63 datasets found
  1. Monthly average temperature in the United States 2020-2024

    • statista.com
    Updated Dec 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Monthly average temperature in the United States 2020-2024 [Dataset]. https://www.statista.com/statistics/513628/monthly-average-temperature-in-the-us-fahrenheit/
    Explore at:
    Dataset updated
    Dec 15, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 2020 - Dec 2024
    Area covered
    United States
    Description

    The average temperature in December 2024 was 38.25 degrees Fahrenheit in the United States, the fourth-largest country in the world. The country has extremely diverse climates across its expansive landmass. Temperatures in the United States On the continental U.S., the southern regions face warm to extremely hot temperatures all year round, the Pacific Northwest tends to deal with rainy weather, the Mid-Atlantic sees all four seasons, and New England experiences the coldest winters in the country. The North American country has experienced an increase in the daily minimum temperatures since 1970. Consequently, the average annual temperature in the United States has seen a spike in recent years. Climate Change The entire world has seen changes in its average temperature as a result of climate change. Climate change occurs due to increased levels of greenhouse gases which act to trap heat in the atmosphere, preventing it from leaving the Earth. Greenhouse gases are emitted from various sectors but most prominently from burning fossil fuels. Climate change has significantly affected the average temperature across countries worldwide. In the United States, an increasing number of people have stated that they have personally experienced the effects of climate change. Not only are there environmental consequences due to climate change, but also economic ones. In 2022, for instance, extreme temperatures in the United States caused over 5.5 million U.S. dollars in economic damage. These economic ramifications occur for several reasons, which include higher temperatures, changes in regional precipitation, and rising sea levels.

  2. Monthly average temperature in the United States 2020-2025

    • statista.com
    Updated Jan 15, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2020). Monthly average temperature in the United States 2020-2025 [Dataset]. https://www.statista.com/statistics/513644/monthly-average-temperature-in-the-us-celsius/
    Explore at:
    Dataset updated
    Jan 15, 2020
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 2020 - Aug 2025
    Area covered
    United States
    Description

    The monthly average temperature in the United States between 2020 and 2025 shows distinct seasonal variation, following similar patterns. For instance, in August 2025, the average temperature across the North American country stood at 22.98 degrees Celsius. Rising temperatures Globally, 2016, 2019, 2021 and 2024 were some of the warmest years ever recorded since 1880. Overall, there has been a dramatic increase in the annual temperature since 1895. Within the U.S. annual temperatures show a great deal of variation depending on region. For instance, Florida tends to record the highest maximum temperatures across the North American country, while Wyoming recorded the lowest minimum average temperature in recent years. Carbon dioxide emissions Carbon dioxide is a known driver of climate change, which impacts average temperatures. Global historical carbon dioxide emissions from fossil fuels have been on the rise since the industrial revolution. In recent years, carbon dioxide emissions from fossil fuel combustion and industrial processes reached over 37 billion metric tons. Among all countries globally, China was the largest emitter of carbon dioxide in 2023.

  3. Average annual temperature in the United States 1895-2024

    • statista.com
    Updated Aug 26, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2020). Average annual temperature in the United States 1895-2024 [Dataset]. https://www.statista.com/statistics/500472/annual-average-temperature-in-the-us/
    Explore at:
    Dataset updated
    Aug 26, 2020
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    The average temperature in the contiguous United States reached 55.5 degrees Fahrenheit (13 degrees Celsius) in 2024, approximately 3.5 degrees Fahrenheit higher than the 20th-century average. These levels represented a record since measurements started in ****. Monthly average temperatures in the U.S. were also indicative of this trend. Temperatures and emissions are on the rise The rise in temperatures since 1975 is similar to the increase in carbon dioxide emissions in the U.S. Although CO₂ emissions in recent years were lower than when they peaked in 2007, they were still generally higher than levels recorded before 1990. Carbon dioxide is a greenhouse gas and is the main driver of climate change. Extreme weather Scientists worldwide have found links between the rise in temperatures and changing weather patterns. Extreme weather in the U.S. has resulted in natural disasters such as hurricanes and extreme heat waves becoming more likely. Economic damage caused by extreme temperatures in the U.S. has amounted to hundreds of billions of U.S. dollars over the past few decades.

  4. Historical and future precipitation trends (Map Service)

    • catalog.data.gov
    • datasets.ai
    • +6more
    Updated Apr 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2025). Historical and future precipitation trends (Map Service) [Dataset]. https://catalog.data.gov/dataset/historical-and-future-precipitation-trends-map-service-f7d6d
    Explore at:
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    U.S. Department of Agriculture Forest Servicehttp://fs.fed.us/
    Description

    The National Forest Climate Change Maps project was developed by the Rocky Mountain Research Station (RMRS) and the Office of Sustainability and Climate to meet the needs of national forest managers for information on projected climate changes at a scale relevant to decision making processes, including forest plans. The maps use state-of-the-art science and are available for every national forest in the contiguous United States with relevant data coverage. Currently, the map sets include variables related to precipitation, air temperature, snow (including snow residence time and April 1 snow water equivalent), and stream flow.\Historical (1975-2005) and future (2071-2090) precipitation and temperature data for the contiguous United States are ensemble mean values across 20 global climate models from the CMIP5 experiment (https://journals.ametsoc.org/doi/abs/10.1175/BAMS-D-11-00094.1), downscaled to a 4 km grid. For more information on the downscaling method and to access the data, please see Abatzoglou and Brown, 2012 (https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/joc.2312) and the Northwest Knowledge Network (https://climate.northwestknowledge.net/MACA/). We used the MACAv2- Metdata monthly dataset; monthly precipitation values (mm) were summed over the season of interest (annual, winter, or summer). Absolute and percent change were then calculated between the historical and future time periods.Historical (1975-2005) and future (2071-2090) precipitation and temperature data for the state of Alaska were developed by the Scenarios Network for Alaska and Arctic Planning (SNAP) (https://snap.uaf.edu). These datasets have several important differences from the MACAv2-Metdata (https://climate.northwestknowledge.net/MACA/) products, used in the contiguous U.S. They were developed using different global circulation models and different downscaling methods, and were downscaled to a different scale (771 m instead of 4 km). While these cover the same time periods and use broadly similar approaches, caution should be used when directly comparing values between Alaska and the contiguous United States.Raster data are also available for download from RMRS site (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/categories/us-raster-layers.html), along with pdf maps and detailed metadata (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/downloads/NationalForestClimateChangeMapsMetadata.pdf).

  5. Historical and future temperature trends (Map Service)

    • data-usfs.hub.arcgis.com
    • figshare.com
    • +3more
    Updated Feb 21, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2019). Historical and future temperature trends (Map Service) [Dataset]. https://data-usfs.hub.arcgis.com/documents/d9e653180595478c86d7a01d83a07451
    Explore at:
    Dataset updated
    Feb 21, 2019
    Dataset provided by
    U.S. Department of Agriculture Forest Servicehttp://fs.fed.us/
    Authors
    U.S. Forest Service
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Description

    The National Forest Climate Change Maps project was developed by the Rocky Mountain Research Station (RMRS) and the Office of Sustainability and Climate to meet the needs of national forest managers for information on projected climate changes at a scale relevant to decision making processes, including forest plans. The maps use state-of-the-art science and are available for every national forest in the contiguous United States with relevant data coverage. Currently, the map sets include variables related to precipitation, air temperature, snow (including snow residence time and April 1 snow water equivalent), and stream flow.

    Historical (1975-2005) and future (2071-2090) precipitation and temperature data for the contiguous United States are ensemble mean values across 20 global climate models from the CMIP5 experiment (https://journals.ametsoc.org/doi/abs/10.1175/BAMS-D-11-00094.1), downscaled to a 4 km grid. For more information on the downscaling method and to access the data, please see Abatzoglou and Brown, 2012 (https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/joc.2312) and the Northwest Knowledge Network (https://climate.northwestknowledge.net/MACA/). We used the MACAv2- Metdata monthly dataset; average temperature values were calculated as the mean of monthly minimum and maximum air temperature values (degrees C), averaged over the season of interest (annual, winter, or summer). Absolute and percent change were then calculated between the historical and future time periods.

    Historical (1975-2005) and future (2071-2090) precipitation and temperature data for the state of Alaska were developed by the Scenarios Network for Alaska and Arctic Planning (SNAP) (https://snap.uaf.edu). These datasets have several important differences from the MACAv2-Metdata (https://climate.northwestknowledge.net/MACA/) products, used in the contiguous U.S. They were developed using different global circulation models and different downscaling methods, and were downscaled to a different scale (771 m instead of 4 km). While these cover the same time periods and use broadly similar approaches, caution should be used when directly comparing values between Alaska and the contiguous United States.

    Raster data are also available for download from RMRS site (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/categories/us-raster-layers.html), along with pdf maps and detailed metadata (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/downloads/NationalForestClimateChangeMapsMetadata.pdf).

  6. Historical annual temperature (CONUS) (Image Service)

    • opendata.rcmrd.org
    • gimi9.com
    • +5more
    Updated Nov 22, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2017). Historical annual temperature (CONUS) (Image Service) [Dataset]. https://opendata.rcmrd.org/datasets/11446da3eaa04ecc9b086ffcaa1c9818
    Explore at:
    Dataset updated
    Nov 22, 2017
    Dataset provided by
    U.S. Department of Agriculture Forest Servicehttp://fs.fed.us/
    Authors
    U.S. Forest Service
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Description

    The National Forest Climate Change Maps project was developed by the Rocky Mountain Research Station (RMRS) and the Office of Sustainability and Climate to meet the needs of national forest managers for information on projected climate changes at a scale relevant to decision making processes, including forest plans. The maps use state-of-the-art science and are available for every national forest in the contiguous United States with relevant data coverage. Currently, the map sets include variables related to precipitation, air temperature, snow (including snow residence time and April 1 snow water equivalent), and stream flow.Historical (1975-2005) and future (2071-2090) precipitation and temperature data for the contiguous United States are ensemble mean values across 20 global climate models from the CMIP5 experiment (https://journals.ametsoc.org/doi/abs/10.1175/BAMS-D-11-00094.1), downscaled to a 4 km grid. For more information on the downscaling method and to access the data, please see Abatzoglou and Brown, 2012 (https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/joc.2312) and the Northwest Knowledge Network (https://climate.northwestknowledge.net/MACA/). We used the MACAv2- Metdata monthly dataset; average temperature values were calculated as the mean of monthly minimum and maximum air temperature values (degrees C), averaged over the season of interest (annual, winter, or summer). Absolute change was then calculated between the historical and future time periods.A Raster Function Template is available in this service that will classify the data as originally intended by OSC. The RFT currently works in AGOL but not in ArcGIS Pro.Currently, the below links are not accessible. Raster data are also available for download from RMRS site (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/categories/us-raster-layers.html), along with pdf maps and detailed metadata (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/downloads/NationalForestClimateChangeMapsMetadata.pdf).

  7. T

    United States Average Temperature

    • tradingeconomics.com
    • ar.tradingeconomics.com
    • +12more
    csv, excel, json, xml
    Updated Dec 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2024). United States Average Temperature [Dataset]. https://tradingeconomics.com/united-states/temperature
    Explore at:
    csv, xml, excel, jsonAvailable download formats
    Dataset updated
    Dec 15, 2024
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 1901 - Dec 31, 2024
    Area covered
    United States
    Description

    Temperature in the United States increased to 10.73 celsius in 2024 from 10.25 celsius in 2023. This dataset includes a chart with historical data for the United States Average Temperature.

  8. Climate.gov Data Snapshots: Temperature - Global Monthly, Difference from...

    • datalumos.org
    Updated Jun 18, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Oceanic and Atmospheric Administration (2025). Climate.gov Data Snapshots: Temperature - Global Monthly, Difference from Average [Dataset]. http://doi.org/10.3886/E233461V1
    Explore at:
    Dataset updated
    Jun 18, 2025
    Dataset authored and provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Global
    Description

    Q: Where was the monthly temperature warmer or cooler than usual? A: Colors show where average monthly temperature was above or below its 1991-2020 average. Blue areas experienced cooler-than-usual temperatures while areas shown in red were warmer than usual. The darker the color, the larger the difference from the long-term average temperature. Q: Where do these measurements come from? A: Weather stations on every continent record temperatures over land, and ocean surface temperatures come from measurements made by ships and buoys. NOAA scientists merge the readings from land and ocean into a single dataset. To calculate difference-from-average temperatures—also called temperature anomalies—scientists calculate the average monthly temperature across hundreds of small regions, and then subtract each region’s 1991-2020 average for the same month. If the result is a positive number, the region was warmer than the long-term average. A negative result from the subtraction means the region was cooler than usual. To generate the source images, visualizers apply a mathematical filter to the results to produce a map that has smooth color transitions and no gaps. Q: What do the colors mean? A: Shades of red show where average monthly temperature was warmer than the 1991-2020 average for the same month. Shades of blue show where the monthly average was cooler than the long-term average. The darker the color, the larger the difference from average temperature. White and very light areas were close to their long-term average temperature. Gray areas near the North and South Poles show where no data are available. Q: Why do these data matter? A: Over time, these data give us a planet-wide picture of how climate varies over months and years and changes over decades. Each month, some areas are cooler than the long-term average and some areas are warmer. Though we don’t see an increase in temperature at every location every month, the long-term trend shows a growing portion of Earth’s surface is warmer than it was during the base period. Q: How did you produce these snapshots? A: Data Snapshots are derivatives of existing data products: to meet the needs of a broad audience, we present the source data in a simplified visual style. NOAA's Environmental Visualization Laboratory (NNVL) produces the source images for the Difference from Average Temperature – Monthly maps. To produce our images, we run a set of scripts that access the source images, re-project them into desired projections at various sizes, and output them with a custom color bar. Additional information Source images available through NOAA's Environmental Visualization Lab (NNVL) are interpolated from data originally provided by the National Center for Environmental Information (NCEI) - Weather and Climate. NNVL images are based on NOAA Merged Land Ocean Global Surface Temperature Analysis data (NOAAGlobalTemp, formerly known as MLOST). References NCEI Monthly Global Analysis NOAA View Temperature Anomaly Merged Land Ocean Global Surface Temperature Analysis Global Surface Temperature Anomalies Climate at a Glance - Data Information Source: https://www.climate.gov/maps-data/data-snapshots/data-source/temperature-global-monthly-difference-a...This upload includes two additional files:* Temperature - Global Monthly, Difference from Average _NOAA Climate.gov.pdf is a screenshot of the main Climate.gov site for these snapshots (https://www.climate.gov/maps-data/data-snapshots/data-source/temperature-global-monthly-difference-a...)* Cimate_gov_ Data Snapshots.pdf is a screenshot of the data download page for the full-resolution files.

  9. Climate.gov Data Snapshots: Temperature - Maximum, 1991-2020 Monthly Average...

    • datalumos.org
    Updated Jul 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Oceanic and Atmospheric Administration (2025). Climate.gov Data Snapshots: Temperature - Maximum, 1991-2020 Monthly Average [Dataset]. http://doi.org/10.3886/E235146V1
    Explore at:
    Dataset updated
    Jul 3, 2025
    Dataset authored and provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    Q: How warm do afternoons usually get during this month? A: Based on daily observations from 1991-2020, colors on the map show the long-term average maximum temperature, sometimes referred to as the daytime or afternoon high, in 5x5 km grid cells for the month displayed. The map reveals the average of daytime high temperatures during the month over the previous three decades. Q: Where do these measurements come from? A: Daily temperature readings come from weather stations in the Global Historical Climatology Network (GHCN-D). Volunteer observers and automated instruments collected the highest temperature at each station every day from 1991 to 2020, and sent them to the National Centers for Environmental Information (NCEI). After scientists checked the quality of the data to omit any systematic errors, they calculated each station’s average monthly maximum temperature by taking the sum of all the daily maximum temperatures for a month (for example, all Junes in the 1991-2020 period) and dividing it by the total number of daily measurements (the number of days in the month times 30 years). NCEI scientists then plotted the values on a 5x5 km gridded map. To fill in the grid at locations without stations, a computer program interpolated (or estimated) values, accounting for the distribution of stations and various physical relationships, such as the way temperature changes with elevation. The resulting product is the NOAA Monthly U.S. Climate Gridded Dataset (NClimGrid). Q: What do the colors mean? A: The color in each 5x5 km grid cell shows the average of the highest temperature recorded every day of the month for the 30 years from 1991 to 2020. Shades of blue show where the highest daily temperatures measured from 1991 to 2020 averaged below 50°F for the month. The darker the shade of blue, the lower the temperature. Areas shown in shades of orange and red have long-term average maximum temperatures above 50°F. The darker the shade of orange or red, the higher the temperature. White or very light colors show areas where the average maximum temperature is near 50°F. Q: Why do these data matter? A: Understanding these values provides insight into the “normal” conditions for a month. This type of information is widely used across an array of planning activities, from designing energy distribution networks, to the timing of crop and plant emergence, to choosing the right place and time for recreational activities. Q: How did you produce these snapshots? A: Data Snapshots are derivatives of existing data products: to meet the needs of a broad audience, we present the source data in a simplified visual style. This set of snapshots is based on NClimGrid climate data produced by and available from the National Centers for Environmental Information (NCEI). To produce our images, we invoke a set of scripts that access the source data and represent them according to our selected color ramps on our base maps. Additional information The data used in these snapshots can be downloaded from different places and in different formats. We used this specific data source: NClimGrid Temperature Normals References NOAA Monthly U.S. Climate Gridded Dataset (NClimGrid) NOAA Monthly U.S. Climate Divisional Database (NClimDiv) Improved Historical Temperature and Precipitation Time Series for U.S. Climate Divisions) NCEI Monthly National Analysis) Climate at a Glance - Data Information) NCEI Climate Monitoring - All Products Source: https://www.climate.gov/maps-data/data-snapshots/data-source/temperature-maximum-1991-2020-monthly-a...This upload includes two additional files:* Temperature - Maximum, 1991-2020 Monthly Average _NOAA Climate.gov.pdf is a screenshot of the main Climate.gov site for these snapshots (https://www.climate.gov/maps-data/data-snapshots/data-source/temperature-maximum-1991-2020-monthly-a

  10. U.S. Monthly Climate Normals (1981-2010)

    • catalog.data.gov
    • datasets.ai
    • +6more
    Updated Sep 19, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA National Centers for Environmental Information (Point of Contact) (2023). U.S. Monthly Climate Normals (1981-2010) [Dataset]. https://catalog.data.gov/dataset/u-s-monthly-climate-normals-1981-20101
    Explore at:
    Dataset updated
    Sep 19, 2023
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    National Centers for Environmental Informationhttps://www.ncei.noaa.gov/
    Area covered
    United States
    Description

    The U.S. Monthly Climate Normals for 1981 to 2010 are 30-year averages of meteorological parameters for thousands of U.S. stations located across the 50 states, as well as U.S. territories, commonwealths, the Compact of Free Association nations, and one station in Canada. NOAA Climate Normals are a large suite of data products that provide users with many tools to understand typical climate conditions for thousands of locations across the United States. As many NWS stations as possible are used, including those from the NWS Cooperative Observer Program (COOP) Network as well as some additional stations that have a Weather Bureau Army-Navy (WBAN) station identification number, including stations from the Climate Reference Network (CRN). The comprehensive U.S. Climate Normals dataset includes various derived products including daily air temperature normals (including maximum and minimum temperature normal, heating and cooling degree day normal, and others), precipitation normals (including snowfall and snow depth, percentiles, frequencies and other), and hourly normals (all normal derived from hourly data including temperature, dew point, heat index, wind chill, wind, cloudiness, heating and cooling degree hours, pressure normals). In addition to the standard set of normals, users also can find "agricultural normals", which are used in many industries, including but not limited to construction, architecture, pest control, etc. These supplemental "agricultural normals" include frost-freeze date probabilities, growing degree day normals, probabilities of reaching minimum temperature thresholds, and growing season length normals. Users can access the data either by product or by station. Included in the dataset is extensive documentation to describe station metadata, filename descriptions, and methodology of producing the data. All data utilized in the computation of the 1981-2010 Climate Normals were taken from the ISD Lite (a subset of derived Integrated Surface Data), the Global Historical Climatology Network-Daily dataset, and standardized monthly temperature data (COOP). These source datasets (including intermediate datasets used in the computation of products) are also archived at the NOAA NCDC.

  11. Climate.gov Data Snapshots: SST - Global, Yearly Difference from Average

    • datalumos.org
    Updated Jun 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Oceanic and Atmospheric Administration (2025). Climate.gov Data Snapshots: SST - Global, Yearly Difference from Average [Dataset]. http://doi.org/10.3886/E233269V2
    Explore at:
    Dataset updated
    Jun 17, 2025
    Dataset authored and provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Global
    Description

    Q: Is annual sea surface temperature warmer or cooler than usual? A: Colors on this map show where and by how much annual sea surface temperature differed from a long-term average (1985-1993, details from Coral Reef Watch). Red and orange areas were warmer than average, and blue areas were cooler than average. The darker the color, the larger the difference from the long-term average. White and very light areas were near average. Q: Where do these measurements come from? A: Monthly measurements are made from NOAA's CoralTemp sea surface temperature (SST) data. Every day, instruments on eight satellites in two different orbits (geostationary and polar) measure sea surface temperature by checking how much energy is radiated by the ocean at different wavelengths. Computer programs plot these measurements on a gridded map and then merge and smooth the data into a gap-free product using mathematical filters. Each grid point covers an area approximately 5 x 5 km. Daily temperatures at each grid point are averaged together to calculate monthly average temperature. To calculate the difference-from-average temperatures shown here, a computer program takes the monthly average temperature at each grid point, and subtracts the long-term average for that month. Monthly measurements are averaged together to generate an annual image. If the result is a positive number, the sea surface was warmer than the long-term average. A negative result from the subtraction means the sea surface was cooler than usual. Q: What do the colors mean? A: Shades of blue show locations where sea surface temperature was cooler than its long-term average. Locations shown in shades of orange and red are where the sea’s surface was warmer than the long-term average. The darker the shade of red or blue, the larger the difference from the long-term average or “usual” sea surface temperature. Locations that are white or very light show where sea surface temperature was the same as or very close to its long-term average. Q: Why do these data matter? A: Water covers more than 70% of our planet's surface, so gathering data on ocean temperatures gives us a better picture of global temperatures. Tracking the temperature of the sea’s surface helps scientists understand how much heat energy is in the ocean and how it changes over time. Sea surface temperatures can have dramatic impacts on weather, including weather patterns such as El Niño-Southern Oscillation (ENSO) that travel hundreds of miles inland. Sea surface temperatures also play a significant role in the extent and thickness of Arctic and Antarctic sea ice, which serve as our planet’s built-in air-conditioning system. And sea surface temperatures have significant effects on marine life. The upwelling of cold water, for instance, provides nutrients to phytoplankton, the base of the marine food chain. In contrast, warm ocean surface waters deprive phytoplankton of nutrients, sometimes with devastating effects up the chain. Q: How did you produce these snapshots? A: Data Snapshots are derivatives of existing data products: to meet the needs of a broad audience, we present the source data in a simplified visual style. NOAA's Environmental Visualization Laboratory (NNVL) produces the Sea Surface Temperature Anomaly files. To produce our images, we run a set of scripts that access these NNVL source files, re-project them into a Hammer-Aitoff globe, and output them in a range of sizes. References NOAA NNVL Sea Surface Temperature Anomaly (SSTA) NOAA NNVL SSTA FTP access NOAA Coral Reef Watch CoralTemp data CoralTemp climatology (long-term average) CoralTemp climatology methodology Source: https://www.climate.gov/maps-data/data-snapshots/data-source/sst-global-yearly-difference-average This upload includes two additional files:* SST - Global, Yearly Difference from Average _NOAA Climate.gov.pdf is a scre

  12. Average annual temperature in the United States 1895-2024

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Average annual temperature in the United States 1895-2024 [Dataset]. https://www.statista.com/statistics/500515/annual-average-temperature-in-the-us-celsius/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In 2024, the average annual temperature in the United States was ***** degrees Celsius, the warmest year recorded in the period in consideration. In 1895, this figure stood at ***** degrees Celsius. Recent years have been some of the warmest years recorded in the country.

  13. Future annual temperature (CONUS) (Image Service)

    • catalog.data.gov
    • agdatacommons.nal.usda.gov
    • +7more
    Updated Apr 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2025). Future annual temperature (CONUS) (Image Service) [Dataset]. https://catalog.data.gov/dataset/future-annual-temperature-conus-image-service-e0ecb
    Explore at:
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    U.S. Department of Agriculture Forest Servicehttp://fs.fed.us/
    Description

    The National Forest Climate Change Maps project was developed by the Rocky Mountain Research Station (RMRS) and the Office of Sustainability and Climate to meet the needs of national forest managers for information on projected climate changes at a scale relevant to decision making processes, including forest plans. The maps use state-of-the-art science and are available for every national forest in the contiguous United States with relevant data coverage. Currently, the map sets include variables related to precipitation, air temperature, snow (including snow residence time and April 1 snow water equivalent), and stream flow.Historical (1975-2005) and future (2071-2090) precipitation and temperature data for the contiguous United States are ensemble mean values across 20 global climate models from the CMIP5 experiment (https://journals.ametsoc.org/doi/abs/10.1175/BAMS-D-11-00094.1), downscaled to a 4 km grid. For more information on the downscaling method and to access the data, please see Abatzoglou and Brown, 2012 (https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/joc.2312) and the Northwest Knowledge Network (https://climate.northwestknowledge.net/MACA/). We used the MACAv2- Metdata monthly dataset; average temperature values were calculated as the mean of monthly minimum and maximum air temperature values (degrees C), averaged over the season of interest (annual, winter, or summer). Absolute change was then calculated between the historical and future time periods.Raster data are also available for download from RMRS site (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/categories/us-raster-layers.html), along with pdf maps and detailed metadata (https://www.fs.usda.gov/rm/boise/AWAE/projects/NFS-regional-climate-change-maps/downloads/NationalForestClimateChangeMapsMetadata.pdf).

  14. Global Yearly Temperature Anomaly (1850 - present)

    • geoportal-pacificcore.hub.arcgis.com
    • cacgeoportal.com
    • +7more
    Updated Dec 15, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2020). Global Yearly Temperature Anomaly (1850 - present) [Dataset]. https://geoportal-pacificcore.hub.arcgis.com/maps/861938b2dd3747789c144350048a838c
    Explore at:
    Dataset updated
    Dec 15, 2020
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Measurements of surface air and ocean temperature are compiled from around the world each month by NOAA’s National Centers for Environmental Information and are analyzed and compared to the 1971-2000 average temperature for each location. The resulting temperature anomaly (or difference from the average) is shown in this feature service, which includes an archive going back to 1880. The mean of the 12 months each year is displayed here. Each annual update is available around the 15th of the following January (e.g., 2020 is available Jan 15th, 2021). The NOAAGlobalTemp dataset is the official U.S. long-term record of global temperature data and is often used to show trends in temperature change around the world. It combines thousands of land-based station measurements from the Global Historical Climatology Network (GHCN) along with surface ocean temperature from the Extended Reconstructed Sea Surface Temperature (ERSST) analysis. These two datasets are merged into a 5-degree resolution product. A report summary report by NOAA NCEI is available here. GHCN monthly mean station averages for temperature and precipitation for the 1981-2010 period are also available in Living Atlas here.What can you do with this layer? Visualization: This layer can be used to plot areas where temperature was higher or lower than the historical average for each year since 1880. Be sure to configure the time settings in your web map to view the timeseries correctly. Analysis: This layer can be used as an input to a variety of geoprocessing tools, such as Space Time Cubes and other trend analyses. For a more detailed temporal analysis, a monthly mean is available here.

  15. Global regional annual average temperatures by scenario 1995-2025

    • statista.com
    Updated Aug 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Global regional annual average temperatures by scenario 1995-2025 [Dataset]. https://www.statista.com/statistics/1040241/annual-mean-temperature-regions-worldwide-by-scenario/
    Explore at:
    Dataset updated
    Aug 22, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    1995
    Area covered
    Worldwide
    Description

    The mean annual temperature in North America stood at -4.5 degrees Celsius in 1995. It is expected that, 30 years later in 2025, the average temperature will increase by 1.6 degrees Celsius due to the effects of global warming, under a scenario where global temperatures increase by 1.5 degree Celsius.

  16. p

    Yearly Temperature Anomaly

    • pacificgeoportal.com
    • uneca.africageoportal.com
    • +8more
    Updated Dec 15, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2020). Yearly Temperature Anomaly [Dataset]. https://www.pacificgeoportal.com/maps/esri2::yearly-temperature-anomaly
    Explore at:
    Dataset updated
    Dec 15, 2020
    Dataset authored and provided by
    Esri
    Area covered
    Description

    Measurements of surface air and ocean temperature are compiled from around the world each month by NOAA’s National Centers for Environmental Information and are analyzed and compared to the 1971-2000 average temperature for each location. The resulting temperature anomaly (or difference from the average) is shown in this feature service, which includes an archive going back to 1880. The mean of the 12 months each year is displayed here. Each annual update is available around the 15th of the following January (e.g., 2020 is available Jan 15th, 2021). The NOAAGlobalTemp dataset is the official U.S. long-term record of global temperature data and is often used to show trends in temperature change around the world. It combines thousands of land-based station measurements from the Global Historical Climatology Network (GHCN) along with surface ocean temperature from the Extended Reconstructed Sea Surface Temperature (ERSST) analysis. These two datasets are merged into a 5-degree resolution product. A report summary report by NOAA NCEI is available here. GHCN monthly mean station averages for temperature and precipitation for the 1981-2010 period are also available in Living Atlas here.What can you do with this layer? Visualization: This layer can be used to plot areas where temperature was higher or lower than the historical average for each year since 1880. Be sure to configure the time settings in your web map to view the timeseries correctly. Analysis: This layer can be used as an input to a variety of geoprocessing tools, such as Space Time Cubes and other trend analyses. For a more detailed temporal analysis, a monthly mean is available here.

  17. T

    TEMPERATURE by Country Dataset

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Oct 27, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2017). TEMPERATURE by Country Dataset [Dataset]. https://tradingeconomics.com/country-list/temperature
    Explore at:
    xml, csv, json, excelAvailable download formats
    Dataset updated
    Oct 27, 2017
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    World
    Description

    This dataset provides values for TEMPERATURE reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  18. u

    Climate Change Pressures Plant Hardiness Zones (Map Service)

    • agdatacommons.nal.usda.gov
    • anrgeodata.vermont.gov
    • +8more
    bin
    Updated Oct 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2024). Climate Change Pressures Plant Hardiness Zones (Map Service) [Dataset]. https://agdatacommons.nal.usda.gov/articles/dataset/Climate_Change_Pressures_Plant_Hardiness_Zones_Map_Service_/25973164
    Explore at:
    binAvailable download formats
    Dataset updated
    Oct 1, 2024
    Dataset authored and provided by
    U.S. Forest Service
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Evaluating multiple signals of climate change across the conterminous United States during three 30-year periods (2010�2039, 2040�2069, 2070�2099) during this century to a baseline period (1980�2009) emphasizes potential changes for growing degree days (GDD), plant hardiness zones (PHZ), and heat zones. These indices were derived using the CCSM4 and GFDL CM3 models under the representative concentration pathways 4.5 and 8.5, respectively, and included in Matthews et al. (2018). Daily temperature was downscaled by Maurer et al. (https://doi.org/10.1029/2007EO470006) at a 1/8 degree grid scale and used to obtain growing degree days, plant hardiness zones, and heat zones. Each of these indices provides unique information about plant health related to changes in climatic conditions that influence establishment, growth, and survival. These data and the calculated changes are provided as 14 individual IMG files for each index to assist with management planning and decision making into the future. For each of the four indices the following are included: two baseline files (1980�2009), three files representing 30-year periods for the scenario CCSM4 under RCP 4.5 along with three files of changes, and three files representing 30-year periods for the scenario GFDL CM3 under RCP 8.5 along with three files of changes.�Plant hardiness zones provide a general indication of the extent of overwinter stress experienced by plants. PHZ are based on the average annual extreme minimum temperatures and have been used by horticulturists to evaluate the cold hardiness of plants. Specifically, the value used here is the absolute minimum temperature achieved for each year and reported as the 30-year mean. Because they reflect cold tolerance for many plant species, including woody ones, hardiness zones are most likely to reflect plant range limits. The zonal variations caused by warming temperatures in the future will therefore be useful to approximately delineate niche constraints of many plant species and hence their future range potential. Plant hardiness zones and subzones were delineated according to the USDA definitions, which break the geography into zones by 10 �F (5.56 �C) increments from zone 1 (-55 to -45.6 �C) to zone 13 (15.7 to 22 �C) of annual extreme minimum temperature. To define the coldest day per year, daily minimum temperatures were identified within the period July 1 to June 30, with the nominal year assigned to the first 6 months of the 12-month period.�Original data and associated metadata can be downloaded from this website:�https://www.fs.usda.gov/rds/archive/Product/RDS-2019-0001This record was taken from the USDA Enterprise Data Inventory that feeds into the https://data.gov catalog. Data for this record includes the following resources: ISO-19139 metadata ArcGIS Hub Dataset ArcGIS GeoService For complete information, please visit https://data.gov.

  19. f

    Average monthly temperature

    • data.apps.fao.org
    Updated Sep 25, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). Average monthly temperature [Dataset]. https://data.apps.fao.org/map/catalog/us/search?keyword=Agromet
    Explore at:
    Dataset updated
    Sep 25, 2020
    Description

    This map is part of a series of global climate images produced by the Agrometeorology Group and based on data for mean monthly values of temperature, precipitation and cloudiness prepared in 1991 by R. Leemans and W. Cramer and published by the International Institute for Applied Systems Analysis (IIASA). For each of the weather stations used data have been assembled over a long time period - usually between 1961 and 1990 - and then averaged.

  20. U.S. Climate Normals 2020: U.S. Annual/Seasonal Climate Normals (1991-2020)

    • catalog.data.gov
    • ncei.noaa.gov
    Updated Sep 19, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Centers for Environmental Information/NOAA (Principal Investigator) (2023). U.S. Climate Normals 2020: U.S. Annual/Seasonal Climate Normals (1991-2020) [Dataset]. https://catalog.data.gov/dataset/u-s-climate-normals-2020-u-s-annual-seasonal-climate-normals-1991-20201
    Explore at:
    Dataset updated
    Sep 19, 2023
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    National Centers for Environmental Informationhttps://www.ncei.noaa.gov/
    Area covered
    United States
    Description

    The U.S. Annual/Seasonal Climate Normals for 1991 to 2020 are 30-year averages of meteorological parameters that provide users the information needed to understand typical climate conditions for thousands of locations across the United States, as well as U.S. Territories and Commonwealths, and the Compact of Free Association nations. The stations used include those from the NWS Cooperative Observer Program (COOP) Network as well as some additional stations that have a Weather Bureau Army-Navy (WBAN) station identification number, including stations from the U.S. Climate Reference Network (USCRN) and other automated observation stations. In addition, precipitation normals for stations from the U.S. Snow Telemetry (SNOTEL) Network and the citizen-science Community Collaborative Rain, Hail and Snow (CoCoRaHS) Network are also available. The Annual/Seasonal Climate Normals dataset includes various derived products such as air temperature normals (including maximum and minimum temperature normals, heating and cooling degree day normals, and others), precipitation normals (including precipitation and snowfall totals, and percentiles, frequencies and other statistics of precipitation, snowfall, and snow depth), and agricultural normals (growing degree days (GDDs), lengths of growing seasons, probabilities of first or last temperature threshold exceedances. All data utilized in the computation of the 1991-2020 Climate Normals were taken from the Global Historical Climatology Network-Daily and -Monthly datasets. Temperatures were homogenized, adjusted for time-of-observation, and made serially complete where possible based on information from nearby stations. Precipitation totals were also made serially complete where possible based using nearby stations. The source datasets (including intermediate datasets used in the computation of products) are also archived at NOAA NCEI. A comparatively small number of station normals sets (~50) have been added as Version 1.0.1 to correct quality issues or because additional historical data during the 1991-2020 period has been ingested.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2024). Monthly average temperature in the United States 2020-2024 [Dataset]. https://www.statista.com/statistics/513628/monthly-average-temperature-in-the-us-fahrenheit/
Organization logo

Monthly average temperature in the United States 2020-2024

Explore at:
2 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Dec 15, 2024
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
Jan 2020 - Dec 2024
Area covered
United States
Description

The average temperature in December 2024 was 38.25 degrees Fahrenheit in the United States, the fourth-largest country in the world. The country has extremely diverse climates across its expansive landmass. Temperatures in the United States On the continental U.S., the southern regions face warm to extremely hot temperatures all year round, the Pacific Northwest tends to deal with rainy weather, the Mid-Atlantic sees all four seasons, and New England experiences the coldest winters in the country. The North American country has experienced an increase in the daily minimum temperatures since 1970. Consequently, the average annual temperature in the United States has seen a spike in recent years. Climate Change The entire world has seen changes in its average temperature as a result of climate change. Climate change occurs due to increased levels of greenhouse gases which act to trap heat in the atmosphere, preventing it from leaving the Earth. Greenhouse gases are emitted from various sectors but most prominently from burning fossil fuels. Climate change has significantly affected the average temperature across countries worldwide. In the United States, an increasing number of people have stated that they have personally experienced the effects of climate change. Not only are there environmental consequences due to climate change, but also economic ones. In 2022, for instance, extreme temperatures in the United States caused over 5.5 million U.S. dollars in economic damage. These economic ramifications occur for several reasons, which include higher temperatures, changes in regional precipitation, and rising sea levels.

Search
Clear search
Close search
Google apps
Main menu