The Census of Agriculture provides a detailed picture every five years of U.S. farms and ranches and the people who operate them. Conducted by USDA’s National Agricultural Statistics Service, the 2012 Census of Agriculture collected more than six million data items directly from farmers. The Ag Census Web Maps application makes this information available at the county level through a few clicks. The maps and accompanying data help users visualize, download, and analyze Census of Agriculture data in a geospatial context.
The Census of Agriculture, produced by the USDA National Agricultural Statistics Service (USDA), provides a complete count of America's farms, ranches and the people who grow our food. The census is conducted every five years, most recently in 2017, and provides an in-depth look at the agricultural industry.This layer summarizes wheat production from the 2017 Census of Agriculture at the county level.This layer was produced from data downloaded using the USDA's QuickStats Application. The data was transformed using the Pivot Table tool in ArcGIS Pro and joined to the county boundary file provided by the USDA. The layer was published as feature layer in ArcGIS Online. Dataset SummaryPhenomenon Mapped: 2017 Wheat ProductionCoordinate System: Web Mercator Auxiliary SphereExtent: 48 Contiguous United StatesVisible Scale: All ScalesSource: USDA National Agricultural Statistics Service QuickStats ApplicationPublication Date: 2017AttributesThis layer provides values for the following attributes. Note that some values are not disclosed (coded as -1 in the layer) to protect the privacy of producers in areas with limited production.Area Harvested in AcresOperations with Area HarvestedOperations with SalesProduction in BushelsSales in US DollarsIrrigated Area Harvested in AcresOperations with Irrigated Area HarvestedAdditionally attributes of State Name, State Code, County Name and County Code are included to facilitate cartography and use with other layers.Many other ready-to-use layers derived from the Census of Agriculture can be found in the Living Atlas Agriculture of the USA group.What can you do with this layer?This layer can be used throughout the ArcGIS system. Feature layers can be used just like any other vector layer. You can use feature layers as an input to geoprocessing tools in ArcGIS Pro or in Analysis in ArcGIS Online. Combine the layer with others in a map and set custom symbology or create a pop-up tailored for your users.For the details of working with feature layers the help documentation for ArcGIS Pro or the help documentation for ArcGIS Online are great places to start. The ArcGIS Blog is a great source of ideas for things you can do with feature layers.This layer is part of ArcGIS Living Atlas of the World that provides an easy way to find and explore many other beautiful and authoritative layers, maps, and applications on hundreds of topics.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The Cropland Data Layer (CDL), hosted on CropScape, provides a raster, geo-referenced, crop-specific land cover map for the continental United States. The CDL also includes a crop mask layer and planting frequency layers, as well as boundary, water and road layers. The Boundary Layer options provided are County, Agricultural Statistics Districts (ASD), State, and Region. The data is created annually using moderate resolution satellite imagery and extensive agricultural ground truth. Users can select a geographic area of interest or import one, then access acreage statistics for a specific year or view the change from one year to another. The data can be exported or added to the CDL. The information is useful for issues related to agricultural sustainability, biodiversity, and land cover monitoring, especially due to extreme weather events. Resources in this dataset:Resource Title: CropScape and Cropland Data Layer - National Download. File Name: Web Page, url: https://www.nass.usda.gov/Research_and_Science/Cropland/Release/index.php Downloads available as zipped files at https://www.nass.usda.gov/Research_and_Science/Cropland/Release/index.php --
National CDL's -- by year, 2008-2020. Cropland Data Layer provides a raster, geo-referenced, crop-specific land cover map for the continental United States. The CDL also includes a crop mask layer and planting frequency layers, as well as boundary, water and road layers. The Boundary Layer options provided are County, Agricultural Statistics Districts (ASD), State, and Region. National Cultivated Layer -- based on the most recent five years (2013-2020). National Frequency Layer -- the 2017 Crop Frequency Layer identifies crop specific planting frequency and are based on land cover information derived from the 2008 through 2020CDL's. There are currently four individual crop frequency data layers that represent four major crops: corn, cotton, soybeans, and wheat. National Confidence Layer -- the Confidence Layer spatially represents the predicted confidence that is associated with that output pixel, based upon the rule(s) that were used to classify it. Western/Eastern/Central U.S.
Visit https://nassgeodata.gmu.edu/CropScape/ for the interactive map including tutorials and basic instructions. These options include a "Demo Video", "Help", "Developer Guide", and "FAQ".
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The Quick Stats Database is the most comprehensive tool for accessing agricultural data published by the USDA National Agricultural Statistics Service (NASS). It allows you to customize your query by commodity, location, or time period. You can then visualize the data on a map, manipulate and export the results as an output file compatible for updating databases and spreadsheets, or save a link for future use. Quick Stats contains official published aggregate estimates related to U.S. agricultural production. County level data are also available via Quick Stats. The data include the total crops and cropping practices for each county, and breakouts for irrigated and non-irrigated practices for many crops, for selected States. The database allows custom extracts based on commodity, year, and selected counties within a State, or all counties in one or more States. The county data includes totals for the Agricultural Statistics Districts (county groupings) and the State. The download data files contain planted and harvested area, yield per acre and production. NASS develops these estimates from data collected through:
hundreds of sample surveys conducted each year covering virtually every aspect of U.S. agriculture
the Census of Agriculture conducted every five years providing state- and county-level aggregates Resources in this dataset:Resource Title: Quick Stats database. File Name: Web Page, url: https://quickstats.nass.usda.gov/ Dynamic drill-down filtered search by Commodity, Location, and Date range, beginning with Census or Survey data. Filter lists are refreshed based upon user choice allowing the user to fine-tune the search.
Introduction and Rationale: Due to our increasing understanding of the role the surrounding landscape plays in ecological processes, a detailed characterization of land cover, including both agricultural and natural habitats, is ever more important for both researchers and conservation practitioners. Unfortunately, in the United States, different types of land cover data are split across thematic datasets that emphasize agricultural or natural vegetation, but not both. To address this data gap and reduce duplicative efforts in geospatial processing, we merged two major datasets, the LANDFIRE National Vegetation Classification (NVC) and USDA-NASS Cropland Data Layer (CDL), to produce an integrated land cover map. Our workflow leveraged strengths of the NVC and the CDL to produce detailed rasters comprising both agricultural and natural land-cover classes. We generated these maps for each year from 2012-2021 for the conterminous United States, quantified agreement between input layers and accuracy of our merged product, and published the complete workflow necessary to update these data. In our validation analyses, we found that approximately 5.5% of NVC agricultural pixels conflicted with the CDL, but we resolved a majority of these conflicts based on surrounding agricultural land, leaving only 0.6% of agricultural pixels unresolved in our merged product. Contents: Spatial data Attribute table for merged rasters Technical validation data Number and proportion of mismatched pixels Number and proportion of unresolved pixels Producer's and User's accuracy values and coverage of reference data Resources in this dataset:Resource Title: Attribute table for merged rasters. File Name: CombinedRasterAttributeTable_CDLNVC.csvResource Description: Raster attribute table for merged raster product. Class names and recommended color map were taken from USDA-NASS Cropland Data Layer and LANDFIRE National Vegetation Classification. Class values are also identical to source data, except classes from the CDL are now negative values to avoid overlapping NVC values. Resource Title: Number and proportion of mismatched pixels. File Name: pixel_mismatch_byyear_bycounty.csvResource Description: Number and proportion of pixels that were mismatched between the Cropland Data Layer and National Vegetation Classification, per year from 2012-2021, per county in the conterminous United States.Resource Title: Number and proportion of unresolved pixels. File Name: unresolved_conflict_byyear_bycounty.csvResource Description: Number and proportion of unresolved pixels in the final merged rasters, per year from 2012-2021, per county in the conterminous United States. Unresolved pixels are a result of mismatched pixels that we could not resolve based on surrounding agricultural land (no agriculture with 90m radius).Resource Title: Producer's and User's accuracy values and coverage of reference data. File Name: accuracy_datacoverage_byyear_bycounty.csvResource Description: Producer's and User's accuracy values and coverage of reference data, per year from 2012-2021, per county in the conterminous United States. We defined coverage of reference data as the proportional area of land cover classes that were included in the reference data published by USDA-NASS and LANDFIRE for the Cropland Data Layer and National Vegetation Classification, respectively. CDL and NVC classes with reference data also had published accuracy statistics. Resource Title: Data Dictionary. File Name: Data_Dictionary_RasterMerge.csv
This data set consists of general soil association units. It was develped by the National Cooperative Soil Survey and supersedes the State Soil Geographic (STATSGO) data set published in 1994. It consists of a broad based inventory of soils and nonsoil areas that occur in a repeatable pattern on the landscape and that can be cartographically shown at the scale mapped. The data set was created by generalizing more detailed soil survey maps. Where more detailed soil survey maps were not available, data on geology, topography, vegetation, and climate were assembled, together with Land Remote Sensing Satellite (LANDSAT) images. Soils of like areas were studied, and the probable classification and extent of the soils were determined. Map unit composition was determined by transecting or sampling areas on the more detailed maps and expanding the data statistically to characterize the whole map unit. This data set consists of georeferenced vector digital data and tabular digital data. The map data were collected in 1-by 2-degree topographic quadrangle units and merged into a seamless national data set. It is distributed in state/territory and national extents. The soil map units are linked to attributes in the National Soil Information System data base which gives the proportionate extent of the component soils and their properties.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Dataset Abstract:
Field-level monitoring of crop types in the United States via the Cropland Data Layer (CDL) has played an important role in improving production forecasts and enabling large-scale study of agricultural inputs and outcomes. Although CDL offers crop type maps across the conterminous US from 2008 onward, such maps are missing in many Midwestern states or are uneven in quality before 2008. To fill these data gaps, we used the now-public Landsat archive and cloud computing services to map corn and soybean at 30m resolution across the US Midwest from 1999-2018. Our training data were CDL from 2008-2018, and we validated the predictions on CDL 1999-2007 where available, county-level crop acreage statistics, and state-level crop rotation statistics. The corn-soybean maps, which we call the Corn-Soy Data Layer (CSDL), are publicly hosted on Google Earth Engine and also available for download on Zenodo.
Summary of Methods:
Using Google Earth Engine, we trained a random forest classifier to classify each pixel of the study area into corn, soybean, and an aggregated "other crops" class. CDL 2008-2018 data were used as labels. The features input to the model were harmonic regression coefficients fit to the NIR, SWIR1, SWIR2, and GCVI bands/indices of time series from Landsat 5, 7, and 8 Surface Reflectance observations. Cloudy pixels were masked out using the pixel_qa band provided with Landsat Surface Reflectance products.
Map Legend:
Values were chosen to be consistent with CDL values when possible.
Usage Notes:
We recommend that users consider metrics such as (1) user's and producer's accuracy with CDL and (2) R2 with NASS statistics across space and time to determine in which states/counties and years CSDL is of high quality. This can be done with the CSV file of user's and producer's accuracies included in this Zenodo, and annual county-level statistics and example code we have included in our repo at https://github.com/LobellLab/csdl.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
A collection of over 75 charts and maps presenting key statistics on the farm sector, food spending and prices, food security, rural communities, the interaction of agriculture and natural resources, and more.
How much do you know about food and agriculture? What about rural America or conservation? ERS has assembled more than 75 charts and maps covering key information about the farm and food sectors, including agricultural markets and trade, farm income, food prices and consumption, food security, rural economies, and the interaction of agriculture and natural resources.
How much, for example, do agriculture and related industries contribute to U.S. gross domestic product? Which commodities are the leading agricultural exports? How much of the food dollar goes to farmers? How do job earnings in rural areas compare with metro areas? How much of the Nation’s water is used by agriculture? These are among the statistics covered in this collection of charts and maps—with accompanying text—divided into the nine section titles.This record was taken from the USDA Enterprise Data Inventory that feeds into the https://data.gov catalog. Data for this record includes the following resources: Ag and Food Sectors and the Economy Land and Natural Resources Farming and Farm Income Rural Economy Agricultural Production and Prices Agricultural Trade Food Availability and Consumption Food Prices and Spending Food Security and Nutrition Assistance For complete information, please visit https://data.gov.
This coverage contains estimates of land in agricultural production in counties in the conterminous United States as reported in the 1987 Census of Agriculture (U.S. Department of Commerce, 1989a). Land in agriculture data are reported as either a number (for example, number of Farms), acres, or as a percentage of county area. Land in agriculture estimates were generated from surveys of all farms where $1,000 or more of agricultural products were sold, or normally would have been sold, during the census year. Most of the attributes summarized represent 1987 data, but some information for the 1982 Census of Agriculture also was included. The polygons representing county boundaries in the conterminous United States, as well as lakes, estuaries, and other nonland-area features were derived from the Digital Line Graph (DLG) files representing the 1:2,000,000-scale map in the National Atlas of the United States (1970). Agricultural land Census of Agriculture Counties United States
The Census of Agriculture, produced by the USDA National Agricultural Statistics Service (USDA), provides a complete count of America's farms, ranches and the people who grow our food. The census is conducted every five years, most recently in 2017, and provides an in-depth look at the agricultural industry.This layer summarizes hay production from the 2017 Census of Agriculture at the county level.This layer was produced from data downloaded using the USDA's QuickStats Application. The data was transformed using the Pivot Table tool in ArcGIS Pro and joined to the county boundary file provided by the USDA. The layer was published as feature layer in ArcGIS Online. Dataset SummaryPhenomenon Mapped: 2017 Hay ProductionCoordinate System: Web Mercator Auxiliary SphereExtent: 48 Contiguous United States, Alaska, and HawaiiVisible Scale: All ScalesSource: USDA National Agricultural Statistics Service QuickStats ApplicationPublication Date: 2017AttributesThis layer provides values for the following attributes. Note that some values are not disclosed (coded as -1 in the layer) to protect the privacy of producers in areas with limited production.Area Harvested in AcresOperations with Area HarvestedProduction in TonsAdditionally attributes of State Name, State Code, County Name and County Code are included to facilitate cartography and use with other layers.Many other ready-to-use layers derived from the Census of Agriculture can be found in the Living Atlas Agriculture of the USA group.What can you do with this layer?This layer can be used throughout the ArcGIS system. Feature layers can be used just like any other vector layer. You can use feature layers as an input to geoprocessing tools in ArcGIS Pro or in Analysis in ArcGIS Online. Combine the layer with others in a map and set custom symbology or create a pop-up tailored for your users.For the details of working with feature layers the help documentation for ArcGIS Pro or the help documentation for ArcGIS Online are great places to start. The ArcGIS Blog is a great source of ideas for things you can do with feature layers.This layer is part of ArcGIS Living Atlas of the World that provides an easy way to find and explore many other beautiful and authoritative layers, maps, and applications on hundreds of topics.
The data are designed for strategic analyses at a national or regional scale which require spatially explicit information regarding the extent, distribution, and prevalence of the ownership types represented. The data are not recommended for tactical analyses on a sub-regional scale, or for informing local management decisions. Furthermore, map accuracies vary considerably and thus the utility of these data can vary geographically under different ownership patterns.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
ArcGIS Map Packages and GIS Data for Gillreath-Brown, Nagaoka, and Wolverton (2019)
**When using the GIS data included in these map packages, please cite all of the following:
Gillreath-Brown, Andrew, Lisa Nagaoka, and Steve Wolverton. A Geospatial Method for Estimating Soil Moisture Variability in Prehistoric Agricultural Landscapes, 2019. PLoSONE 14(8):e0220457. http://doi.org/10.1371/journal.pone.0220457
Gillreath-Brown, Andrew, Lisa Nagaoka, and Steve Wolverton. ArcGIS Map Packages for: A Geospatial Method for Estimating Soil Moisture Variability in Prehistoric Agricultural Landscapes, Gillreath-Brown et al., 2019. Version 1. Zenodo. https://doi.org/10.5281/zenodo.2572018
OVERVIEW OF CONTENTS
This repository contains map packages for Gillreath-Brown, Nagaoka, and Wolverton (2019), as well as the raw digital elevation model (DEM) and soils data, of which the analyses was based on. The map packages contain all GIS data associated with the analyses described and presented in the publication. The map packages were created in ArcGIS 10.2.2; however, the packages will work in recent versions of ArcGIS. (Note: I was able to open the packages in ArcGIS 10.6.1, when tested on February 17, 2019). The primary files contained in this repository are:
For additional information on contents of the map packages, please see see "Map Packages Descriptions" or open a map package in ArcGIS and go to "properties" or "map document properties."
LICENSES
Code: MIT year: 2019
Copyright holders: Andrew Gillreath-Brown, Lisa Nagaoka, and Steve Wolverton
CONTACT
Andrew Gillreath-Brown, PhD Candidate, RPA
Department of Anthropology, Washington State University
andrew.brown1234@gmail.com – Email
andrewgillreathbrown.wordpress.com – Web
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Crop year 2014 US map at the county level shows designations across the country under USDA's amended rule. The faster, more efficient process will immediately expand assistance to more than 1,000 counties in 26 states.This record was taken from the USDA Enterprise Data Inventory that feeds into the https://data.gov catalog. Data for this record includes the following resources: Crop Year 2014 Disaster Map For complete information, please visit https://data.gov.
The 2012 USDA Plant Hardiness Zone Map is the standard by which gardeners and growers can determine which plants are most likely to thrive at a location. The map is based on the average annual minimum winter temperature, divided into 10-degree F zones. For the first time, the map is available as an interactive GIS-based map, for which a broadband Internet connection is recommended, and as static images for those with slower Internet access. Users may also simply type in a ZIP Code and find the hardiness zone for that area. No posters of the USDA Plant Hardiness Zone Map have been printed. But state, regional, and national images of the map can be downloaded and printed in a variety of sizes and resolutions. Resources in this dataset:Resource Title: USDA Plant Hardiness Zone Map. File Name: Web Page, url: https://planthardiness.ars.usda.gov/pages/view-maps Includes interactive, static, and georeferenced maps, map and data downloads, and information about plant hardiness zones in the United States.
Link to the ScienceBase Item Summary page for the item described by this metadata record. Service Protocol: Link to the ScienceBase Item Summary page for the item described by this metadata record. Application Profile: Web Browser. Link Function: information
The Cropland Data Layer (CDL) is a crop-specific land cover data layer created annually for the continental United States using moderate resolution satellite imagery and extensive agricultural ground truth. The CDL is created by the USDA, National Agricultural Statistics Service (NASS), Research and Development Division, Geospatial Information Branch, Spatial Analysis Research Section. For detailed FAQ please visit CropScape and Cropland Data Layers - FAQs. To explore details about the classification accuracies and utility of the data, see state-level omission and commission errors by crop type and year. The asset date is aligned with the calendar year of harvest. For most crops the planted and harvest year are the same. Some exceptions: winter wheat is unique, as it is planted in the prior year. A hay crop like alfalfa could have been planted years prior. For winter wheat the data also have a class called "Double Crop Winter Wheat/Soybeans". Some mid-latitude areas of the US have conditions such that a second crop (usually soybeans) can be planted immediately after the harvest of winter wheat and itself still be harvested within the same year. So for mapping winter wheat areas use both classes (use both values 24 and 26). While the CDL date is aligned with year of harvest, the map itself is more representative of what was planted. In other words, a small percentage of fields on a given year will not be harvested. Some non-agricultural categories are duplicate due to two very different epochs in methodology. The non-ag codes 63-65 and 81-88 are holdovers from the older methodology and will only appear in CDLs from 2007 and earlier. The non-ag codes from 111-195 are from the current methodology which uses the USGS NLCD as non-ag training and will only appear in CDLs 2007 and newer. 2007 was a transition year so there may be both sets of categories in the 2007 national product but will not appear within the same state. Note: The 2024 CDL only has the data band. The cultivated and confidence bands are yet to be released by the provider.
The National Forest Climate Change Maps project was developed by the Rocky Mountain Research Station (RMRS) and the Office of Sustainability and Climate to meet the needs of national forest managers for information on projected climate changes at a scale relevant to decision making processes, including forest plans. The maps use state-of-the-art science and are available for every national forest in the contiguous United States with relevant data coverage. Currently, the map sets include variables related to precipitation, air temperature, snow (including snow residence time and April 1 snow water equivalent), and stream flow.\Historical (1975-2005) and future (2071-2090) precipitation and temperature data for the contiguous United States are ensemble mean values across 20 global climate models from the CMIP5 experiment (https://journals.ametsoc.org/doi/abs/10.1175/BAMS-D-11-00094.1), downscaled to a 4 km grid. For more information on the downscaling method and to access the data, please see Abatzoglou and Brown, 2012 (https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/joc.2312) and the Northwest Knowledge Network (https://climate.northwestknowledge.net/MACA/). We used the MACAv2- Metdata monthly dataset; monthly precipitation values (mm) were summed over the season of interest (annual, winter, or summer). Absolute and percent change were then calculated between the historical and future time periods.Historical (1975-2005) and future (2071-2090) precipitation and temperature data for the state of Alaska were developed by the Scenarios Network for Alaska and Arctic Planning (SNAP) (https://snap.uaf.edu). These datasets have several important differences from the MACAv2-Metdata (https://climate.northwestknowledge.net/MACA/) products, used in the contiguous U.S. They were developed using different global circulation models and different downscaling methods, and were downscaled to a different scale (771 m instead of 4 km). While these cover the same time periods and use broadly similar approaches, caution should be used when directly comparing values between Alaska and the contiguous United States.Raster data are also available for download from RMRS site (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/categories/us-raster-layers.html), along with pdf maps and detailed metadata (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/downloads/NationalForestClimateChangeMapsMetadata.pdf).
Farmland information was obtained from the Farmland Mapping & Monitoring Program (FMMP) in the Division of Land Resource Protection in the California Department of Conservation. Established in 1982, the FMMP is to provide consistent and impartial data and analysis of agricultural land use and land use changes throughout the State of California. The study area is in accordance to the soil survey developed by NRCS (National Resources Conservation Service) in the United States Department of Agriculture. Important Farmland Map is biennially updated based on a computer mapping system, aerial imagery, public review, and field interpretation. NOTES: This data was reviewed by local jurisdictions and reflects each jurisdiction's input received during the SCAG's 2020 RTP/SCS Local Input and Envisioning Process.The updated Farmland categories are contained in 'polygon_ty' field. For more information, refer to the website at http://www.conservation.ca.gov/dlrp/fmmp/Pages/Index.aspx.PRIME FARMLAND (P)Farmland with the best combination of physical and chemical features able to sustain long term agricultural production. This land has the soil quality, growing season, and moisture supply needed to produce sustained high yields. Land must have been used for irrigated agricultural production at some time during the four years prior to the mapping date.FARMLAND OF STATEWIDE IMPORTANCE (S)Farmland similar to Prime Farmland but with minor shortcomings, such as greater slopes or less ability to store soil moisture. Land must have been used for irrigated agricultural production at some time during the four years prior to the mapping date.UNIQUE FARMLAND (U)Farmland of lesser quality soils used for the production of the state's leading agricultural crops. This land is usually irrigated, but may include non-irrigated orchards or vineyards as found in some climatic zones in California. Land must have been cropped at some time during the four years prior to the mapping date.FARMLAND OF LOCAL IMPORTANCE (L) Land of importance to the local agricultural economy as determined by each county's board of supervisors and a local advisory committee. GRAZING LAND (G)Land on which the existing vegetation is suited to the grazing of livestock. This category was developed in cooperation with the California Cattlemen's Association, University of California Cooperative Extension, and other groups interested in the extent of grazing activities. The minimum mapping unit for Grazing Land is 40 acres.URBAN AND BUILT-UP LAND (D)Land occupied by structures with a building density of at least 1 unit to 1.5 acres, or approximately 6 structures to a 10-acre parcel. This land is used for residential, industrial, commercial, institutional, public administrative purposes, railroad and other transportation yards, cemeteries, airports, golf courses, sanitary landfills, sewage treatment, water control structures, and other developed purposes.OTHER LAND (X)Land not included in any other mapping category. Common examples include low density rural developments; brush, timber, wetland, and riparian areas not suitable for livestock grazing; confined livestock, poultry or aquaculture facilities; strip mines, borrow pits; and water bodies smaller than 40 acres. Vacant and nonagricultural land surrounded on all sides by urban development and greater than 40 acres is mapped as Other Land.The Rural Land Mapping Project provides more detail on the distribution of various land uses within the Other Land category. The Rural Land categories include:Rural Residential Land (R), Semi-Agricultural and Rural Commercial Land (sAC), Vacant or Disturbed Land (V), Confined Animal Agriculture (Cl), and Nonagricultural or Natural Vegetation (nv).WATER (W)Perennial water bodies with an extent of at least 40 acres.NOT SURVEYED (Z)Large government land holdings, including National Parks, Forests, and Bureau of Land Management holdings are not included in FMMP’s survey area.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The Geospatial Data Gateway (GDG) provides access to a map library of over 100 high resolution vector and raster layers in the Geospatial Data Warehouse. It is the one stop source for environmental and natural resource data, available anytime, from anywhere. It allows a user to choose an area of interest, browse and select data, customize the format, then download or have it shipped on media. The map layers include data on: Public Land Survey System (PLSS), Census data, demographic statistics, precipitation, temperature, disaster events, conservation easements, elevation, geographic names, geology, government units, hydrography, hydrologic units, land use and land cover, map indexes, ortho imagery, soils, topographic images, and streets and roads. This service is made available through a close partnership between the three Service Center Agencies (SCA): Natural Resources Conservation Service (NRCS), Farm Service Agency (FSA), and Rural Development (RD). Resources in this dataset:Resource Title: Geospatial Data Gateway. File Name: Web Page, url: https://gdg.sc.egov.usda.gov This is the main page for the GDG that includes several links to view, download, or order various datasets. Find additional status maps that indicate the location of data available for each map layer in the Geospatial Data Gateway at https://gdg.sc.egov.usda.gov/GDGHome_StatusMaps.aspx
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
NASS USDA estimates the irrigated croplands at county level every five years. But this estimation does not provide the geospatial information of the irrigated croplands. To provide a comprehensive, consistent, and timely geospatially detailed information about irrigated cropland conterminous U.S. (CONUS), the “Moderate Resolution Imaging Spectroradiometer (MODIS) Irrigated Agriculture Dataset for the United States (MIrAD-US)” product was produced by the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center with funding from several USGS programs (National Land Imaging and National Water-Quality Assessment). A primary objective was to identify, and map irrigated agricultural areas to factor into water quality studies and drought monitoring investigations. This product uses three primary data inputs, (a) USDA county-level irrigation area statistics for 2002, (b) annual peak eMODIS Normalized Difference Vegetation Index (NDVI), and (c) a land cover mask ...
The Census of Agriculture provides a detailed picture every five years of U.S. farms and ranches and the people who operate them. Conducted by USDA’s National Agricultural Statistics Service, the 2012 Census of Agriculture collected more than six million data items directly from farmers. The Ag Census Web Maps application makes this information available at the county level through a few clicks. The maps and accompanying data help users visualize, download, and analyze Census of Agriculture data in a geospatial context.