89 datasets found
  1. Urban Areas

    • catalog.data.gov
    • s.cnmilf.com
    • +2more
    Updated Jun 28, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States Census Bureau (USCB) (Point of Contact) (2025). Urban Areas [Dataset]. https://catalog.data.gov/dataset/urban-areas2
    Explore at:
    Dataset updated
    Jun 28, 2025
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Description

    The Urban Areas dataset was compiled on May 31, 2023 from the United States Census Bureau (USCB) and is part of the U.S. Department of Transportation (USDOT)/Bureau of Transportation Statistics (BTS) National Transportation Atlas Database (NTAD). The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. After each decennial census, the Census Bureau delineates urban areas that represent densely developed territory, encompassing residential, commercial, and other nonresidential urban land uses. In general, this territory consists of areas of high population density and urban land use resulting in a representation of the urban footprint. There are 2,645 Urban Areas (UAs) in this data release with either a minimum population of 5,000 or a housing unit count of 2,000 units. Each urban area is identified by a 5-character numeric census code that may contain leading zeroes. A data dictionary, or other source of attribute information, is accessible at https://doi.org/10.21949/1529088

  2. d

    Rural-Urban Commuting Area Codes

    • datasets.ai
    • agdatacommons.nal.usda.gov
    • +4more
    0
    Updated Oct 8, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Agriculture (2024). Rural-Urban Commuting Area Codes [Dataset]. https://datasets.ai/datasets/rural-urban-commuting-area-codes
    Explore at:
    0Available download formats
    Dataset updated
    Oct 8, 2024
    Dataset authored and provided by
    Department of Agriculture
    Description

    The rural-urban commuting area codes (RUCA) classify U.S. census tracts using measures of urbanization, population density, and daily commuting from the decennial census.

    The most recent RUCA codes are based on data from the 2000 decennial census. The classification contains two levels. Whole numbers (1-10) delineate metropolitan, micropolitan, small town, and rural commuting areas based on the size and direction of the primary (largest) commuting flows. These 10 codes are further subdivided to permit stricter or looser delimitation of commuting areas, based on secondary (second largest) commuting flows. The approach errs in the direction of more codes, providing flexibility in combining levels to meet varying definitional needs and preferences.

    The 1990 codes are similarly defined. However, the Census Bureau's methods of defining urban cores and clusters changed between the two censuses. And, census tracts changed in number and shapes. The 2000 rural-urban commuting codes are not directly comparable with the 1990 codes because of these differences.

    An update of the Rural-Urban Commuting Area Codes is planned for late 2013.

  3. Rural Definitions

    • agdatacommons.nal.usda.gov
    • gimi9.com
    • +1more
    bin
    Updated Apr 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    USDA Economic Research Service (2025). Rural Definitions [Dataset]. https://agdatacommons.nal.usda.gov/articles/dataset/Rural_Definitions/25696431
    Explore at:
    binAvailable download formats
    Dataset updated
    Apr 23, 2025
    Dataset provided by
    Economic Research Servicehttp://www.ers.usda.gov/
    Authors
    USDA Economic Research Service
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Note: Updates to this data product are discontinued. Dozens of definitions are currently used by Federal and State agencies, researchers, and policymakers. The ERS Rural Definitions data product allows users to make comparisons among nine representative rural definitions.

    Methods of designating the urban periphery range from the use of municipal boundaries to definitions based on counties. Definitions based on municipal boundaries may classify as rural much of what would typically be considered suburban. Definitions that delineate the urban periphery based on counties may include extensive segments of a county that many would consider rural.

    We have selected a representative set of nine alternative rural definitions and compare social and economic indicators from the 2000 decennial census across the nine definitions. We chose socioeconomic indicators (population, education, poverty, etc.) that are commonly used to highlight differences between urban and rural areas.This record was taken from the USDA Enterprise Data Inventory that feeds into the https://data.gov catalog. Data for this record includes the following resources: Webpage with links to Excel files State-Level Maps For complete information, please visit https://data.gov.

  4. f

    UrbanDictionary 1999-May2016 Definitions Corpus

    • figshare.com
    7z
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mita Lu (2023). UrbanDictionary 1999-May2016 Definitions Corpus [Dataset]. http://doi.org/10.6084/m9.figshare.4828954.v1
    Explore at:
    7zAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    figshare
    Authors
    Mita Lu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description
  5. C

    California Urban Area Delineations

    • data.ca.gov
    Updated Jul 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Finance (2025). California Urban Area Delineations [Dataset]. https://data.ca.gov/dataset/california-urban-area-delineations
    Explore at:
    arcgis geoservices rest api, htmlAvailable download formats
    Dataset updated
    Jul 2, 2025
    Dataset provided by
    Calif. Dept. of Finance Demographic Research Unit
    Authors
    California Department of Finance
    Area covered
    California
    Description

    The Census Bureau released revised delineations for urban areas on December 29, 2022. The new criteria (contained in this Federal Register Notice) is based primarily on housing unit density measured at the census block level. The minimum qualifying threshold for inclusion as an urban area is an area that contains at least 2,000 housing units or has a population of at least 5,000 persons. It also eliminates the classification of areas as “urban clusters/urbanized areas”. This represents a change from 2010, where urban areas were defined as areas consisting of 50,000 people or more and urban clusters consisted of at least 2,500 people but less than 50,000 people with at least 1,500 people living outside of group quarters. Due to the new population thresholds for urban areas, 36 urban clusters in California are no longer considered urban areas, leaving California with 193 urban areas after the new criteria was implemented.

    The State of California experienced an increase of 1,885,884 in the total urban population, or 5.3%. However, the total urban area population as a percentage of the California total population went down from 95% to 94.2%. For more information about the mapped data, download the Excel spreadsheet here.

    Please note that some of the 2020 urban areas have different names or additional place names as a result of the inclusion of housing unit counts as secondary naming criteria.

    Please note there are four urban areas that cross state boundaries in Arizona and Nevada. For 2010, only the parts within California are displayed on the map; however, the population and housing estimates represent the entirety of the urban areas. For 2020, the population and housing unit estimates pertains to the areas within California only.

    Data for this web application was derived from the 2010 and 2020 Censuses (2010 and 2020 Census Blocks, 2020 Urban Areas, and Counties) and the 2016-2020 American Community Survey (2010 -Urban Areas) and can be found at data.census.gov.

    For more information about the urban area delineations, visit the Census Bureau's Urban and Rural webpage and FAQ.

    To view more data from the State of California Department of Finance, visit the Demographic Research Unit Data Hub.

  6. f

    GloPPRUA-Global Harmonized Urban Definition

    • figshare.com
    application/x-rar
    Updated Apr 6, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wenyue Li; Yecheng Zhang; Mengxing Li; Ying Long (2025). GloPPRUA-Global Harmonized Urban Definition [Dataset]. http://doi.org/10.6084/m9.figshare.28248101.v5
    Explore at:
    application/x-rarAvailable download formats
    Dataset updated
    Apr 6, 2025
    Dataset provided by
    figshare
    Authors
    Wenyue Li; Yecheng Zhang; Mengxing Li; Ying Long
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This data is the global urban boundary of 222 scenarios combined by different population data sets, population density and population size thresholds, and the GIS model builder for calculating these data. See the README file for details.Reference:Li, W., Zhang, Y., Li, M., & Long, Y. (2024). Rethinking the country-level percentage of population residing in urban area with a global harmonized urban definition. iScience, 27(6), 110125. https://doi.org/10.1016/j.isci.2024.110125.The UN (United Nations) collects global data on the country-level Percentage of Population Residing in Urban Area (PPRUA); however, variations in definitions of urban areas make these data incomparable across countries. This paper evaluates the numbers of national defined PPRUA within UN statistics, by comparing them with the numbers of PPRUA we estimated through global comparable definitions. Refer to the Degree of Urbanization framework from the UN, we propose 90 global harmonized methods to estimating PPRUA by combining different configurations of three global population datasets, six urban total population thresholds, and five urban population density thresholds. This approach demonstrated significant variations in country-level PPRUA estimations, with a wide 95% confidence interval (CI) range. When comparing the national defined PPRUA with the global harmonized estimations, we found that most lie between the upper 95% CI and the median of the estimations. This study highlights the need for globally harmonious PPRUA estimates, calling for a reassessment of datasets and thresholds in the future and investigating urbanization on a scale beyond the country level.

  7. Data from: Urban-rural continuum

    • figshare.com
    tiff
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Andrea Cattaneo; Andy Nelson; Theresa McMenomy (2023). Urban-rural continuum [Dataset]. http://doi.org/10.6084/m9.figshare.12579572.v4
    Explore at:
    tiffAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Andrea Cattaneo; Andy Nelson; Theresa McMenomy
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The urban–rural continuum classifies the global population, allocating rural populations around differently-sized cities. The classification is based on four dimensions: population distribution, population density, urban center location, and travel time to urban centers, all of which can be mapped globally and consistently and then aggregated as administrative unit statistics.Using spatial data, we matched all rural locations to their urban center of reference based on the time needed to reach these urban centers. A hierarchy of urban centers by population size (largest to smallest) is used to determine which center is the point of “reference” for a given rural location: proximity to a larger center “dominates” over a smaller one in the same travel time category. This was done for 7 urban categories and then aggregated, for presentation purposes, into “large cities” (over 1 million people), “intermediate cities” (250,000 –1 million), and “small cities and towns” (20,000–250,000).Finally, to reflect the diversity of population density across the urban–rural continuum, we distinguished between high-density rural areas with over 1,500 inhabitants per km2 and lower density areas. Unlike traditional functional area approaches, our approach does not define urban catchment areas by using thresholds, such as proportion of people commuting; instead, these emerge endogenously from our urban hierarchy and by calculating the shortest travel time.Urban-Rural Catchment Areas (URCA).tif is a raster dataset of the 30 urban–rural continuum categories for the urban–rural continuum showing the catchment areas around cities and towns of different sizes. Each rural pixel is assigned to one defined travel time category: less than one hour, one to two hours, and two to three hours travel time to one of seven urban agglomeration sizes. The agglomerations range from large cities with i) populations greater than 5 million and ii) between 1 to 5 million; intermediate cities with iii) 500,000 to 1 million and iv) 250,000 to 500,000 inhabitants; small cities with populations v) between 100,000 and 250,000 and vi) between 50,000 and 100,000; and vii) towns of between 20,000 and 50,000 people. The remaining pixels that are more than 3 hours away from any urban agglomeration of at least 20,000 people are considered as either hinterland or dispersed towns being that they are not gravitating around any urban agglomeration. The raster also allows for visualizing a simplified continuum created by grouping the seven urban agglomerations into 4 categories.Urban-Rural Catchment Areas (URCA).tif is in GeoTIFF format, band interleaved with LZW compression, suitable for use in Geographic Information Systems and statistical packages. The data type is byte, with pixel values ranging from 1 to 30. The no data value is 128. It has a spatial resolution of 30 arc seconds, which is approximately 1km at the equator. The spatial reference system (projection) is EPSG:4326 - WGS84 - Geographic Coordinate System (lat/long). The geographic extent is 83.6N - 60S / 180E - 180W. The same tif file is also available as an ESRI ArcMap MapPackage Urban-Rural Catchment Areas.mpkFurther details are in the ReadMe_data_description.docx

  8. S

    Data from: A standardized dataset of built-up areas of China’s cities with...

    • scidb.cn
    Updated Jul 7, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jiang Huiping; Sun Zhongchang; Guo Huadong; Du Wenjie; Xing Qiang; Cai Guoyin (2021). A standardized dataset of built-up areas of China’s cities with populations over 300,000 for the period 1990–2015 [Dataset]. http://doi.org/10.11922/sciencedb.j00076.00004
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 7, 2021
    Dataset provided by
    Science Data Bank
    Authors
    Jiang Huiping; Sun Zhongchang; Guo Huadong; Du Wenjie; Xing Qiang; Cai Guoyin
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    China
    Description

    Here we used remote sensing data from multiple sources (time-series of Landsat and Sentinel images) to map the impervious surface area (ISA) at five-year intervals from 1990 to 2015, and then converted the results into a standardized dataset of the built-up area for 433 Chinese cities with 300,000 inhabitants or more, which were listed in the United Nations (UN) World Urbanization Prospects (WUP) database (including Mainland China, Hong Kong, Macao and Taiwan). We employed a range of spectral indices to generate the 1990–2015 ISA maps in urban areas based on remotely sensed data acquired from multiple sources. In this process, various types of auxiliary data were used to create the desired products for urban areas through manual segmentation of peri-urban and rural areas together with reference to several freely available products of urban extent derived from ISA data using automated urban–rural segmentation methods. After that, following the well-established rules adopted by the UN, we carried out the conversion to the standardized built-up area products from the 1990–2015 ISA maps in urban areas, which conformed to the definition of urban agglomeration area (UAA). Finally, we implemented data postprocessing to guarantee the spatial accuracy and temporal consistency of the final product.The standardized urban built-up area dataset (SUBAD–China) introduced here is the first product using the same definition of UAA adopted by the WUP database for 433 county and higher-level cities in China. The comparisons made with contemporary data produced by the National Bureau of Statistics of China, the World Bank and UN-habitat indicate that our results have a high spatial accuracy and good temporal consistency and thus can be used to characterize the process of urban expansion in China.The SUBAD–China contains 2,598 vector files in shapefile format containing data for all China's cities listed in the WUP database that have different urban sizes and income levels with populations over 300,000. Attached with it, we also provided the distribution of validation points for the 1990–2010 ISA products of these 433 Chinese cities in shapefile format and the confusion matrices between classified data and reference data during different time periods as a Microsoft Excel Open XML Spreadsheet (XLSX) file.Furthermore, The standardized built-up area products for such cities will be consistently updated and refined to ensure the quality of their spatiotemporal coverage and accuracy. The production of this dataset together with the usage of population counts derived from the WUP database will close some of the data gaps in the calculation of SDG11.3.1 and benefit other downstream applications relevant to a combined analysis of the spatial and socio-economic domains in urban areas.

  9. Z

    DATABASE: RUSSIAN LARGE URBAN REGIONS 2020

    • data.niaid.nih.gov
    Updated Nov 25, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mikhail Rogov (2021). DATABASE: RUSSIAN LARGE URBAN REGIONS 2020 [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_3354435
    Explore at:
    Dataset updated
    Nov 25, 2021
    Dataset authored and provided by
    Mikhail Rogov
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Russia
    Description

    This database provides construction of Large Urban Regions (LUR) in Russia. A Large Urban Region (LUR) can be defined as an aggregation of continuous statistical units around a core that are economically dependent on this core and linked to it by economic and social strong interdependences. The main purpose of this delineation is to make cities comparable on the national and world scales and to make comparative social-economic urban studies. Aggregating different municipal districts around a core city, we construct a single large urban region, which allows to include all the area of economic influence of a core into one statistical unit (see Rogov & Rozenblat, 2020 for more details) thus, changing a city position in a global urban hierarchy. In doing so we use four principal urban concepts (Pumain et al., 1992): political definition, morphological definition, functional definition and conurbation that we call Large Urban Region. We constructed Russian LURs using criteria such as population distribution, road networks, access to an airport, distance from a core, presence of multinational firms. In this database, we provide population data for LURs and their administrative units.

  10. Global Urban Rural Catchment Areas (URCA) Grid - 2021

    • data.amerigeoss.org
    http, png, tif, wms
    Updated Mar 5, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Food and Agriculture Organization (2022). Global Urban Rural Catchment Areas (URCA) Grid - 2021 [Dataset]. https://data.amerigeoss.org/dataset/9dc31512-a438-4b59-acfd-72830fbd6943
    Explore at:
    wms, png, http, tifAvailable download formats
    Dataset updated
    Mar 5, 2022
    Dataset provided by
    Food and Agriculture Organizationhttp://fao.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The Global Urban-Rural Catchment Areas (URCA) is a raster dataset of the 30 urban-rural continuum categories of catchment areas for cities and towns. Each rural pixel is assigned to one defined travel time category: less than one hour, one to two hours, and two to three hours travel time to one of seven urban agglomeration sizes. The agglomerations range from large cities with i) populations greater than 5 million and ii) between 1 to 5 million; intermediate cities with iii) 500,000 to 1 million and iv) 250,000 to 500,000 inhabitants; small cities with populations v) between 100,000 and 250,000 and vi) between 50,000 and 100,000; and vii) towns of between 20,000 and 50,000 people. The remaining pixels that are more than 3 hours away from any urban agglomeration of at least 20,000 people are considered as either hinterland or dispersed towns being that they are not gravitating around any urban agglomeration.

    Data publication: 2021-01-01

    Contact points:

    Metadata contact: Theresa McMenomy FAO-UN

    Contact: Andrea Cattaneo FAO-UN

    Contact: Theresa McMenomy FAO-UN

    Data lineage:

    The dataset is from https://doi/10.1073/pnas.2011990118 and http://dx.doi.org/10.6084/m9.figshare.12579572

    Resource constraints:

    CC By 4.0

    Online resources:

    Urban-rural continuum dataset download

    urban_rural_catchment_areas.tif

  11. Urbanization Perceptions Small Area Index

    • data.lojic.org
    • hudgis-hud.opendata.arcgis.com
    Updated Jul 31, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Housing and Urban Development (2023). Urbanization Perceptions Small Area Index [Dataset]. https://data.lojic.org/datasets/9b13dc7e75474eab9a4a643d91c34f58
    Explore at:
    Dataset updated
    Jul 31, 2023
    Dataset provided by
    United States Department of Housing and Urban Developmenthttp://www.hud.gov/
    Authors
    Department of Housing and Urban Development
    Area covered
    Description

    Definitions of “urban” and “rural” are abundant in government, academic literature, and data-driven journalism. Equally abundant are debates about what is urban or rural and which factors should be used to define these terms. Absent from most of this discussion is evidence about how people perceive or describe their neighborhood. Moreover, as several housing and demographic researchers have noted, the lack of an official or unofficial definition of suburban obscures the stylized fact that a majority of Americans live in a suburban setting. In 2017, the U.S. Department of Housing and Urban Development added a simple question to the 2017 American Housing Survey (AHS) asking respondents to describe their neighborhood as urban, suburban, or rural. This service provides a tract-level dataset illustrating the outcome of analysis techniques applied to neighborhood classification reported by the American Housing Survey (AHS) as either urban, suburban, or rural.

    To create this data, analysts first applied machine learning techniques to the AHS neighborhood description question to build a model that predicts how out-of-sample households would describe their neighborhood (urban, suburban, or rural), given regional and neighborhood characteristics. Analysts then applied the model to the American Community Survey (ACS) aggregate tract-level regional and neighborhood measures, thereby creating a predicted likelihood the average household in a census tract would describe their neighborhood as urban, suburban, and rural. This last step is commonly referred to as small area estimation. The approach is an example of the use of existing federal data to create innovative new data products of substantial interest to researchers and policy makers alike.

    If aggregating tract-level probabilities to larger areas, users are strongly encouraged to use occupied household counts as weights.

    We recommend users read Section 7 of the working paper before using the raw probabilities. Likewise, we recognize that some users may:

    prefer to use an uncontrolled classification, or

    prefer to create more than three categories.

    To accommodate these uses, our final tract-level output dataset includes the "raw" probability an average household would describe their neighborhood as urban, suburban, and rural. These probability values can be used to create an uncontrolled classification or additional categories.

    The final classification is controlled to AHS national estimates (26.9% urban; 52.1% suburban, 21.0% rural).

      For more information about the 2017 AHS Neighborhood Description Study click on the following visit: https://www.hud.gov/program_offices/comm_planning/communitydevelopment/programs/, for questions about the spatial attribution of this dataset, please reach out to us at GISHelpdesk@hud.gov. 
    

    Data Dictionary: DD_Urbanization Perceptions Small Area Index.

  12. i

    Urban Dictionary definitions dataset for misogyny speech detection

    • ieee-dataport.org
    Updated Mar 19, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Patricia Endo (2019). Urban Dictionary definitions dataset for misogyny speech detection [Dataset]. https://ieee-dataport.org/documents/urban-dictionary-definitions-dataset-misogyny-speech-detection
    Explore at:
    Dataset updated
    Mar 19, 2019
    Authors
    Patricia Endo
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    scatology

  13. Decoding the Modern Lexicon of Urban Dictionary

    • kaggle.com
    Updated May 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anil Paliwal (2024). Decoding the Modern Lexicon of Urban Dictionary [Dataset]. https://www.kaggle.com/datasets/anilpaliwal/urban-dictionary
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 25, 2024
    Dataset provided by
    Kaggle
    Authors
    Anil Paliwal
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    The Urban Dictionary dataset is a collection of words, phrases, and their meanings gathered from user submissions. It serves as a snapshot of contemporary language, capturing slang, expressions, and cultural references from online communities. This dataset provides valuable insights into modern communication trends and the evolution of language in digital spaces. Whether for linguistic analysis or cultural exploration, the Urban Dictionary dataset offers a rich resource for understanding the diverse ways people communicate online.

  14. C

    Urban Areas - Adjusted 2020

    • data.colorado.gov
    application/rdfxml +5
    Updated Jan 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Urban Areas - Adjusted 2020 [Dataset]. https://data.colorado.gov/dataset/Urban-Areas-Adjusted-2020/ukia-44iy/data
    Explore at:
    application/rdfxml, tsv, csv, xml, json, application/rssxmlAvailable download formats
    Dataset updated
    Jan 29, 2025
    Description

    Polygon geographic dataset representing adjusted boundaries of Census-defined boundaries of 2020 urban areas with population greater than 5,000, as defined by Federal Highways Administration.

  15. S

    Urban Rural 2025

    • datafinder.stats.govt.nz
    csv, dwg, geodatabase +6
    Updated Dec 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stats NZ (2024). Urban Rural 2025 [Dataset]. https://datafinder.stats.govt.nz/layer/120965-urban-rural-2025/
    Explore at:
    kml, mapinfo tab, geodatabase, shapefile, pdf, mapinfo mif, geopackage / sqlite, dwg, csvAvailable download formats
    Dataset updated
    Dec 2, 2024
    Dataset provided by
    Statistics New Zealandhttp://www.stats.govt.nz/
    Authors
    Stats NZ
    License

    https://datafinder.stats.govt.nz/license/attribution-4-0-international/https://datafinder.stats.govt.nz/license/attribution-4-0-international/

    Area covered
    Description

    Refer to the current geographies boundaries table for a list of all current geographies and recent updates.

    This dataset is the definitive version of the annually released urban rural (UR) boundaries as at 1 January 2025 as defined by Stats NZ. This version contains 689 UR areas, including 195 urban areas and 402 rural settlements.

    Urban rural (UR) is an output geography that classifies New Zealand into areas that share common urban or rural characteristics and is used to disseminate a broad range of Stats NZ’s social, demographic and economic statistics.

    The UR separately identifies urban areas, rural settlements, other rural areas, and water areas. Urban areas and rural settlements are form-based geographies delineated by the inspection of aerial imagery, local government land designations on district plan maps, address registers, property title data, and any other available information. However, because the underlying meshblock pattern is used to define the geographies, boundaries may not align exactly with local government land designations or what can be seen in aerial images. Other rural areas, and bodies of water represent areas not included within an urban area.

    Urban areas are built from the statistical area 2 (SA2) geography, while rural and water areas are built from the statistical area 1 (SA1) geography.

    Urban areas

    Urban areas are statistically defined areas with no administrative or legal basis. They are characterised by high population density with many built environment features where people and buildings are located close together for residential, cultural, productive, trade and social purposes.

    Urban areas are delineated using the following criteria. They:

    form a contiguous cluster of one or more SA2s,

    contain an estimated resident population of more than 1,000 people and usually have a population density of more than 400 residents or 200 address points per square kilometre,

    have a high coverage of built physical structures and artificial landscapes such as:

    • residential dwellings and apartments,
    • commercial structures, such as factories, office complexes, and shopping centres,
    • transport and communication facilities, such as airports, ports and port facilities, railway stations, bus stations and similar transport hubs, and communications infrastructure,
    • medical, education, and community facilities,
    • tourist attractions and accommodation facilities,
    • waste disposal and sewerage facilities,
    • cemeteries,
    • sports and recreation facilities, such as stadiums, golf courses, racecourses, showgrounds, and fitness centres,
    • green spaces, such as community parks, gardens, and reserves,

    have strong economic ties where people gather together to work, and for social, cultural, and recreational interaction,

    have planned development within the next 5–8 years.

    Urban boundaries are independent of local government and other administrative boundaries. However, the Richmond urban area, which is mainly in the Tasman District, is the only urban area that crosses territorial authority boundaries

    Rural areas

    Rural areas are classified as rural settlements or other rural.

    Rural settlements

    Rural settlements are statistically defined areas with no administrative or legal basis. A rural settlement is a cluster of residential dwellings about a place that usually contains at least one community or public building.

    Rural settlements are delineated using the following criteria. They:

    form a contiguous cluster of one or more SA1s,

    contain an estimated resident population of 200–1,000, or at least 40 residential dwellings,

    represent a reasonably compact area or have a visible centre of population with a population density of at least 200 residents per square kilometre or 100 address points per square kilometre,

    contain at least one community or public building, such as a church, school, or shop.

    To reach the target SA2 population size of more than 1,000 residents, rural settlements are usually included with other rural SA1s to form an SA2. In some instances, the settlement and the SA2 have the same name, for example, Kirwee rural settlement is part of the Kirwee SA2.

    Some rural settlements whose populations are just under 1,000 are a single SA2. Creating separate SA2s for these rural settlements allows for easy reclassification to urban areas if their populations grow beyond 1,000.

    Other rural

    Other rural areas are the mainland areas and islands located outside urban areas or rural settlements. Other rural areas include land used for agriculture and forestry, conservation areas, and regional and national parks. Other rural areas are defined by territorial authority.

    Water

    Bodies of water are classified separately, using the land/water demarcation classification described in the Statistical standard for meshblock. These water areas are not named and are defined by territorial authority or regional council.

    The water classes include:

    inland water – non-contiguous, defined by territorial authority,

    inlets (which also includes tidal areas and harbours) – non-contiguous, defined by territorial authority,

    oceanic – non-contiguous, defined by regional council.

    To minimise suppression of population data, separate meshblocks have been created for marinas. These meshblocks are attached to adjacent land in the UR geography.

    Non-digitised

    The following 4 non-digitised UR areas have been aggregated from the 16 non-digitised meshblocks/SA2s.

    6901; Oceanic outside region, 6902; Oceanic oil rigs, 6903; Islands outside region, 6904; Ross Dependency outside region.

    UR numbering and naming

    Each urban area and rural settlement is a single geographic entity with a name and a numeric code.

    Other rural areas, inland water areas, and inlets are defined by territorial authority; oceanic areas are defined by regional council; and each have a name and a numeric code.

    Urban rural codes have four digits. North Island locations start with a 1, South Island codes start with a 2, oceanic codes start with a 6 and non-digitised codes start with 69.

    Urban rural indicator (IUR)

    The accompanying urban rural indicator (IUR) classifies the urban, rural, and water areas by type. Urban areas are further classified by the size of their estimated resident population:

    • major urban area – 100,000 or more residents,
    • large urban area – 30,000–99,999 residents,
    • medium urban area – 10,000–29,999 residents,
    • small urban area – 1,000–9,999 residents.

    This was based on 2018 Census data and 2021 population estimates. Their IUR status (urban area size/rural settlement) may change if the 2025 Census population count moves them up or down a category.

    The indicators, by name, with their codes in brackets, are:

    urban area – major urban (11), large urban (12), medium urban (13), small urban (14),

    rural area – rural settlement (21), rural other (22),

    water – inland water (31), inlet (32), oceanic (33).

    High definition version

    This high definition (HD) version is the most detailed geometry, suitable for use in GIS for geometric analysis operations and for the computation of areas, centroids and other metrics. The HD version is aligned to the LINZ cadastre.

    Macrons

    Names are provided with and without tohutō/macrons. The column name for those without macrons is suffixed ‘ascii’.

    Digital data

    Digital boundary data became freely available on 1 July 2007.

    Further information

    To download geographic classifications in table formats such as CSV please use Ariā

    For more information please refer to the Statistical standard for geographic areas 2023.

    Contact: geography@stats.govt.nz

  16. m

    Urban Dictionary definitions dataset for misogyny speech detection

    • data.mendeley.com
    • narcis.nl
    Updated Apr 23, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Theodore Lynn (2019). Urban Dictionary definitions dataset for misogyny speech detection [Dataset]. http://doi.org/10.17632/3jfwsdkryy.2
    Explore at:
    Dataset updated
    Apr 23, 2019
    Authors
    Theodore Lynn
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The data set is composed of 2,285 definitions gathered from the Urban Dictionary platform from 1999 to 2006. The data was classified as misogynistic and non- misogynistic by three independent researchers with domain knowledge. The data set is available in public repository in a table containing two columns: the text-based definition from Urban Dictionary and its respective classification (1 for misogynistic and 0 for non- misogynistic).

    Content warning: sexual violence, extreme misogyny, scatology, ‘scat porn’

  17. S

    Urban Rural 2021 Clipped (generalised)

    • datafinder.stats.govt.nz
    csv, dwg, geodatabase +6
    Updated Dec 6, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stats NZ (2020). Urban Rural 2021 Clipped (generalised) [Dataset]. https://datafinder.stats.govt.nz/layer/105159-urban-rural-2021-clipped-generalised/
    Explore at:
    geodatabase, mapinfo mif, dwg, shapefile, geopackage / sqlite, pdf, csv, mapinfo tab, kmlAvailable download formats
    Dataset updated
    Dec 6, 2020
    Dataset provided by
    Statistics New Zealandhttp://www.stats.govt.nz/
    Authors
    Stats NZ
    License

    https://datafinder.stats.govt.nz/license/attribution-4-0-international/https://datafinder.stats.govt.nz/license/attribution-4-0-international/

    Area covered
    Description

    This dataset contains the annually released urban rural boundaries for 2021, as defined by Stats NZ, clipped to the coastline. This clipped version has been created for map creation/cartographic purposes and so does not fully represent the official full extent boundaries. This version contains 668 urban rural categories.

    The urban rural geography was introduced as part of the Statistical Standard for Geographic Areas 2018 (SSGA18) which replaced the New Zealand Standard Areas Classification (NZSAC92). The urban rural geography replaces the (NZSAC92) urban area geography. Urban rural is an output geography that classifies New Zealand into areas that share common urban or rural characteristics and is used to disseminate a broad range of Stats NZ’s social, demographic and economic statistics.

    The urban rural indicator complements the urban rural geography and is an attribute in this dataset. Further information on the urban rural indicator is available on the Stats NZ classification and coding tool ARIA.

    Names are provided with and without tohutō/macrons. The name field without macrons is suffixed ‘ascii’.

    This generalised version has been simplified for rapid drawing and is designed for thematic or web mapping purposes.

    Digital boundary data became freely available on 1 July 2007.

  18. S

    Urban Area 2015 (generalised)

    • datafinder.stats.govt.nz
    csv, dwg, geodatabase +6
    Updated Jul 29, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stats NZ (2021). Urban Area 2015 (generalised) [Dataset]. https://datafinder.stats.govt.nz/layer/105772-urban-area-2015-generalised/
    Explore at:
    csv, mapinfo tab, geopackage / sqlite, kml, shapefile, mapinfo mif, dwg, pdf, geodatabaseAvailable download formats
    Dataset updated
    Jul 29, 2021
    Dataset provided by
    Statistics New Zealandhttp://www.stats.govt.nz/
    Authors
    Stats NZ
    License

    https://datafinder.stats.govt.nz/license/attribution-4-0-international/https://datafinder.stats.govt.nz/license/attribution-4-0-international/

    Area covered
    Description

    This dataset is the definitive set of urban area boundaries for 2015 as defined by Statistics New Zealand.

    Urban areas are statistically defined areas with no administrative or legal basis. Urban area populations are defined internationally as towns with populations of 1,000 or more.

    Digital boundary data became freely available on 1 July 2007.

  19. a

    scottish rural and urban classifications - open data

    • hub.arcgis.com
    • data.stirling.gov.uk
    • +1more
    Updated Jun 2, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stirling Council - insights by location (2022). scottish rural and urban classifications - open data [Dataset]. https://hub.arcgis.com/datasets/98016ddf12d649f0912657eae4669667
    Explore at:
    Dataset updated
    Jun 2, 2022
    Dataset authored and provided by
    Stirling Council - insights by location
    Area covered
    Description

    This dataset is published as Open DataThe Scottish Government (SG) Urban Rural Classification provides a consistent way of defining urban and rural areas across Scotland. The classification aids policy development and the understanding of issues facing urban, rural and remote communities. It is based upon two main criteria: (i) population as defined by National Records of Scotland (NRS), and (ii) accessibility based on drive time analysis to differentiate between accessible and remote areas in Scotland. The classification can be analysed in a two, three, six or eight fold form. The two-fold classification simply distinguishes between urban and rural areas through two categories, urban and rural, while the three-fold classification splits the rural category between accessible and remote. Most commonly used is the 6-fold classification which distinguishes between urban, rural, and remote areas through six categories. The 8-fold classification further distinguishes between remote and very remote regions. The Classification is normally updated on a biennial basis, with the current dataset reflective of the year 2020. Data for previous versions are available for download in ESRI Shapefile format.

  20. g

    Simple download service (Atom) of the dataset: Urban units 2020 for Corrèze...

    • gimi9.com
    Updated Jan 14, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). Simple download service (Atom) of the dataset: Urban units 2020 for Corrèze and neighbouring departments | gimi9.com [Dataset]. https://gimi9.com/dataset/eu_fr-120066022-srv-c59dd65b-104e-4fa9-be7f-63b432ed74a6/
    Explore at:
    Dataset updated
    Jan 14, 2022
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Corrèze
    Description

    N_URBAINE_UNITE_2020_ZSUP_FLA_000 Urban units 2020 for Corrèze and neighbouring departments The objects on the outer periphery of the neighbouring departments are not complete if it overflows over the next department. Based on IGN INSEE and GeoFLA files https://www.insee.fr/fr/information/4802589 The concept of urban unity is based on the continuity of the building and the number of inhabitants. Urban units are built in metropolitan France and in the overseas departments according to the following definition: a municipality or group of municipalities with a continuous building area (no cut-off of more than 200 metres between two buildings) with at least 2,000 inhabitants. If the urban unit is located in a single municipality, it is referred to as an isolated city. If the urban unit extends over several municipalities, and each of these municipalities concentrates more than half of its population in the continuous built-up area, it is referred to as a multi-communal agglomeration. If one of these municipalities concentrates less than half of its population in the continuous built-up area but concentrates 2,000 or more inhabitants there, then it will constitute an isolated urban unit. The agglomeration of Paris is the multi-communal agglomeration containing Paris. Finally, “community outside urban unit” means municipalities not assigned to an urban unit. These thresholds, 200 metres for the continuity of the building and 2,000 inhabitants for the population of built-up areas, are the result of recommendations adopted at international level. For example, in the European population census regulation, population statistics based on zoning into urban units are expected. The calculation of the space between two buildings is done by analysing the building databases of the National Institute for Geographical and Forestry Information (IGN). It takes account of cuts in the urban fabric such as rivers in the absence of bridges, graveries, height differences. Since the 2010 division, certain public spaces (cmeteries, stadiums, aerodromes, parking lots, etc.), industrial or commercial land (factory, activity areas, shopping centres, etc.) have been treated as buildings with the 200-metre rule to connect inhabited construction areas, unlike previous divisions where these spaces were only cancelled in the calculation of distances between buildings. Urban units are redefined periodically. The current zoning, dated 2020, is established with reference to the population known in the 2017 census and the administrative geography of the territory as of 1 January 2020. The previous fiscal year, dated 2010, was based on the 2007 census and the administrative geography of the territory as of 1 January 2010. A first demarcation of cities and agglomerations was carried out on the occasion of the 1954 census. New urban units were then formed in the 1962, 1968, 1975, 1982, 1990 and 1999 censuses. Urban units can span several departments or even cross national borders (see International Urban Unit). The division into urban units concerns all the municipalities of metropolitan France and the overseas departments.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
United States Census Bureau (USCB) (Point of Contact) (2025). Urban Areas [Dataset]. https://catalog.data.gov/dataset/urban-areas2
Organization logo

Urban Areas

Explore at:
Dataset updated
Jun 28, 2025
Dataset provided by
United States Census Bureauhttp://census.gov/
Description

The Urban Areas dataset was compiled on May 31, 2023 from the United States Census Bureau (USCB) and is part of the U.S. Department of Transportation (USDOT)/Bureau of Transportation Statistics (BTS) National Transportation Atlas Database (NTAD). The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. After each decennial census, the Census Bureau delineates urban areas that represent densely developed territory, encompassing residential, commercial, and other nonresidential urban land uses. In general, this territory consists of areas of high population density and urban land use resulting in a representation of the urban footprint. There are 2,645 Urban Areas (UAs) in this data release with either a minimum population of 5,000 or a housing unit count of 2,000 units. Each urban area is identified by a 5-character numeric census code that may contain leading zeroes. A data dictionary, or other source of attribute information, is accessible at https://doi.org/10.21949/1529088

Search
Clear search
Close search
Google apps
Main menu