject to traffic, the deterioration is accelerated. • Climate. Precipitation has a significant effect on the condition of a road, especially on unpaved roads, which predominate in LICs and provide much of the extended connectivity to rural and poor areas. As mentioned above, the rainfall on a road is a significant factor in its deterioration, but the extent depends on the type of rainfall in terms of duration and intensity, and how well the roadside drainage copes with this. While ReCAP suggested the use of general climate zones, we argue that better spatial and temporal resolutions can be acquired through the Copernicus Programme precipitation data, which is made available freely at ~30km pixel size for each month of the year.• Terrain. The gradient and altitude of roads also has an effect on their accessibility. Steep roads become impassable more easily due to the potential for scour during heavy rainfall, and also due to slipperiness as a result of the road surface materials used. Here this is drawn from slope calculated from SRTM Digital Terrain data.• Road maintenance. The ability of local authorities to remediate damaged caused by precipitation and landslides is proposed as a correcting factor to the previous ones. Ideally this would be measured by the % of GDP invested in road construction and maintenance, but this isn't available for all countries. For this reason, GDP per capita is adopted as a proxy instead. The data range is normalized in such a way that a road maxed out in terms of precipitation and slope (accessibility score of 0.25) in a country at the top of the GDP per capita range is brought back at to the higher end of the accessibility score (0.95), while the accessibility score of a road meeting the same passability conditions in a country which GDP per capita is towards the lower end is kept unchanged.Data processingThe roads from the three aforementioned datasets (Bing, GRIP and OSM) are merged together to them is applied a 2km buffer. The populations falling exclusively on unpaved road buffers are multiplied by the resulting passability index, which is defined as the normalized sum of the aforementioned components, ranging from 0.25 to. 0.9, with 0.95 meaning 95% probability that the road is all-season. The index applied to the population data, so, when calculated, the RAI includes the probability that the roads which people are using in each area will be all-season or not. For example, an unpaved road in a flat area with low rainfall would have an accessibility factor of 0.95, as this road is designed to be accessible all year round and the environmental effects on its impassability are minimal.The code for generating this dataset is available on Github at: https://github.com/sdsna/rai
Reporting of Aggregate Case and Death Count data was discontinued on May 11, 2023, with the expiration of the COVID-19 public health emergency declaration. Although these data will continue to be publicly available, this dataset will no longer be updated.
The surveillance case definition for COVID-19, a nationally notifiable disease, was first described in a position statement from the Council for State and Territorial Epidemiologists, which was later revised. However, there is some variation in how jurisdictions implemented these case definitions. More information on how CDC collects COVID-19 case surveillance data can be found at FAQ: COVID-19 Data and Surveillance.
Aggregate Data Collection Process Since the beginning of the COVID-19 pandemic, data were reported from state and local health departments through a robust process with the following steps:
This process was collaborative, with CDC and jurisdictions working together to ensure the accuracy of COVID-19 case and death numbers. County counts provided the most up-to-date numbers on cases and deaths by report date. Throughout data collection, CDC retrospectively updated counts to correct known data quality issues.
Description This archived public use dataset focuses on the cumulative and weekly case and death rates per 100,000 persons within various sociodemographic factors across all states and their counties. All resulting data are expressed as rates calculated as the number of cases or deaths per 100,000 persons in counties meeting various classification criteria using the US Census Bureau Population Estimates Program (2019 Vintage).
Each county within jurisdictions is classified into multiple categories for each factor. All rates in this dataset are based on classification of counties by the characteristics of their population, not individual-level factors. This applies to each of the available factors observed in this dataset. Specific factors and their corresponding categories are detailed below.
Population-level factors Each unique population factor is detailed below. Please note that the “Classification” column describes each of the 12 factors in the dataset, including a data dictionary describing what each numeric digit means within each classification. The “Category” column uses numeric digits (2-6, depending on the factor) defined in the “Classification” column.
Metro vs. Non-Metro – “Metro_Rural” Metro vs. Non-Metro classification type is an aggregation of the 6 National Center for Health Statistics (NCHS) Urban-Rural classifications, where “Metro” counties include Large Central Metro, Large Fringe Metro, Medium Metro, and Small Metro areas and “Non-Metro” counties include Micropolitan and Non-Core (Rural) areas. 1 – Metro, including “Large Central Metro, Large Fringe Metro, Medium Metro, and Small Metro” areas 2 – Non-Metro, including “Micropolitan, and Non-Core” areas
Urban/rural - “NCHS_Class” Urban/rural classification type is based on the 2013 National Center for Health Statistics Urban-Rural Classification Scheme for Counties. Levels consist of:
1 Large Central Metro
2 Large Fringe Metro
3 Medium Metro
4 Small Metro
5 Micropolitan
6 Non-Core (Rural)
American Community Survey (ACS) data were used to classify counties based on their age, race/ethnicity, household size, poverty level, and health insurance status distributions. Cut points were generated by using tertiles and categorized as High, Moderate, and Low percentages. The classification “Percent non-Hispanic, Native Hawaiian/Pacific Islander” is only available for “Hawaii” due to low numbers in this category for other available locations. This limitation also applies to other race/ethnicity categories within certain jurisdictions, where 0 counties fall into the certain category. The cut points for each ACS category are further detailed below:
Age 65 - “Age65”
1 Low (0-24.4%) 2 Moderate (>24.4%-28.6%) 3 High (>28.6%)
Non-Hispanic, Asian - “NHAA”
1 Low (<=5.7%) 2 Moderate (>5.7%-17.4%) 3 High (>17.4%)
Non-Hispanic, American Indian/Alaskan Native - “NHIA”
1 Low (<=0.7%) 2 Moderate (>0.7%-30.1%) 3 High (>30.1%)
Non-Hispanic, Black - “NHBA”
1 Low (<=2.5%) 2 Moderate (>2.5%-37%) 3 High (>37%)
Hispanic - “HISP”
1 Low (<=18.3%) 2 Moderate (>18.3%-45.5%) 3 High (>45.5%)
Population in Poverty - “Pov”
1 Low (0-12.3%) 2 Moderate (>12.3%-17.3%) 3 High (>17.3%)
Population Uninsured- “Unins”
1 Low (0-7.1%) 2 Moderate (>7.1%-11.4%) 3 High (>11.4%)
Average Household Size - “HH”
1 Low (1-2.4) 2 Moderate (>2.4-2.6) 3 High (>2.6)
Community Vulnerability Index Value - “CCVI” COVID-19 Community Vulnerability Index (CCVI) scores are from Surgo Ventures, which range from 0 to 1, were generated based on tertiles and categorized as:
1 Low Vulnerability (0.0-0.4) 2 Moderate Vulnerability (0.4-0.6) 3 High Vulnerability (0.6-1.0)
Social Vulnerability Index Value – “SVI" Social Vulnerability Index (SVI) scores (vintage 2020), which also range from 0 to 1, are from CDC/ASTDR’s Geospatial Research, Analysis & Service Program. Cut points for CCVI and SVI scores were generated based on tertiles and categorized as:
1 Low Vulnerability (0-0.333) 2 Moderate Vulnerability (0.334-0.666) 3 High Vulnerability (0.667-1)
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Differences between means for urban and rural regions.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Note: Updates to this data product are discontinued. Dozens of definitions are currently used by Federal and State agencies, researchers, and policymakers. The ERS Rural Definitions data product allows users to make comparisons among nine representative rural definitions.
Methods of designating the urban periphery range from the use of municipal boundaries to definitions based on counties. Definitions based on municipal boundaries may classify as rural much of what would typically be considered suburban. Definitions that delineate the urban periphery based on counties may include extensive segments of a county that many would consider rural.
We have selected a representative set of nine alternative rural definitions and compare social and economic indicators from the 2000 decennial census across the nine definitions. We chose socioeconomic indicators (population, education, poverty, etc.) that are commonly used to highlight differences between urban and rural areas.This record was taken from the USDA Enterprise Data Inventory that feeds into the https://data.gov catalog. Data for this record includes the following resources: Webpage with links to Excel files State-Level Maps For complete information, please visit https://data.gov.