Links to Audit Reports conducted on the U.S. Census
Find information using interactive applications to get statistics from multiple surveys.
This map shows population density of the United States. Areas in darker magenta have much higher population per square mile than areas in orange or yellow. Data is from the U.S. Census Bureauās 2020 Census Demographic and Housing Characteristics. The map's layers contain total population counts by sex, age, and race groups for Nation, State, County, Census Tract, and Block Group in the United States and Puerto Rico. From the Census:"Population density allows for broad comparison of settlement intensity across geographic areas. In the U.S., population density is typically expressed as the number of people per square mile of land area. The U.S. value is calculated by dividing the total U.S. population (316 million in 2013) by the total U.S. land area (3.5 million square miles).When comparing population density values for different geographic areas, then, it is helpful to keep in mind that the values are most useful for small areas, such as neighborhoods. For larger areas (especially at the state or country scale), overall population density values are less likely to provide a meaningful measure of the density levels at which people actually live, but can be useful for comparing settlement intensity across geographies of similar scale." SourceAbout the dataYou can use this map as is and you can also modify it to use other attributes included in its layers. This map's layers contain total population counts by sex, age, and race groups data from the 2020 Census Demographic and Housing Characteristics.āÆThis is shown by Nation, State, County, Census Tract, Block Group boundaries.āÆEach geography layer contains a common set of Census counts based on available attributes from the U.S. Census Bureau. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis.Vintage of boundaries and attributes: 2020 Demographic and Housing Characteristics Table(s): P1, H1, H3, P2, P3, P5, P12, P13, P17, PCT12 (Not all lines of these DHC tables are available in this feature layer.)Data downloaded from:āÆU.S. Census Bureauās data.census.gov siteDate the Data was Downloaded: May 25, 2023Geography Levels included: Nation, State, County, Census Tract, Block GroupNational Figures:āÆincluded in Nation layer The United States Census Bureau Demographic and Housing Characteristics: 2020 Census Results 2020 Census Data Quality Geography & 2020 Census Technical Documentation Data Table Guide:āÆincludes the final list of tables, lowest level of geography by table and table shells for the Demographic Profile and Demographic and Housing Characteristics.News & Updates This map is ready to be used in ArcGIS Pro, ArcGIS Online and its configurable apps, Story Maps, dashboards, Notebooks, Python, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the U.S. Census Bureau when using this data. Data Processing Notes: These 2020 Census boundaries come from theāÆUS Census TIGER geodatabases. These are Census boundaries with water and/or coastlinesāÆerasedāÆfor cartographicāÆand mappingāÆpurposes. For Census tracts and block groups, the water cutouts are derived from a subset of theāÆ2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies)āÆare erased from the tract and block group boundaries, as well asāÆadditionalāÆimportantāÆfeatures. For state and county boundaries, the water and coastlines are derived from the coastlines of theāÆ2020āÆ500kāÆTIGER Cartographic Boundary Shapefiles.āÆThese are erased to more accurately portray the coastlines and Great Lakes.āÆThe original AWATER and ALAND fields are unchanged and available as attributes within the data table (units are square meters).⯠The layer contains all US states, Washington D.C., and Puerto Rico. Census tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99). Block groups that fall within the same criteria (Block Group denoted as 0 with no area land) have also been removed.Percentages and derived counts, are calculated values (that can be identified by the "_calc_" stub in the field name). Field alias names were created based on the Table Shells file available from the Data Table Guide for the Demographic Profile and Demographic and Housing Characteristics. Not all lines of all tables listed above are included in this layer. Duplicative counts were dropped. For example, P0030001 was dropped, as it is duplicative of P0010001.To protect the privacy and confidentiality of respondents, their data has been protected using differential privacy techniques by the U.S. Census Bureau.
This dataset contains poverty estimates at county level based on US Census Bureau program, Small Area Income and Poverty Estimates (SAIPE). The estimates are for counties and states in the United States, for the entire population and for three age groups of population.
license: mit
The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. ZIP Code Tabulation Areas (ZCTAs) are approximate area representations of U.S. Postal Service (USPS) ZIP Code service areas that the Census Bureau creates to present statistical data for each decennial census. The Census Bureau delineates ZCTA boundaries for the United States, Puerto Rico, American Samoa, Guam, the Commonwealth of the Northern Mariana Islands, and the U.S. Virgin Islands once each decade following the decennial census. Data users should not use ZCTAs to identify the official USPS ZIP Code for mail delivery. The USPS makes periodic changes to ZIP Codes to support more efficient mail delivery. The Census Bureau uses tabulation blocks as the basis for defining each ZCTA. Tabulation blocks are assigned to a ZCTA based on the most frequently occurring ZIP Code for the addresses contained within that block. The most frequently occurring ZIP Code also becomes the five-digit numeric code of the ZCTA. These codes may contain leading zeros. Blocks that do not contain addresses but are surrounded by a single ZCTA (enclaves) are assigned to the surrounding ZCTA. Because the Census Bureau only uses the most frequently occurring ZIP Code to assign blocks, a ZCTA may not exist for every USPS ZIP Code. Some ZIP Codes may not have a matching ZCTA because too few addresses were associated with the specific ZIP Code or the ZIP Code was not the most frequently occurring ZIP Code within any of the blocks where it exists. The ZCTA boundaries in this release are those delineated following the 2010 Census.
The United States Census Bureau regularly releases a geodatabase named TIGER. This dataset contains the 2020 census tracts. Tract areas vary tremendously, but in urban areas are roughly equivalent to a neighborhood. There are just over 85000 polygon features covering the United States, the District of Columbia, Puerto Rico, and the Island areas. For full technical details on all TIGER 2020 products, see the TIGER technical documentation.
https://www.broward.org/Terms/Pages/Default.aspxhttps://www.broward.org/Terms/Pages/Default.aspx
A feature class of U.S. Census Bureau 2020 Census Tracts. 2020 Census Tracts are a geographic area the U.S. Census Bureau collects and tabulates data for from the decennial census, American Community Survey, and other surveys.
The TIGER/Line Roads County-based dataset was released February 28, 2023, by the United States Census Bureau (USCB) and is part of the U.S. Department of Transportation (USDOT)/Bureau of Transportation Statistics (BTS) National Transportation Atlas Database (NTAD). The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. The All Roads Shapefile includes all features within the MTDB Super Class "Road/Path Features" distinguished where the MAF/TIGER Feature Classification Code (MTFCC) for the feature in MTDB that begins with "S". This includes all primary, secondary, local neighborhood, and rural roads, city streets, vehicular trails (4wd), ramps, service drives, alleys, parking lot roads, private roads for service vehicles (logging, oil fields, ranches, etc.), bike paths or trails, bridle/horse paths, walkways/pedestrian trails, and stairways.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median household incomes for various household sizes in Long Beach, NY, as reported by the U.S. Census Bureau. The dataset highlights the variation in median household income with the size of the family unit, offering valuable insights into economic trends and disparities within different household sizes, aiding in data analysis and decision-making.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Household Sizes:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Long Beach median household income. You can refer the same here
More details about each file are in the individual file descriptions.
This is a dataset from the U.S. Census Bureau hosted by the Federal Reserve Economic Database (FRED). FRED has a data platform found here and they update their information according the amount of data that is brought in. Explore the U.S. Census Bureau using Kaggle and all of the data sources available through the U.S. Census Bureau organization page!
This dataset is maintained using FRED's API and Kaggle's API.
Cover photo by Samuel Zeller on Unsplash
Unsplash Images are distributed under a unique Unsplash License.
2017 TIGER/LineĀ® Shapefiles: Counties (and equivalent)
2017 TIGER/LineĀ® Shapefiles: Military Installations
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median household incomes for various household sizes in Ship Bottom, NJ, as reported by the U.S. Census Bureau. The dataset highlights the variation in median household income with the size of the family unit, offering valuable insights into economic trends and disparities within different household sizes, aiding in data analysis and decision-making.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Household Sizes:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Ship Bottom median household income. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median household incomes for various household sizes in St. Robert, MO, as reported by the U.S. Census Bureau. The dataset highlights the variation in median household income with the size of the family unit, offering valuable insights into economic trends and disparities within different household sizes, aiding in data analysis and decision-making.
Key observations
https://i.neilsberg.com/ch/st-robert-mo-median-household-income-by-household-size.jpeg" alt="St. Robert, MO median household income, by household size (in 2022 inflation-adjusted dollars)">
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Household Sizes:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for St. Robert median household income. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median household incomes for various household sizes in Ewing, MO, as reported by the U.S. Census Bureau. The dataset highlights the variation in median household income with the size of the family unit, offering valuable insights into economic trends and disparities within different household sizes, aiding in data analysis and decision-making.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Household Sizes:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Ewing median household income. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median household incomes for various household sizes in Solana Beach, CA, as reported by the U.S. Census Bureau. The dataset highlights the variation in median household income with the size of the family unit, offering valuable insights into economic trends and disparities within different household sizes, aiding in data analysis and decision-making.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Household Sizes:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Solana Beach median household income. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Rochester Hills population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Rochester Hills. The dataset can be utilized to understand the population distribution of Rochester Hills by age. For example, using this dataset, we can identify the largest age group in Rochester Hills.
Key observations
The largest age group in Rochester Hills, MI was for the group of age 15 to 19 years years with a population of 5,839 (7.67%), according to the ACS 2019-2023 5-Year Estimates. At the same time, the smallest age group in Rochester Hills, MI was the 80 to 84 years years with a population of 1,540 (2.02%). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Rochester Hills Population by Age. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median household incomes for various household sizes in Manhattan Beach, CA, as reported by the U.S. Census Bureau. The dataset highlights the variation in median household income with the size of the family unit, offering valuable insights into economic trends and disparities within different household sizes, aiding in data analysis and decision-making.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Household Sizes:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Manhattan Beach median household income. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median household incomes for various household sizes in Grant City, MO, as reported by the U.S. Census Bureau. The dataset highlights the variation in median household income with the size of the family unit, offering valuable insights into economic trends and disparities within different household sizes, aiding in data analysis and decision-making.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Household Sizes:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Grant City median household income. You can refer the same here
Links to Audit Reports conducted on the U.S. Census