The Integrated Public Use Microdata Series (IPUMS) Complete Count Data include more than 650 million individual-level and 7.5 million household-level records. The microdata are the result of collaboration between IPUMS and the nation’s two largest genealogical organizations—Ancestry.com and FamilySearch—and provides the largest and richest source of individual level and household data.
All manuscripts (and other items you'd like to publish) must be submitted to
phsdatacore@stanford.edu for approval prior to journal submission.
We will check your cell sizes and citations.
For more information about how to cite PHS and PHS datasets, please visit:
https:/phsdocs.developerhub.io/need-help/citing-phs-data-core
This dataset was created on 2020-01-10 22:52:11.461
by merging multiple datasets together. The source datasets for this version were:
IPUMS 1930 households: This dataset includes all households from the 1930 US census.
IPUMS 1930 persons: This dataset includes all individuals from the 1930 US census.
IPUMS 1930 Lookup: This dataset includes variable names, variable labels, variable values, and corresponding variable value labels for the IPUMS 1930 datasets.
Historic data are scarce and often only exists in aggregate tables. The key advantage of historic US census data is the availability of individual and household level characteristics that researchers can tabulate in ways that benefits their specific research questions. The data contain demographic variables, economic variables, migration variables and family variables. Within households, it is possible to create relational data as all relations between household members are known. For example, having data on the mother and her children in a household enables researchers to calculate the mother’s age at birth. Another advantage of the Complete Count data is the possibility to follow individuals over time using a historical identifier.
In sum: the historic US census data are a unique source for research on social and economic change and can provide population health researchers with information about social and economic determinants.Historic data are scarce and often only exists in aggregate tables. The key advantage of historic US census data is the availability of individual and household level characteristics that researchers can tabulate in ways that benefits their specific research questions. The data contain demographic variables, economic variables, migration variables and family variables. Within households, it is possible to create relational data as all relations between household members are known. For example, having data on the mother and her children in a household enables researchers to calculate the mother’s age at birth. Another advantage of the Complete Count data is the possibility to follow individuals over time using a historical identifier. In sum: the historic US census data are a unique source for research on social and economic change and can provide population health researchers with information about social and economic determinants.
The historic US 1930 census data was collected in April 1930. Enumerators collected data traveling to households and counting the residents who regularly slept at the household. Individuals lacking permanent housing were counted as residents of the place where they were when the data was collected. Household members absent on the day of data collected were either listed to the household with the help of other household members or were scheduled for the last census subdivision.
Notes
We provide IPUMS household and person data separately so that it is convenient to explore the descriptive statistics on each level. In order to obtain a full dataset, merge the household and person on the variables SERIAL and SERIALP. In order to create a longitudinal dataset, merge datasets on the variable HISTID.
Households with more than 60 people in the original data were broken up for processing purposes. Every person in the large households are considered to be in their own household. The original large households can be identified using the variable SPLIT, reconstructed using the variable SPLITHID, and the original count is found in the variable SPLITNUM.
Coded variables derived from string variables are still in progress. These variables include: occupation and industry.
Missing observations have been allocated and some inconsistencies have been edited for the following variables: SPEAKENG, YRIMMIG, CITIZEN, AGEMARR, AGE, BPL, MBPL, FBPL, LIT, SCHOOL, OWNERSHP, FARM, EMPSTAT, OCC1950, IND1950, MTONGUE, MARST, RACE, SEX, RELATE, CLASSWKR. The flag variables indicating an allocated observation for the associated variables can be included in your extract by clicking the ‘Select data quality flags’ box on the extract summary page.
Most inconsistent information was not edite
This dataset includes all individuals from the 1930 US census.
This dataset includes variable names, variable labels, variable values, and corresponding variable value labels for the IPUMS 1930 datasets.
1930 United States Federal Census contains records from Philadelphia, Pennsylvania, USA by United States of America, Bureau of the Census. Fifteenth Census of the United States, 1930. Washington, D.C.: National Archives and Records Administration, 1930. T626, 2,667 rolls. Year: 1930; Census Place: Upper Dublin, Montgomery, Pennsylvania; Page: 8A; Enumeration District: 0143; FHL microfilm: 2341819 - .
This dataset includes all households from the 1930 US census.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This application displays the buildings in State College borough in 1930 as polygon features. The buildings are linked to a table with the contents of the 1930 Census of State College. Click on a building to bring up information about its physical features, such as building material or number of floors, as well as its address and associated land use. If the building contained residents listed on the Census, scroll down within the info box and click on the link below "Related Tables" to bring up a list of the residents. Clicking on a resident in the list will open that resident's entry in the Census table, which includes socioeconomic information such as their name, age, nationality, marital status, and occupation. Residents can also be searched for by name in the Query box that appears on the left side of the screen. Data Sources- Scanned copies of the U.S. Census for various years (including 1920 and 1930) available from Ancestry Library Edition database.- Sanborn shapefiles were created by Bednar student interns at Penn State's Pattee/Paterno Library. They are based on the collection of PA Sanborns housed in the Maps Collection at the library.
This crosswalk consists of individuals matched between the 1860 and 1930 complete-count US Censuses. Within the crosswalk, users have the option to select the linking method with which these matches were created. This version of the crosswalk contains links made by the ABE-exact (conservative and standard) method, the ABE-NYSIIS (conservative and standard) method and the ABE-NYSIIS (conservative and standard) method where race is used as a matching variable. For any chosen method, users can merge into this crosswalk a wide set of individual- and household-level variables provided publicly by IPUMS, thereby creating a historical longitudinal dataset for analysis.
1920 United States Federal Census contains records from Philadelphia, Pennsylvania, USA by Fourteenth Census of the United States, 1920. (NARA microfilm publication T625, 2076 rolls). Records of the Bureau of the Census, Record Group 29. National Archives, Washington, D.C. Year: 1920; Census Place: Philadelphia Ward 42, Philadelphia, Pennsylvania; Roll: T625_1643; Page: 13A; Enumeration District: 1564 - .
1940 United States Federal Census contains records from Philadelphia, Pennsylvania, USA by United States of America, Bureau of the Census. Sixteenth Census of the United States, 1940. Washington, D.C.: National Archives and Records Administration, 1940. T627, 4,643 rolls. Year: 1940; Census Place: Upper Dublin, Montgomery, Pennsylvania; Roll: m-t0627-03585; Page: 20B; Enumeration District: 46-208 - .
This dataset was created primarily to map and track socioeconomic and demographic variables from the US Census Bureau from year 1940 to year 2010, by decade, within the City of Baltimore's Mayor's Office of Information Technology (MOIT) year 2010 neighborhood boundaries. The socioeconomic and demographic variables include the percent White, percent African American, percent owner occupied homes, percent vacant homes, the percentage of age 25 and older people with a high school education or greater, and the percentage of age 25 and older people with a college education or greater. Percent White and percent African American are also provided for year 1930. Each of the the year 2010 neighborhood boundaries were also attributed with the 1937 Home Owners' Loan Corporation (HOLC) definition of neighborhoods via spatial overlay. HOLC rated neighborhoods as A, B, C, D or Undefined. HOLC categorized the perceived safety and risk of mortgage refinance lending in metropolitan areas using a hierarchical grading scale of A, B, C, and D. A and B areas were considered the safest areas for federal investment due to their newer housing as well as higher earning and racially homogenous households. In contrast, C and D graded areas were viewed to be in a state of inevitable decline, depreciation, and decay, and thus risky for federal investment, due to their older housing stock and racial and ethnic composition. This policy was inherently a racist practice. Places were graded based on who lived there; poor areas with people of color were labeled as lower and less-than. HOLC's 1937 neighborhoods do not cover the entire extent of the year 2010 neighborhood boundaries. The neighborhood boundaries were also augmented to include which of the year 2017 Housing Market Typology (HMT) the 2010 neighborhoods fall within. Finally, the neighborhood boundaries were also augmented to include tree canopy and tree canopy change year 2007 to year 2015.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Home Owners’ Loan Corporation (HOLC) was a U.S. federal agency that graded mortgage investment risk of neighborhoods across the U.S. between 1935 and 1940. HOLC residential security maps standardized neighborhood risk appraisal methods that included race and ethnicity, pioneering the institutional logic of residential “redlining.” The Mapping Inequality Project digitized the HOLC mortgage security risk maps from the 1930s. We overlaid the HOLC maps with 2010 and 2020 census tracts for 142 cities across the U.S. using ArcGIS and determined the proportion of HOLC residential security grades contained within the boundaries. We assigned a numerical value to each HOLC risk category as follows: 1 for “A” grade, 2 for “B” grade, 3 for “C” grade, and 4 for “D” grade. We calculated a historic redlining score from the summed proportion of HOLC residential security grades multiplied by a weighting factor based on area within each census tract. A higher score means greater redlining of the census tract. Continuous historic redlining score, assessing the degree of “redlining,” as well as 4 equal interval divisions of redlining, can be linked to existing data sources by census tract identifier allowing for one form of structural racism in the housing market to be assessed with a variety of outcomes. The 2010 files are set to census 2010 tract boundaries. The 2020 files use the new census 2020 tract boundaries, reflecting the increase in the number of tracts from 12,888 in 2010, to 13,488 in 2020. Use the 2010 HRS with decennial census 2010 or ACS 2010-2019 data. As of publication (10/15/2020) decennial census 2020 data for the P1 (population) and H1 (housing) files are available from census.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset comprises physician-level entries from the 1906 American Medical Directory, the first in a series of semi-annual directories of all practicing physicians published by the American Medical Association [1]. Physicians are consistently listed by city, county, and state. Most records also include details about the place and date of medical training. From 1906-1940, Directories also identified the race of black physicians [2].This dataset comprises physician entries for a subset of US states and the District of Columbia, including all of the South and several adjacent states (Alabama, Arkansas, Delaware, Florida, Georgia, Kansas, Kentucky, Louisiana, Maryland, Mississippi, Missouri, North Carolina, Oklahoma, South Carolina, Tennessee, Texas, Virginia, West Virginia). Records were extracted via manual double-entry by professional data management company [3], and place names were matched to latitude/longitude coordinates. The main source for geolocating physician entries was the US Census. Historical Census records were sourced from IPUMS National Historical Geographic Information System [4]. Additionally, a public database of historical US Post Office locations was used to match locations that could not be found using Census records [5]. Fuzzy matching algorithms were also used to match misspelled place or county names [6].The source of geocoding match is described in the “match.source” field (Type of spatial match (census_YEAR = match to NHGIS census place-county-state for given year; census_fuzzy_YEAR = matched to NHGIS place-county-state with fuzzy matching algorithm; dc = matched to centroid for Washington, DC; post_places = place-county-state matched to Blevins & Helbock's post office dataset; post_fuzzy = matched to post office dataset with fuzzy matching algorithm; post_simp = place/state matched to post office dataset; post_confimed_missing = post office dataset confirms place and county, but could not find coordinates; osm = matched using Open Street Map geocoder; hand-match = matched by research assistants reviewing web archival sources; unmatched/hand_match_missing = place coordinates could not be found). For records where place names could not be matched, but county names could, coordinates for county centroids were used. Overall, 40,964 records were matched to places (match.type=place_point) and 931 to county centroids ( match.type=county_centroid); 76 records could not be matched (match.type=NA).Most records include information about the physician’s medical training, including the year of graduation and a code linking to a school. A key to these codes is given on Directory pages 26-27, and at the beginning of each state’s section [1]. The OSM geocoder was used to assign coordinates to each school by its listed location. Straight-line distances between physicians’ place of training and practice were calculated using the sf package in R [7], and are given in the “school.dist.km” field. Additionally, the Directory identified a handful of schools that were “fraudulent” (school.fraudulent=1), and institutions set up to train black physicians (school.black=1).AMA identified black physicians in the directory with the signifier “(col.)” following the physician’s name (race.black=1). Additionally, a number of physicians attended schools identified by AMA as serving black students, but were not otherwise identified as black; thus an expanded racial identifier was generated to identify black physicians (race.black.prob=1), including physicians who attended these schools and those directly identified (race.black=1).Approximately 10% of dataset entries were audited by trained research assistants, in addition to 100% of black physician entries. These audits demonstrated a high degree of accuracy between the original Directory and extracted records. Still, given the complexity of matching across multiple archival sources, it is possible that some errors remain; any identified errors will be periodically rectified in the dataset, with a log kept of these updates.For further information about this dataset, or to report errors, please contact Dr Ben Chrisinger (Benjamin.Chrisinger@tufts.edu). Future updates to this dataset, including additional states and Directory years, will be posted here: https://dataverse.harvard.edu/dataverse/amd.References:1. American Medical Association, 1906. American Medical Directory. American Medical Association, Chicago. Retrieved from: https://catalog.hathitrust.org/Record/000543547.2. Baker, Robert B., Harriet A. Washington, Ololade Olakanmi, Todd L. Savitt, Elizabeth A. Jacobs, Eddie Hoover, and Matthew K. Wynia. "African American physicians and organized medicine, 1846-1968: origins of a racial divide." JAMA 300, no. 3 (2008): 306-313. doi:10.1001/jama.300.3.306.3. GABS Research Consult Limited Company, https://www.gabsrcl.com.4. Steven Manson, Jonathan Schroeder, David Van Riper, Tracy Kugler, and Steven Ruggles. IPUMS National Historical Geographic Information System: Version 17.0 [GNIS, TIGER/Line & Census Maps for US Places and Counties: 1900, 1910, 1920, 1930, 1940, 1950; 1910_cPHA: ds37]. Minneapolis, MN: IPUMS. 2022. http://doi.org/10.18128/D050.V17.05. Blevins, Cameron; Helbock, Richard W., 2021, "US Post Offices", https://doi.org/10.7910/DVN/NUKCNA, Harvard Dataverse, V1, UNF:6:8ROmiI5/4qA8jHrt62PpyA== [fileUNF]6. fedmatch: Fast, Flexible, and User-Friendly Record Linkage Methods. https://cran.r-project.org/web/packages/fedmatch/index.html7. sf: Simple Features for R. https://cran.r-project.org/web/packages/sf/index.html
In the past four centuries, the population of the United States has grown from a recorded 350 people around the Jamestown colony of Virginia in 1610, to an estimated 331 million people in 2020. The pre-colonization populations of the indigenous peoples of the Americas have proven difficult for historians to estimate, as their numbers decreased rapidly following the introduction of European diseases (namely smallpox, plague and influenza). Native Americans were also omitted from most censuses conducted before the twentieth century, therefore the actual population of what we now know as the United States would have been much higher than the official census data from before 1800, but it is unclear by how much. Population growth in the colonies throughout the eighteenth century has primarily been attributed to migration from the British Isles and the Transatlantic slave trade; however it is also difficult to assert the ethnic-makeup of the population in these years as accurate migration records were not kept until after the 1820s, at which point the importation of slaves had also been illegalized. Nineteenth century In the year 1800, it is estimated that the population across the present-day United States was around six million people, with the population in the 16 admitted states numbering at 5.3 million. Migration to the United States began to happen on a large scale in the mid-nineteenth century, with the first major waves coming from Ireland, Britain and Germany. In some aspects, this wave of mass migration balanced out the demographic impacts of the American Civil War, which was the deadliest war in U.S. history with approximately 620 thousand fatalities between 1861 and 1865. The civil war also resulted in the emancipation of around four million slaves across the south; many of whose ancestors would take part in the Great Northern Migration in the early 1900s, which saw around six million black Americans migrate away from the south in one of the largest demographic shifts in U.S. history. By the end of the nineteenth century, improvements in transport technology and increasing economic opportunities saw migration to the United States increase further, particularly from southern and Eastern Europe, and in the first decade of the 1900s the number of migrants to the U.S. exceeded one million people in some years. Twentieth and twenty-first century The U.S. population has grown steadily throughout the past 120 years, reaching one hundred million in the 1910s, two hundred million in the 1960s, and three hundred million in 2007. In the past century, the U.S. established itself as a global superpower, with the world's largest economy (by nominal GDP) and most powerful military. Involvement in foreign wars has resulted in over 620,000 further U.S. fatalities since the Civil War, and migration fell drastically during the World Wars and Great Depression; however the population continuously grew in these years as the total fertility rate remained above two births per woman, and life expectancy increased (except during the Spanish Flu pandemic of 1918).
Since the Second World War, Latin America has replaced Europe as the most common point of origin for migrants, with Hispanic populations growing rapidly across the south and border states. Because of this, the proportion of non-Hispanic whites, which has been the most dominant ethnicity in the U.S. since records began, has dropped more rapidly in recent decades. Ethnic minorities also have a much higher birth rate than non-Hispanic whites, further contributing to this decline, and the share of non-Hispanic whites is expected to fall below fifty percent of the U.S. population by the mid-2000s. In 2020, the United States has the third-largest population in the world (after China and India), and the population is expected to reach four hundred million in the 2050s.
The world's Jewish population has had a complex and tumultuous history over the past millennia, regularly dealing with persecution, pogroms, and even genocide. The legacy of expulsion and persecution of Jews, including bans on land ownership, meant that Jewish communities disproportionately lived in urban areas, working as artisans or traders, and often lived in their own settlements separate to the rest of the urban population. This separation contributed to the impression that events such as pandemics, famines, or economic shocks did not affect Jews as much as other populations, and such factors came to form the basis of the mistrust and stereotypes of wealth (characterized as greed) that have made up anti-Semitic rhetoric for centuries. Development since the Middle Ages The concentration of Jewish populations across the world has shifted across different centuries. In the Middle Ages, the largest Jewish populations were found in Palestine and the wider Levant region, with other sizeable populations in present-day France, Italy, and Spain. Later, however, the Jewish disapora became increasingly concentrated in Eastern Europe after waves of pogroms in the west saw Jewish communities move eastward. Poland in particular was often considered a refuge for Jews from the late-Middle Ages until the 18th century, when it was then partitioned between Austria, Prussia, and Russia, and persecution increased. Push factors such as major pogroms in the Russian Empire in the 19th century and growing oppression in the west during the interwar period then saw many Jews migrate to the United States in search of opportunity.
During the eighteenth century, it is estimated that France's population grew by roughly fifty percent, from 19.7 million in 1700, to 29 million by 1800. In France itself, the 1700s are remembered for the end of King Louis XIV's reign in 1715, the Age of Enlightenment, and the French Revolution. During this century, the scientific and ideological advances made in France and across Europe challenged the leadership structures of the time, and questioned the relationship between monarchial, religious and political institutions and their subjects. France was arguably the most powerful nation in the world in these early years, with the second largest population in Europe (after Russia); however, this century was defined by a number of costly, large-scale conflicts across Europe and in the new North American theater, which saw the loss of most overseas territories (particularly in North America) and almost bankrupted the French crown. A combination of regressive taxation, food shortages and enlightenment ideologies ultimately culminated in the French Revolution in 1789, which brought an end to the Ancien Régime, and set in motion a period of self-actualization.
War and peace
After a volatile and tumultuous decade, in which tens of thousands were executed by the state (most infamously: guillotined), relative stability was restored within France as Napoleon Bonaparte seized power in 1799, and the policies of the revolution became enforced. Beyond France's borders, the country was involved in a series of large scale wars for two almost decades, and the First French Empire eventually covered half of Europe by 1812. In 1815, Napoleon was defeated outright, the empire was dissolved, and the monarchy was restored to France; nonetheless, a large number of revolutionary and Napoleonic reforms remained in effect afterwards, and the ideas had a long-term impact across the globe. France experienced a century of comparative peace in the aftermath of the Napoleonic Wars; there were some notable uprisings and conflicts, and the monarchy was abolished yet again, but nothing on the scale of what had preceded or what was to follow. A new overseas colonial empire was also established in the late 1800s, particularly across Africa and Southeast Asia. Through most of the eighteenth and nineteenth century, France had the second largest population in Europe (after Russia), however political instability and the economic prioritization of Paris meant that the entire country did not urbanize or industrialize at the same rate as the other European powers. Because of this, Germany and Britain entered the twentieth century with larger populations, and other regions, such as Austria or Belgium, had overtaken France in terms of industrialization; the German annexation of Alsace-Lorraine in the Franco-Prussian War was also a major contributor to this.
World Wars and contemporary France
Coming into the 1900s, France had a population of approximately forty million people (officially 38 million* due to to territorial changes), and there was relatively little growth in the first half of the century. France was comparatively unprepared for a large scale war, however it became one of the most active theaters of the First World War when Germany invaded via Belgium in 1914, with the ability to mobilize over eight million men. By the war's end in 1918, France had lost almost 1.4 million in the conflict, and approximately 300,000 in the Spanish Flu pandemic that followed. Germany invaded France again during the Second World War, and occupied the country from 1940, until the Allied counter-invasion liberated the country during the summer of 1944. France lost around 600,000 people in the course of the war, over half of which were civilians. Following the war's end, the country experienced a baby boom, and the population grew by approximately twenty million people in the next fifty years (compared to just one million in the previous fifty years). Since the 1950s, France's economy quickly grew to be one of the strongest in the world, despite losing the vast majority of its overseas colonial empire by the 1970s. A wave of migration, especially from these former colonies, has greatly contributed to the growth and diversity of France's population today, which stands at over 65 million people in 2020.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
The Integrated Public Use Microdata Series (IPUMS) Complete Count Data include more than 650 million individual-level and 7.5 million household-level records. The microdata are the result of collaboration between IPUMS and the nation’s two largest genealogical organizations—Ancestry.com and FamilySearch—and provides the largest and richest source of individual level and household data.
All manuscripts (and other items you'd like to publish) must be submitted to
phsdatacore@stanford.edu for approval prior to journal submission.
We will check your cell sizes and citations.
For more information about how to cite PHS and PHS datasets, please visit:
https:/phsdocs.developerhub.io/need-help/citing-phs-data-core
This dataset was created on 2020-01-10 22:52:11.461
by merging multiple datasets together. The source datasets for this version were:
IPUMS 1930 households: This dataset includes all households from the 1930 US census.
IPUMS 1930 persons: This dataset includes all individuals from the 1930 US census.
IPUMS 1930 Lookup: This dataset includes variable names, variable labels, variable values, and corresponding variable value labels for the IPUMS 1930 datasets.
Historic data are scarce and often only exists in aggregate tables. The key advantage of historic US census data is the availability of individual and household level characteristics that researchers can tabulate in ways that benefits their specific research questions. The data contain demographic variables, economic variables, migration variables and family variables. Within households, it is possible to create relational data as all relations between household members are known. For example, having data on the mother and her children in a household enables researchers to calculate the mother’s age at birth. Another advantage of the Complete Count data is the possibility to follow individuals over time using a historical identifier.
In sum: the historic US census data are a unique source for research on social and economic change and can provide population health researchers with information about social and economic determinants.Historic data are scarce and often only exists in aggregate tables. The key advantage of historic US census data is the availability of individual and household level characteristics that researchers can tabulate in ways that benefits their specific research questions. The data contain demographic variables, economic variables, migration variables and family variables. Within households, it is possible to create relational data as all relations between household members are known. For example, having data on the mother and her children in a household enables researchers to calculate the mother’s age at birth. Another advantage of the Complete Count data is the possibility to follow individuals over time using a historical identifier. In sum: the historic US census data are a unique source for research on social and economic change and can provide population health researchers with information about social and economic determinants.
The historic US 1930 census data was collected in April 1930. Enumerators collected data traveling to households and counting the residents who regularly slept at the household. Individuals lacking permanent housing were counted as residents of the place where they were when the data was collected. Household members absent on the day of data collected were either listed to the household with the help of other household members or were scheduled for the last census subdivision.
Notes
We provide IPUMS household and person data separately so that it is convenient to explore the descriptive statistics on each level. In order to obtain a full dataset, merge the household and person on the variables SERIAL and SERIALP. In order to create a longitudinal dataset, merge datasets on the variable HISTID.
Households with more than 60 people in the original data were broken up for processing purposes. Every person in the large households are considered to be in their own household. The original large households can be identified using the variable SPLIT, reconstructed using the variable SPLITHID, and the original count is found in the variable SPLITNUM.
Coded variables derived from string variables are still in progress. These variables include: occupation and industry.
Missing observations have been allocated and some inconsistencies have been edited for the following variables: SPEAKENG, YRIMMIG, CITIZEN, AGEMARR, AGE, BPL, MBPL, FBPL, LIT, SCHOOL, OWNERSHP, FARM, EMPSTAT, OCC1950, IND1950, MTONGUE, MARST, RACE, SEX, RELATE, CLASSWKR. The flag variables indicating an allocated observation for the associated variables can be included in your extract by clicking the ‘Select data quality flags’ box on the extract summary page.
Most inconsistent information was not edite