https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The United States Census is a decennial census mandated by Article I, Section 2 of the United States Constitution, which states: "Representatives and direct Taxes shall be apportioned among the several States ... according to their respective Numbers."
Source: https://en.wikipedia.org/wiki/United_States_Census
The United States census count (also known as the Decennial Census of Population and Housing) is a count of every resident of the US. The census occurs every 10 years and is conducted by the United States Census Bureau. Census data is publicly available through the census website, but much of the data is available in summarized data and graphs. The raw data is often difficult to obtain, is typically divided by region, and it must be processed and combined to provide information about the nation as a whole.
The United States census dataset includes nationwide population counts from the 2000 and 2010 censuses. Data is broken out by gender, age and location using zip code tabular areas (ZCTAs) and GEOIDs. ZCTAs are generalized representations of zip codes, and often, though not always, are the same as the zip code for an area. GEOIDs are numeric codes that uniquely identify all administrative, legal, and statistical geographic areas for which the Census Bureau tabulates data. GEOIDs are useful for correlating census data with other censuses and surveys.
Fork this kernel to get started.
https://bigquery.cloud.google.com/dataset/bigquery-public-data:census_bureau_usa
https://cloud.google.com/bigquery/public-data/us-census
Dataset Source: United States Census Bureau
Use: This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - http://www.data.gov/privacy-policy#data_policy - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.
Banner Photo by Steve Richey from Unsplash.
What are the ten most populous zip codes in the US in the 2010 census?
What are the top 10 zip codes that experienced the greatest change in population between the 2000 and 2010 censuses?
https://cloud.google.com/bigquery/images/census-population-map.png" alt="https://cloud.google.com/bigquery/images/census-population-map.png">
https://cloud.google.com/bigquery/images/census-population-map.png
The United States census count (also known as the Decennial Census of Population and Housing) is a count of every resident of the US. The census occurs every 10 years and is conducted by the United States Census Bureau. Census data is publicly available through the census website, but much of the data is available in summarized data and graphs. The raw data is often difficult to obtain, is typically divided by region, and it must be processed and combined to provide information about the nation as a whole. The United States census dataset includes nationwide population counts from the 2000 and 2010 censuses. Data is broken out by gender, age and location using zip code tabular areas (ZCTAs) and GEOIDs. ZCTAs are generalized representations of zip codes, and often, though not always, are the same as the zip code for an area. GEOIDs are numeric codes that uniquely identify all administrative, legal, and statistical geographic areas for which the Census Bureau tabulates data. GEOIDs are useful for correlating census data with other censuses and surveys. This public dataset is hosted in Google BigQuery and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery .
The United States census count (also known as the Decennial Census of Population and Housing) is a count of every resident of the US. The census occurs every 10 years and is conducted by the United States Census Bureau. Census data is publicly available through the census website, but much of the data is available in summarized data and graphs. The raw data is often difficult to obtain, is typically divided by region, and it must be processed and combined to provide information about the nation as a whole. Update frequency: Historic (none)
United States Census Bureau
SELECT
zipcode,
population
FROM
bigquery-public-data.census_bureau_usa.population_by_zip_2010
WHERE
gender = ''
ORDER BY
population DESC
LIMIT
10
This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - http://www.data.gov/privacy-policy#data_policy - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.
See the GCP Marketplace listing for more details and sample queries: https://console.cloud.google.com/marketplace/details/united-states-census-bureau/us-census-data
The Census Bureau conducts nearly one hundred surveys and censuses every year. By law, no one is permitted to reveal information from these censuses and surveys that could identify any person, household, or business. The Decennial Census collects data every 10 years about households, income, education, homeownership, and more. NOTE: Follow the link and search for SAN FRANCISCO data.
Every 10 years, the number of seats a state has in the U.S. House of Representatives, and therefore the Electoral College, changes based on population. While many states experienced no change in representation due to the 2020 Census, a few states gained or lost seats. Texas notably gained two seats due to an increase in population, while New York, Michigan, California, West Virginia, Pennsylvania, Ohio, and Illinois all lost one seat.
This change will stay in place until 2030, when the next Census is conducted in the United States.
The once-a-decade decennial census was conducted in April 2010 by the U.S. Census Bureau. This count of every resident in the United States was mandated by Article I, Section 2 of the Constitution and all households in the U.S. and individuals living in group quarters were required by law to respond to the 2010 Census questionnaire. The data collected by the decennial census determine the number of seats each state has in the U.S. House of Representatives and is also used to distribute billions in federal funds to local communities. The questionnaire consisted of a limited number of questions but allowed for the collection of information on the number of people in the household and their relationship to the householder, an individual's age, sex, race and Hispanic ethnicity, the number of housing units and whether those units are owner- or renter-occupied, or vacant. Results for sub-state geographic areas in New Mexico were released in a series of data products. These data come from Summary File 1 (SF-1). The geographic coverage for SF-1 includes the state, counties, places (both incorporated and unincorporated communities), tribal lands, school districts, census tracts, block groups and blocks, among others. The data in these particular RGIS Clearinghouse tables are for New Mexico and all census tracts. There are two data tables in this file. Table DC10_00213 shows counts of population by eighteen 5-year age groups for both sexes combined. Table DC10_00214 shows percent distribution of population by eighteen 5-year age groups for both sexes combined. These files, along with file-specific descriptions (in Word and text formats) are available in a single zip file.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The Census Bureau conducts nearly one hundred surveys and censuses every year. By law, no one is permitted to reveal information from these censuses and surveys that could identify any person, household, or business. The Decennial Census collects data every 10 years about households, income, education, homeownership, and more.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset was developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau.For a deep dive into the data model including every specific metric, see the Infrastructure Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics.Naming conventions:Prefixes: None Countp Percentr Ratem Mediana Mean (average)t Aggregate (total)ch Change in absolute terms (value in t2 - value in t1)pch Percent change ((value in t2 - value in t1) / value in t1)chp Change in percent (percent in t2 - percent in t1)s Significance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computed Suffixes: _e19 Estimate from 2014-19 ACS_m19 Margin of Error from 2014-19 ACS_00_v19 Decennial 2000, re-estimated to 2019 geography_00_19 Change, 2000-19_e10_v19 2006-10 ACS, re-estimated to 2019 geography_m10_v19 Margin of Error from 2006-10 ACS, re-estimated to 2019 geography_e10_19 Change, 2010-19The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2015-2019). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2015-2019Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the manifest: https://www.arcgis.com/sharing/rest/content/items/3d489c725bb24f52a987b302147c46ee/data
The once-a-decade decennial census was conducted in April 2010 by the U.S. Census Bureau. This count of every resident in the United States was mandated by Article I, Section 2 of the Constitution and all households in the U.S. and individuals living in group quarters were required by law to respond to the 2010 Census questionnaire. The data collected by the decennial census determine the number of seats each state has in the U.S. House of Representatives and is also used to distribute billions in federal funds to local communities. The questionnaire consisted of a limited number of questions but allowed for the collection of information on the number of people in the household and their relationship to the householder, an individual's age, sex, race and Hispanic ethnicity, the number of housing units and whether those units are owner- or renter-occupied, or vacant. Results for sub-state geographic areas in New Mexico were released in a series of data products. These data come from Summary File 1 (SF-1). The geographic coverage for SF-1 includes the state, counties, places (both incorporated and unincorporated communities), tribal lands, school districts, census tracts, block groups and blocks, among others. The data in these particular RGIS Clearinghouse tables are for New Mexico and all census tracts. There are two data tables in this file. Table DC10_00215 shows counts of males by eighteen 5-year age groups. Table DC10_00216 shows percent distribution of males by eighteen 5-year age groups. These files, along with file-specific descriptions (in Word and text formats) are available in a single zip file.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This layer was developed by the Research & Analytics Division of the Atlanta Regional Commission using data from the U.S. Census Bureau. The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2014-2018). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For a deep dive into the data model including every specific metric, see the Infrastructure Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics. For further explanation of ACS estimates and margin of error, visit Census ACS website.
For more than 150 years, the U.S. Department of Commerce, Bureau of the Census, conducted the census of agriculture. However, the 2002 Appropriations Act transferred the responsibility from the Bureau of the Census to the U.S. Department of Agriculture (USDA), National Agricultural Statistics Service (NASS). The 2007 Census of Agriculture for the U.S. Virgin Islands is the second census in the U.S. Virgin Islands conducted by NASS. The census of agriculture is taken to obtain agricultural statistics for each county, State (including territories and protectorates), and the Nation. The first U.S. agricultural census data were collected in 1840 as a part of the sixth decennial census. From 1840 to 1920, an agricultural census was taken as a part of each decennial census. Since 1920, a separate national agricultural census has been taken every 5 years. The 2007 census is the 14th census of agriculture of the U.S. Virgin Islands. The first, taken in 1920, was a special census authorized by the Secretary of Commerce. The next agriculture census was taken in 1930 in conjunction with the decennial census, a practice that continued every 10 years through 1960. The 1964 Census of Agriculture was the first quinquennial (5-year) census to be taken in the U.S. Virgin Islands. In 1976, Congress authorized the census of agriculture to be taken for 1978 and 1982 to adjust the data-reference year to coincide with the 1982 Economic Censuses covering manufacturing, mining, construction, retail trade, wholesale trade, service industries, and selected transportation activities. After 1982, the agriculture census reverted to a 5-year cycle. Data in this publication are for the calendar year 2007, and inventory data reflect what was on hand on December 31, 2007. This is the same reference period used in the 2002 census. Prior to the 2002 census, data was collected in the summer for the previous 12 months, with inventory items counted as what was on hand as of July 1 of the year the data collection was done.
Objectives: The census of agriculture is the leading source of statistics about the U.S. Virgin Islands’s agricultural production and the only source of consistent, comparable data at the island level. Census statistics are used to measure agricultural production and to identify trends in an ever changing agricultural sector. Many local programs use census data as a benchmark for designing and evaluating surveys. Private industry uses census statistics to provide a more effective production and distribution system for the agricultural community.
National coverage
Households
The statistical unit was a farm, defined as "any place from which USD 500 or more of agricultural products were produced and sold, or normally would had been sold, during the calendar year 2007". According to the census definition, a farm is essentially an operating unit, not an ownership tract. All land operated or managed by one person or partnership represents one farm. In the case of tenants, the land assigned to each tenant is considered a separate farm, even though the landlord may consider the entire landholding to be one unit rather than several separate units.
Census/enumeration data [cen]
(a) Method of Enumeration As in the previous censuses of the U.S. Virgin Islands, a direct enumeration procedure was used in the 2007 Census of Agriculture. Enumeration was based on a list of farm operators compiled by the U.S. Virgin Islands Department of Agriculture. This list was compiled with the help of the USDA Farm Services Agency located in St. Croix. The statistics in this report were collected from farm operators beginning in January of 2003. Each enumerator was assigned a list of individuals or farm operations from a master enumeration list. The enumerators contacted persons or operations on their list and completed a census report form for all farm operations. If the person on the list was not operating a farm, the enumerator recorded whether the land had been sold or rented to someone else and was still being used for agriculture. If land was sold or rented out, the enumerator got the name of the new operator and contacted that person to ensure that he or she was included in the census.
(b) Frame The census frame consisted of a list of farm operators compiled by the U.S. Virgin Islands DA. This list was compiled with the help of the USDA Farm Services Agency, located in St. Croix.
(c) Complete and/or sample enumeration methods The census was a complete enumeration of all farm operators registered in the list compiled by the United States of America in the CA 2007.
Face-to-face [f2f]
The questionnaire (report form) for the CA 2007 was prepared by NASS, in cooperation with the DA of the U.S. Virgin Islands. Only one questionnaire was used for data collection covering topics on:
The questionnaire of the 2007 CA covered 12 of the 16 core items' recommended for the WCA 2010 round.
DATA PROCESSING The processing of the 2007 Census of Agriculture for the U.S. Virgin Islands was done in St. Croix. Each report form was reviewed and coded prior to data keying. Report forms not meeting the census farm definition were voided. The remaining report forms were examined for clarity and completeness. Reporting errors in units of measures, illegible entries, and misplaced entries were corrected. After all the report forms had been reviewed and coded, the data were keyed and subjected to a thorough computer edit. The edit performed comprehensive checks for consistency and reasonableness, corrected erroneous or inconsistent data, supplied missing data based on similar farms, and assigned farm classification codes necessary for tabulating the data. All substantial changes to the data generated by the computer edits were reviewed and verified by analysts. Inconsistencies identified, but not corrected by the computer, were reviewed, corrected, and keyed to a correction file. The corrected data were then tabulated by the computer and reviewed by analysts. Prior to publication, tabulated totals were reviewed by analysts to identify inconsistencies and potential coverage problems. Comparisons were made with previous census data, as well as other available data. The computer system provided the capability to review up-to-date tallies of all selected data items for various sets of criteria which included, but were not limited to, geographic levels, farm types, and sales levels. Data were examined for each set of criteria and any inconsistencies or potential problems were then researched by examining individual data records contributing to the tabulated total. W hen necessary, data inconsistencies were resolved by making corrections to individual data records.
The accuracy of these tabulated data is determined by the joint effects of the various nonsampling errors. No direct measures of these effects have been obtained; however, precautionary steps were taken in all phases of data collection, processing, and tabulation of the data in an effort to minimize the effects of nonsampling errors.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This layer was developed by the Research & Analytics Division of the Atlanta Regional Commission using data from the U.S. Census Bureau. The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2014-2018). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For a deep dive into the data model including every specific metric, see the Infrastructure Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics. For further explanation of ACS estimates and margin of error, visit Census ACS website.
description: The once-a-decade decennial census was conducted in April 2010 by the U.S. Census Bureau. This count of every resident in the United States was mandated by Article I, Section 2 of the Constitution and all households in the U.S. and individuals living in group quarters were required by law to respond to the 2010 Census questionnaire. The data collected by the decennial census determine the number of seats each state has in the U.S. House of Representatives and is also used to distribute billions in federal funds to local communities. The questionnaire consisted of a limited number of questions but allowed for the collection of information on the number of people in the household and their relationship to the householder, an individual's age, sex, race and Hispanic ethnicity, the number of housing units and whether those units are owner- or renter-occupied, or vacant. Results for sub-state geographic areas in New Mexico were released in a series of data products. These data come from Summary File 1 (SF-1). The geographic coverage for SF-1 includes the state, counties, places (both incorporated and unincorporated communities), tribal lands, school districts, census tracts, block groups and blocks, among others. The data in these particular RGIS Clearinghouse tables are for Torrance County and all census block groups within the county. There are two data tables in this file. Table DC10_00219 shows counts of population by eighteen 5-year age groups for both sexes combined. Table DC10_00220 shows percent distribution of population by eighteen 5-year age groups for both sexes combined. These files, along with file-specific descriptions (in Word and text formats) are available in a single zip file.; abstract: The once-a-decade decennial census was conducted in April 2010 by the U.S. Census Bureau. This count of every resident in the United States was mandated by Article I, Section 2 of the Constitution and all households in the U.S. and individuals living in group quarters were required by law to respond to the 2010 Census questionnaire. The data collected by the decennial census determine the number of seats each state has in the U.S. House of Representatives and is also used to distribute billions in federal funds to local communities. The questionnaire consisted of a limited number of questions but allowed for the collection of information on the number of people in the household and their relationship to the householder, an individual's age, sex, race and Hispanic ethnicity, the number of housing units and whether those units are owner- or renter-occupied, or vacant. Results for sub-state geographic areas in New Mexico were released in a series of data products. These data come from Summary File 1 (SF-1). The geographic coverage for SF-1 includes the state, counties, places (both incorporated and unincorporated communities), tribal lands, school districts, census tracts, block groups and blocks, among others. The data in these particular RGIS Clearinghouse tables are for Torrance County and all census block groups within the county. There are two data tables in this file. Table DC10_00219 shows counts of population by eighteen 5-year age groups for both sexes combined. Table DC10_00220 shows percent distribution of population by eighteen 5-year age groups for both sexes combined. These files, along with file-specific descriptions (in Word and text formats) are available in a single zip file.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This layer was developed by the Research & Analytics Group of the Atlanta Regional Commission, using data from the U.S. Census Bureau’s American Community Survey 5-year estimates for 2013-2017, to show school enrollment, education attainments, and household composition by race and by US Congressional Districts in Georgia.
The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent.
The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2013-2017). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available.
For further explanation of ACS estimates and margin of error, visit Census ACS website.
Naming conventions:
Prefixes:
None
Count
p
Percent
r
Rate
m
Median
a
Mean (average)
t
Aggregate (total)
ch
Change in absolute terms (value in t2 - value in t1)
pch
Percent change ((value in t2 - value in t1) / value in t1)
chp
Change in percent (percent in t2 - percent in t1)
Suffixes:
None
Change over two periods
_e
Estimate from most recent ACS
_m
Margin of Error from most recent ACS
_00
Decennial 2000
Attributes:
Attributes and definitions available below under "Attributes" section and in Infrastructure Manifest (due to text box constraints, attributes cannot be displayed here).
Source: U.S. Census Bureau, Atlanta Regional Commission
Date: 2013-2017
For additional information, please visit the Census ACS website.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This layer was developed by the Research & Analytics Group of the Atlanta Regional Commission, using data from the U.S. Census Bureau to show population change from 2000 to2019. It shows the population change from 2000 to2019 by ARC 20 County. This layer was developed by the Research & Analytics Division of the Atlanta Regional Commission using data from the U.S. Census Bureau.
The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimated value is expressed as a number, then its MOE will also be a number; if the estimated value is expressed as a percent, then its MOE will also be a percent.
The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2015-2019). Therefore, these data do not represent anyone specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available.
For a deep dive into the data model including every specific metric, see the Infrastructure Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes, and so forth for all metrics.
For further explanation of ACS estimates and margin of error, visit Census ACS website.
Naming conventions:
Prefixes:
None
Count
p
Percent
r
Rate
m
Median
a
Mean (average)
t
Aggregate (total)
ch
Change in absolute terms (value in t2 - value in t1)
pch
Percent change ((value in t2 - value in t1) / value in t1)
chp
Change in percent (percent in t2 - percent in t1)
s
Significance flag for change: 1 = statistically significant with a 90% Confidence Interval, 0 = not statistically significant, blank = cannot be computed
Suffixes:
_e18
Estimate from 2015-19 ACS
_m19
Margin of Error from 2015-19 ACS
_00_v19
Decennial 2000 in 2019 geography boundary
_00_19
Change, 2000-19
_e10_v19
Estimate from 2006-10 ACS in 2019 geography boundary
_m10_v19
Margin of Error from 2006-10 ACS in 2019 geography boundary
_e10_19
Change, 2010-19
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This layer was developed by the Research & Analytics Division of the Atlanta Regional Commission using data from the U.S. Census Bureau.
The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent.
The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2014-2018). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available.
For a deep dive into the data model including every specific metric, see the Infrastructure Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics.
For further explanation of ACS estimates and margin of error, visit Census ACS website.
Naming conventions:
Prefixes:
None
Count
p
Percent
r
Rate
m
Median
a
Mean (average)
t
Aggregate (total)
ch
Change in absolute terms (value in t2 - value in t1)
pch
Percent change ((value in t2 - value in t1) / value in t1)
chp
Change in percent (percent in t2 - percent in t1)
s
Significance flag for change: 1 = statistically significant with a 90% Confidence Interval, 0 = not statistically significant, blank = cannot be computed
Suffixes:
_e18
Estimate from 2014-18 ACS
_m18
Margin of Error from 2014-18 ACS
_00_v18
Decennial 2000 in 2018 geography boundary
_00_18
Change, 2000-18
_e10_v18
Estimate from 2006-10 ACS in 2018 geography boundary
_m10_v18
Margin of Error from 2006-10 ACS in 2018 geography boundary
_e10_18
Change, 2010-18
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This layer was developed by the Research & Analytics Division of the Atlanta Regional Commission using data from the U.S. Census Bureau.
The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent.
The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2014-2018). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available.
For a deep dive into the data model including every specific metric, see the Infrastructure Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics.
For further explanation of ACS estimates and margin of error, visit Census ACS website.
Naming conventions:
Prefixes:
None
Count
p
Percent
r
Rate
m
Median
a
Mean (average)
t
Aggregate (total)
ch
Change in absolute terms (value in t2 - value in t1)
pch
Percent change ((value in t2 - value in t1) / value in t1)
chp
Change in percent (percent in t2 - percent in t1)
s
Significance flag for change: 1 = statistically significant with a 90% Confidence Interval, 0 = not statistically significant, blank = cannot be computed
Suffixes:
_e18
Estimate from 2014-18 ACS
_m18
Margin of Error from 2014-18 ACS
_00_v18
Decennial 2000 in 2018 geography boundary
_00_18
Change, 2000-18
_e10_v18
Estimate from 2006-10 ACS in 2018 geography boundary
_m10_v18
Margin of Error from 2006-10 ACS in 2018 geography boundary
_e10_18
Change, 2010-18
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Mansfield. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.
Key observations: Insights from 2023
Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Mansfield, while the Census reported a median income of $47,083 for all male workers aged 15 years and older, data for females in the same category was unavailable due to an insufficient number of sample observations.
Given the absence of income data for females from the Census Bureau, conducting a thorough analysis of gender-based pay disparity in the town of Mansfield was not possible.
- Full-time workers, aged 15 years and older: In Mansfield, among full-time, year-round workers aged 15 years and older, males earned a median income of $61,964, while females earned $55,833, resulting in a 10% gender pay gap among full-time workers. This illustrates that women earn 90 cents for each dollar earned by men in full-time positions. While this gap shows a trend where women are inching closer to wage parity with men, it also exhibits a noticeable income difference for women working full-time in the town of Mansfield.When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.
Gender classifications include:
Employment type classifications include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Mansfield median household income by race. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Ten Sleep. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.
Key observations: Insights from 2023
Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Ten Sleep, the median income for all workers aged 15 years and older, regardless of work hours, was $26,563 for males and $22,500 for females.
Based on these incomes, we observe a gender gap percentage of approximately 15%, indicating a significant disparity between the median incomes of males and females in Ten Sleep. Women, regardless of work hours, still earn 85 cents to each dollar earned by men, highlighting an ongoing gender-based wage gap.
- Full-time workers, aged 15 years and older: In Ten Sleep, for full-time, year-round workers aged 15 years and older, the Census Bureau did not report the median income for both males and females due to an insufficient number of sample observations.As income data for both males and females was unavailable, conducting a comprehensive analysis of gender-based pay disparity in the town of Ten Sleep was not possible.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.
Gender classifications include:
Employment type classifications include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Ten Sleep median household income by race. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This layer was developed by the Research & Analytics Division of the Atlanta Regional Commission using data from the U.S. Census Bureau.
The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent.
The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2014-2018). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available.
For a deep dive into the data model including every specific metric, see the Infrastructure Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics.
For further explanation of ACS estimates and margin of error, visit Census ACS website.
Naming conventions:
Prefixes:
None
Count
p
Percent
r
Rate
m
Median
a
Mean (average)
t
Aggregate (total)
ch
Change in absolute terms (value in t2 - value in t1)
pch
Percent change ((value in t2 - value in t1) / value in t1)
chp
Change in percent (percent in t2 - percent in t1)
s
Significance flag for change: 1 = statistically significant with a 90% Confidence Interval, 0 = not statistically significant, blank = cannot be computed
Suffixes:
_e18
Estimate from 2014-18 ACS
_m18
Margin of Error from 2014-18 ACS
_00_v18
Decennial 2000 in 2018 geography boundary
_00_18
Change, 2000-18
_e10_v18
Estimate from 2006-10 ACS in 2018 geography boundary
_m10_v18
Margin of Error from 2006-10 ACS in 2018 geography boundary
_e10_18
Change, 2010-18
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The United States Census is a decennial census mandated by Article I, Section 2 of the United States Constitution, which states: "Representatives and direct Taxes shall be apportioned among the several States ... according to their respective Numbers."
Source: https://en.wikipedia.org/wiki/United_States_Census
The United States census count (also known as the Decennial Census of Population and Housing) is a count of every resident of the US. The census occurs every 10 years and is conducted by the United States Census Bureau. Census data is publicly available through the census website, but much of the data is available in summarized data and graphs. The raw data is often difficult to obtain, is typically divided by region, and it must be processed and combined to provide information about the nation as a whole.
The United States census dataset includes nationwide population counts from the 2000 and 2010 censuses. Data is broken out by gender, age and location using zip code tabular areas (ZCTAs) and GEOIDs. ZCTAs are generalized representations of zip codes, and often, though not always, are the same as the zip code for an area. GEOIDs are numeric codes that uniquely identify all administrative, legal, and statistical geographic areas for which the Census Bureau tabulates data. GEOIDs are useful for correlating census data with other censuses and surveys.
Fork this kernel to get started.
https://bigquery.cloud.google.com/dataset/bigquery-public-data:census_bureau_usa
https://cloud.google.com/bigquery/public-data/us-census
Dataset Source: United States Census Bureau
Use: This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - http://www.data.gov/privacy-policy#data_policy - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.
Banner Photo by Steve Richey from Unsplash.
What are the ten most populous zip codes in the US in the 2010 census?
What are the top 10 zip codes that experienced the greatest change in population between the 2000 and 2010 censuses?
https://cloud.google.com/bigquery/images/census-population-map.png" alt="https://cloud.google.com/bigquery/images/census-population-map.png">
https://cloud.google.com/bigquery/images/census-population-map.png