Daily utilization metrics for data.lacity.org and geohub.lacity.org. Updated monthly
Web traffic statistics for the several City-Parish websites, brla.gov, city.brla.gov, Red Stick Ready, GIS, Open Data etc. Information provided by Google Analytics.
Be ready for a cookieless internet while capturing anonymous website traffic data!
By installing the resolve pixel onto your website, business owners can start to put a name to the activity seen in analytics sources (i.e. GA4). With capture/resolve, you can identify up to 40% or more of your website traffic. Reach customers BEFORE they are ready to reveal themselves to you and customize messaging toward the right product or service.
This product will include Anonymous IP Data and Web Traffic Data for B2B2C.
Get a 360 view of the web traffic consumer with their business data such as business email, title, company, revenue, and location.
Super easy to implement and extraordinarily fast at processing, business owners are thrilled with the enhanced identity resolution capabilities powered by VisitIQ's First Party Opt-In Identity Platform. Capture/resolve and identify your Ideal Customer Profiles to customize marketing. Identify WHO is looking, WHAT they are looking at, WHERE they are located and HOW the web traffic came to your site.
Create segments based on specific demographic or behavioral attributes and export the data as a .csv or through S3 integration.
Check our product that has the most accurate Web Traffic Data for the B2B2C market.
Mobile accounts for approximately half of web traffic worldwide. In the last quarter of 2024, mobile devices (excluding tablets) generated 62.54 percent of global website traffic. Mobiles and smartphones consistently hoovered around the 50 percent mark since the beginning of 2017, before surpassing it in 2020. Mobile traffic Due to low infrastructure and financial restraints, many emerging digital markets skipped the desktop internet phase entirely and moved straight onto mobile internet via smartphone and tablet devices. India is a prime example of a market with a significant mobile-first online population. Other countries with a significant share of mobile internet traffic include Nigeria, Ghana and Kenya. In most African markets, mobile accounts for more than half of the web traffic. By contrast, mobile only makes up around 45.49 percent of online traffic in the United States. Mobile usage The most popular mobile internet activities worldwide include watching movies or videos online, e-mail usage and accessing social media. Apps are a very popular way to watch video on the go and the most-downloaded entertainment apps in the Apple App Store are Netflix, Tencent Video and Amazon Prime Video.
As of the last quarter of 2023, 31.57 percent of web traffic in the United States originated from mobile devices, down from 49.51 percent in the fourth quarter of 2022. In comparison, over half of web traffic worldwide was generated via mobile in the last examined period.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Digital technology and Internet use, website traffic strategies, by North American Industry Classification System (NAICS) and size of enterprise for Canada from 2012 to 2013.
Unlock the Potential of Your Web Traffic with Advanced Data Resolution
In the digital age, understanding and leveraging web traffic data is crucial for businesses aiming to thrive online. Our pioneering solution transforms anonymous website visits into valuable B2B and B2C contact data, offering unprecedented insights into your digital audience. By integrating our unique tag into your website, you unlock the capability to convert 25-50% of your anonymous traffic into actionable contact rows, directly deposited into an S3 bucket for your convenience. This process, known as "Web Traffic Data Resolution," is at the forefront of digital marketing and sales strategies, providing a competitive edge in understanding and engaging with your online visitors.
Comprehensive Web Traffic Data Resolution Our product stands out by offering a robust solution for "Web Traffic Data Resolution," a process that demystifies the identities behind your website traffic. By deploying a simple tag on your site, our technology goes to work, analyzing visitor behavior and leveraging proprietary data matching techniques to reveal the individuals and businesses behind the clicks. This innovative approach not only enhances your data collection but does so with respect for privacy and compliance standards, ensuring that your business gains insights ethically and responsibly.
Deep Dive into Web Traffic Data At the core of our solution is the sophisticated analysis of "Web Traffic Data." Our system meticulously collects and processes every interaction on your site, from page views to time spent on each section. This data, once anonymous and perhaps seen as abstract numbers, is transformed into a detailed ledger of potential leads and customer insights. By understanding who visits your site, their interests, and their contact information, your business is equipped to tailor marketing efforts, personalize customer experiences, and streamline sales processes like never before.
Benefits of Our Web Traffic Data Resolution Service Enhanced Lead Generation: By converting anonymous visitors into identifiable contact data, our service significantly expands your pool of potential leads. This direct enhancement of your lead generation efforts can dramatically increase conversion rates and ROI on marketing campaigns.
Targeted Marketing Campaigns: Armed with detailed B2B and B2C contact data, your marketing team can create highly targeted and personalized campaigns. This precision in marketing not only improves engagement rates but also ensures that your messaging resonates with the intended audience.
Improved Customer Insights: Gaining a deeper understanding of your web traffic enables your business to refine customer personas and tailor offerings to meet market demands. These insights are invaluable for product development, customer service improvement, and strategic planning.
Competitive Advantage: In a digital landscape where understanding your audience can make or break your business, our Web Traffic Data Resolution service provides a significant competitive edge. By accessing detailed contact data that others in your industry may overlook, you position your business as a leader in customer engagement and data-driven strategies.
Seamless Integration and Accessibility: Our solution is designed for ease of use, requiring only the placement of a tag on your website to start gathering data. The contact rows generated are easily accessible in an S3 bucket, ensuring that you can integrate this data with your existing CRM systems and marketing tools without hassle.
How It Works: A Closer Look at the Process Our Web Traffic Data Resolution process is streamlined and user-friendly, designed to integrate seamlessly with your existing website infrastructure:
Tag Deployment: Implement our unique tag on your website with simple instructions. This tag is lightweight and does not impact your site's loading speed or user experience.
Data Collection and Analysis: As visitors navigate your site, our system collects web traffic data in real-time, analyzing behavior patterns, engagement metrics, and more.
Resolution and Transformation: Using advanced data matching algorithms, we resolve the collected web traffic data into identifiable B2B and B2C contact information.
Data Delivery: The resolved contact data is then securely transferred to an S3 bucket, where it is organized and ready for your access. This process occurs daily, ensuring you have the most up-to-date information at your fingertips.
Integration and Action: With the resolved data now in your possession, your business can take immediate action. From refining marketing strategies to enhancing customer experiences, the possibilities are endless.
Security and Privacy: Our Commitment Understanding the sensitivity of web traffic data and contact information, our solution is built with security and privacy at its core. We adhere to strict data protection regulat...
In November 2024, the majority of browser web traffic in the United States was generated via mobile phones. Additionally, traffic generated by laptop and desktop devices constituted a share of approximately **** percent, while tablet devices accounted for *** percent of the country's web traffic.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Code:
Packet_Features_Generator.py & Features.py
To run this code:
pkt_features.py [-h] -i TXTFILE [-x X] [-y Y] [-z Z] [-ml] [-s S] -j
-h, --help show this help message and exit -i TXTFILE input text file -x X Add first X number of total packets as features. -y Y Add first Y number of negative packets as features. -z Z Add first Z number of positive packets as features. -ml Output to text file all websites in the format of websiteNumber1,feature1,feature2,... -s S Generate samples using size s. -j
Purpose:
Turns a text file containing lists of incomeing and outgoing network packet sizes into separate website objects with associative features.
Uses Features.py to calcualte the features.
startMachineLearning.sh & machineLearning.py
To run this code:
bash startMachineLearning.sh
This code then runs machineLearning.py in a tmux session with the nessisary file paths and flags
Options (to be edited within this file):
--evaluate-only to test 5 fold cross validation accuracy
--test-scaling-normalization to test 6 different combinations of scalers and normalizers
Note: once the best combination is determined, it should be added to the data_preprocessing function in machineLearning.py for future use
--grid-search to test the best grid search hyperparameters - note: the possible hyperparameters must be added to train_model under 'if not evaluateOnly:' - once best hyperparameters are determined, add them to train_model under 'if evaluateOnly:'
Purpose:
Using the .ml file generated by Packet_Features_Generator.py & Features.py, this program trains a RandomForest Classifier on the provided data and provides results using cross validation. These results include the best scaling and normailzation options for each data set as well as the best grid search hyperparameters based on the provided ranges.
Data
Encrypted network traffic was collected on an isolated computer visiting different Wikipedia and New York Times articles, different Google search queres (collected in the form of their autocomplete results and their results page), and different actions taken on a Virtual Reality head set.
Data for this experiment was stored and analyzed in the form of a txt file for each experiment which contains:
First number is a classification number to denote what website, query, or vr action is taking place.
The remaining numbers in each line denote:
The size of a packet,
and the direction it is traveling.
negative numbers denote incoming packets
positive numbers denote outgoing packets
Figure 4 Data
This data uses specific lines from the Virtual Reality.txt file.
The action 'LongText Search' refers to a user searching for "Saint Basils Cathedral" with text in the Wander app.
The action 'ShortText Search' refers to a user searching for "Mexico" with text in the Wander app.
The .xlsx and .csv file are identical
Each file includes (from right to left):
The origional packet data,
each line of data organized from smallest to largest packet size in order to calculate the mean and standard deviation of each packet capture,
and the final Cumulative Distrubution Function (CDF) caluclation that generated the Figure 4 Graph.
Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
This dataset contains 145063 time series representing the number of hits or web traffic for a set of Wikipedia pages from 2015-07-01 to 2022-06-30. This is an extended version of the dataset that was used in the Kaggle Wikipedia Web Traffic forecasting competition. For consistency, the same Wikipedia pages that were used in the competition have been used in this dataset as well. The colons (:) in article names have been replaced by dashes (-) to make the .tsf file readable using our data loaders.
The data were downloaded from the Wikimedia REST API. According to the conditions of the API, this dataset is licensed under CC-BY-SA 3.0 and GFDL licenses.
As of 2019, direct traffic accounts for the largest percentage of website traffic worldwide, with a share of 55 percent. Additionally, search traffic accounts for 29 percent of worldwide website traffic.
Click Web Traffic Combined with Transaction Data: A New Dimension of Shopper Insights
Consumer Edge is a leader in alternative consumer data for public and private investors and corporate clients. Click enhances the unparalleled accuracy of CE Transact by allowing investors to delve deeper and browse further into global online web traffic for CE Transact companies and more. Leverage the unique fusion of web traffic and transaction datasets to understand the addressable market and understand spending behavior on consumer and B2B websites. See the impact of changes in marketing spend, search engine algorithms, and social media awareness on visits to a merchant’s website, and discover the extent to which product mix and pricing drive or hinder visits and dwell time. Plus, Click uncovers a more global view of traffic trends in geographies not covered by Transact. Doubleclick into better forecasting, with Click.
Consumer Edge’s Click is available in machine-readable file delivery and enables: • Comprehensive Global Coverage: Insights across 620+ brands and 59 countries, including key markets in the US, Europe, Asia, and Latin America. • Integrated Data Ecosystem: Click seamlessly maps web traffic data to CE entities and stock tickers, enabling a unified view across various business intelligence tools. • Near Real-Time Insights: Daily data delivery with a 5-day lag ensures timely, actionable insights for agile decision-making. • Enhanced Forecasting Capabilities: Combining web traffic indicators with transaction data helps identify patterns and predict revenue performance.
Use Case: Analyze Year Over Year Growth Rate by Region
Problem A public investor wants to understand how a company’s year-over-year growth differs by region.
Solution The firm leveraged Consumer Edge Click data to: • Gain visibility into key metrics like views, bounce rate, visits, and addressable spend • Analyze year-over-year growth rates for a time period • Breakout data by geographic region to see growth trends
Metrics Include: • Spend • Items • Volume • Transactions • Price Per Volume
Inquire about a Click subscription to perform more complex, near real-time analyses on public tickers and private brands as well as for industries beyond CPG like: • Monitor web traffic as a leading indicator of stock performance and consumer demand • Analyze customer interest and sentiment at the brand and sub-brand levels
Consumer Edge offers a variety of datasets covering the US, Europe (UK, Austria, France, Germany, Italy, Spain), and across the globe, with subscription options serving a wide range of business needs.
Consumer Edge is the Leader in Data-Driven Insights Focused on the Global Consumer
Accessibility of tables
The department is currently working to make our tables accessible for our users. The data tables for these statistics are now accessible.
We would welcome any feedback on the accessibility of our tables, please email road traffic statistics.
TRA0101: https://assets.publishing.service.gov.uk/media/684963fd3a2aa5ba84d1dede/tra0101-miles-by-vehicle-type.ods">Road traffic (vehicle miles) by vehicle type in Great Britain (ODS, 58.6 KB)
TRA0102: https://assets.publishing.service.gov.uk/media/6849640f38cd4b88e2c7dab4/tra0102-miles-by-road-class.ods">Motor vehicle traffic (vehicle miles) by road class in Great Britain (ODS, 58.6 KB)
TRA0103: https://assets.publishing.service.gov.uk/media/6849642438cd4b88e2c7dab5/tra0103-miles-by-road-class-and-region.ods">Motor vehicle traffic (vehicle miles) by road class, region and country in Great Britain (ODS, 112 KB)
TRA0104: https://assets.publishing.service.gov.uk/media/68496434a970ac461a23d1d4/tra0104-miles-by-vehicle-and-road-type.ods">Road traffic (vehicle miles) by vehicle type and road class in Great Britain (ODS, 65.6 KB)
TRA0106: https://assets.publishing.service.gov.uk/media/6849644838cd4b88e2c7dab6/tra0106-miles-by-vehicle-type-and-region.ods">Motor vehicle traffic (vehicle miles) by vehicle type, region and country in Great Britain (ODS, 80.6 KB)
TRA0201: https://assets.publishing.service.gov.uk/media/6849646c7cba25f610c7daba/tra0201-km-by-vehicle-type.ods">Road traffic (vehicle kilometres) by vehicle type in Great Britain (ODS, 59.1 KB)
TRA0202: https://assets.publishing.service.gov.uk/media/6849647eb575706ea223d1de/tra0202-km-by-road-class.ods">Motor vehicle traffic (vehicle kilometres) by road class in Great Britain (ODS, 58.8 KB)
TRA0203: https://assets.publishing.service.gov.uk/media/6849648c3a2aa5ba84d1dedf/tra0203-km-by-road-class-and-region.ods">Motor vehicle traffic (vehicle kilometres) by road class, region and country in Great Britain (ODS, 121 KB)
TRA0204: https://assets.publishing.service.gov.uk/media/6849649b3a2aa5ba84d1dee0/tra0204-km-by-vehicle-and-road-type.ods">Road traffic (vehicle kilometres) by vehicle type and road class in Great Britain (ODS, 66.5 KB)
As of March 2024, canva.com accounted for over 3.26 percent of referral traffic to Google.com. Google's second-largest referral traffic driver was epicgames.com, which generated 3.11 percent of referral traffic to the search platform Google.
Abstract: The task for this dataset is to forecast the spatio-temporal traffic volume based on the historical traffic volume and other features in neighboring locations.
Data Set Characteristics | Number of Instances | Area | Attribute Characteristics | Number of Attributes | Date Donated | Associated Tasks | Missing Values |
---|---|---|---|---|---|---|---|
Multivariate | 2101 | Computer | Real | 47 | 2020-11-17 | Regression | N/A |
Source: Liang Zhao, liang.zhao '@' emory.edu, Emory University.
Data Set Information: The task for this dataset is to forecast the spatio-temporal traffic volume based on the historical traffic volume and other features in neighboring locations. Specifically, the traffic volume is measured every 15 minutes at 36 sensor locations along two major highways in Northern Virginia/Washington D.C. capital region. The 47 features include: 1) the historical sequence of traffic volume sensed during the 10 most recent sample points (10 features), 2) week day (7 features), 3) hour of day (24 features), 4) road direction (4 features), 5) number of lanes (1 feature), and 6) name of the road (1 feature). The goal is to predict the traffic volume 15 minutes into the future for all sensor locations. With a given road network, we know the spatial connectivity between sensor locations. For the detailed data information, please refer to the file README.docx.
Attribute Information: The 47 features include: (1) the historical sequence of traffic volume sensed during the 10 most recent sample points (10 features), (2) week day (7 features), (3) hour of day (24 features), (4) road direction (4 features), (5) number of lanes (1 feature), and (6) name of the road (1 feature).
Relevant Papers: Liang Zhao, Olga Gkountouna, and Dieter Pfoser. 2019. Spatial Auto-regressive Dependency Interpretable Learning Based on Spatial Topological Constraints. ACM Trans. Spatial Algorithms Syst. 5, 3, Article 19 (August 2019), 28 pages. DOI:[Web Link]
Citation Request: To use these datasets, please cite the papers:
Liang Zhao, Olga Gkountouna, and Dieter Pfoser. 2019. Spatial Auto-regressive Dependency Interpretable Learning Based on Spatial Topological Constraints. ACM Trans. Spatial Algorithms Syst. 5, 3, Article 19 (August 2019), 28 pages. DOI:[Web Link]
In March 2024, search platform Google.com generated approximately 85.5 billion visits, down from 87 billion platform visits in October 2023. Google is a global search platform and one of the biggest online companies worldwide.
The dataset contains statistical data about the open data website. number of users, sessions and pageviews per month total number of datasets, requests and applications
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Unique visitors, total sessions, and bounce rate for lacity.org, the main website for the City of Los Angeles.
https://electroiq.com/privacy-policyhttps://electroiq.com/privacy-policy
Tor Statistics: Tor is a free network that helps people stay anonymous online. It works using open-source software and depends on more than 7,000 volunteer-run relays across the world. Tor, known as “The Onion Router,†is a free tool that helps protect your identity and activity online.
It helps in hiding location and internet use by passing your data through many different servers, called relays, run by volunteers around the globe. Tor is built on open-source software and is widely used by journalists, activists, and everyday users who value their privacy. It was developed by the Tor Project and initially released on September 20, 2002.
This article includes several statistical analyses from different sources covering the overall market trend, features, types, user bases, demographics, countries, traffic shares, and many other factors.
Daily utilization metrics for data.lacity.org and geohub.lacity.org. Updated monthly