Population and household data for North Carolina, counties, and municipalities. Most data derived from from the US Census Bureau. decennial censuses. Also includes annual population estimates (US Bureau of Economic Analysis/US Census Bureau) and estimated historical and projected (through 2045) veteran populations from US Veterans Administration.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the North Carolina population by age. The dataset can be utilized to understand the age distribution and demographics of North Carolina.
The dataset constitues the following three datasets
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
U.S. Census Bureau QuickFacts statistics for Columbus County, North Carolina. QuickFacts data are derived from: Population Estimates, American Community Survey, Census of Population and Housing, Current Population Survey, Small Area Health Insurance Estimates, Small Area Income and Poverty Estimates, State and County Housing Unit Estimates, County Business Patterns, Nonemployer Statistics, Economic Census, Survey of Business Owners, Building Permits.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the North Carolina population by gender and age. The dataset can be utilized to understand the gender distribution and demographics of North Carolina.
The dataset constitues the following two datasets across these two themes
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
U.S. Census Bureau QuickFacts statistics for Rocky Mount city, North Carolina. QuickFacts data are derived from: Population Estimates, American Community Survey, Census of Population and Housing, Current Population Survey, Small Area Health Insurance Estimates, Small Area Income and Poverty Estimates, State and County Housing Unit Estimates, County Business Patterns, Nonemployer Statistics, Economic Census, Survey of Business Owners, Building Permits.
The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Census Blocks are statistical areas bounded on all sides by visible features, such as streets, roads, streams, and railroad tracks, and/or by nonvisible boundaries such as city, town, township, and county limits, and short line-of-sight extensions of streets and roads. Census blocks are relatively small in area; for example, a block in a city bounded by streets. However, census blocks in remote areas are often large and irregular and may even be many square miles in area. A common misunderstanding is that data users think census blocks are used geographically to build all other census geographic areas, rather all other census geographic areas are updated and then used as the primary constraints, along with roads and water features, to delineate the tabulation blocks. As a result, all 2020 Census blocks nest within every other 2020 Census geographic area, so that Census Bureau statistical data can be tabulated at the block level and aggregated up to the appropriate geographic areas. Census blocks cover all territory in the United States, Puerto Rico, and the Island Areas (American Samoa, Guam, the Commonwealth of the Northern Mariana Islands, and the U.S. Virgin Islands). Blocks are the smallest geographic areas for which the Census Bureau publishes data from the decennial census. A block may consist of one or more faces.
The 2022 cartographic boundary KMLs are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2020 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some states and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census and beyond, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
U.S. Census Bureau QuickFacts statistics for Spout Springs CDP, North Carolina. QuickFacts data are derived from: Population Estimates, American Community Survey, Census of Population and Housing, Current Population Survey, Small Area Health Insurance Estimates, Small Area Income and Poverty Estimates, State and County Housing Unit Estimates, County Business Patterns, Nonemployer Statistics, Economic Census, Survey of Business Owners, Building Permits.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Single-Parent Households with Children as a Percentage of Households with Children (5-year estimate) in Buncombe County, NC (S1101SPHOUSE037021) from 2009 to 2023 about Buncombe County, NC; Asheville; single-parent; NC; households; 5-year; and USA.
https://www.nconemap.gov/pages/termshttps://www.nconemap.gov/pages/terms
The 2020 TIGER/Line Shapefiles contain current geographic extent and boundaries of both legal and statistical entities (which have no governmental standing) for the United States, the District of Columbia, Puerto Rico, and the Island areas. This vintage includes boundaries of governmental units that match the data from the surveys that use 2020 geography (e.g., 2020 Population Estimates and the 2020 American Community Survey). In addition to geographic boundaries, the 2020 TIGER/Line Shapefiles also include geographic feature shapefiles and relationship files. Feature shapefiles represent the point, line and polygon features in the MTDB (e.g., roads and rivers). Relationship files contain additional attribute information users can join to the shapefiles. Both the feature shapefiles and relationship files reflect updates made in the database through September 2020. To see how the geographic entities, relate to one another, please see our geographic hierarchy diagrams here.Census Urbanized Areashttps://www2.census.gov/geo/tiger/TIGER2020/UACCensus Urban/Rural Census Block Shapefileshttps://www.census.gov/cgi-bin/geo/shapefiles/index.php2020 TIGER/Line and Redistricting shapefiles:https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.2020.htmlTechnical documentation:https://www2.census.gov/geo/pdfs/maps-data/data/tiger/tgrshp2020/TGRSHP2020_TechDoc.pdfTIGERweb REST Services:https://tigerweb.geo.census.gov/tigerwebmain/TIGERweb_restmapservice.htmlTIGERweb WMS Services:https://tigerweb.geo.census.gov/tigerwebmain/TIGERweb_wms.htmlThe legal entities included in these shapefiles are:American Indian Off-Reservation Trust LandsAmerican Indian Reservations – FederalAmerican Indian Reservations – StateAmerican Indian Tribal Subdivisions (within legal American Indian areas)Alaska Native Regional CorporationsCongressional Districts – 116th CongressConsolidated CitiesCounties and Equivalent Entities (except census areas in Alaska)Estates (US Virgin Islands only)Hawaiian Home LandsIncorporated PlacesMinor Civil DivisionsSchool Districts – ElementarySchool Districts – SecondarySchool Districts – UnifiedStates and Equivalent EntitiesState Legislative Districts – UpperState Legislative Districts – LowerSubminor Civil Divisions (Subbarrios in Puerto Rico)The statistical entities included in these shapefiles are:Alaska Native Village Statistical AreasAmerican Indian/Alaska Native Statistical AreasAmerican Indian Tribal Subdivisions (within Oklahoma Tribal Statistical Areas)Block Groups3-5Census AreasCensus BlocksCensus County Divisions (Census Subareas in Alaska)Unorganized Territories (statistical county subdivisions)Census Designated Places (CDPs)Census TractsCombined New England City and Town AreasCombined Statistical AreasMetropolitan and Micropolitan Statistical Areas and related statistical areasMetropolitan DivisionsNew England City and Town AreasNew England City and Town Area DivisionsOklahoma Tribal Statistical AreasPublic Use Microdata Areas (PUMAs)State Designated Tribal Statistical AreasTribal Designated Statistical AreasUrban AreasZIP Code Tabulation Areas (ZCTAs)Shapefiles - Features:Address Range-FeatureAll Lines (called Edges)All RoadsArea HydrographyArea LandmarkCoastlineLinear HydrographyMilitary InstallationPoint LandmarkPrimary RoadsPrimary and Secondary RoadsTopological Faces (polygons with all geocodes)Relationship Files:Address Range-Feature NameAddress RangesFeature NamesTopological Faces – Area LandmarkTopological Faces – Area HydrographyTopological Faces – Military Installations
The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File/Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Public Use Microdata Areas (PUMAs) are decennial census areas that permit the tabulation and dissemination of Public Use Microdata Sample (PUMS) data, American Community Survey (ACS) data, and data from other census and surveys. For the 2020 Census, the State Data Centers (SDCs) in each state, the District of Columbia, and the Commonwealth of Puerto Rico had the opportunity to delineate PUMAS within their state or statistically equivalent entity. All PUMAs must nest within states and have a minimum population threshold of 100,000 persons. 2020 PUMAs consist of census tracts and cover the entirety of the United States, Puerto Rico and Guam. American Samoa, the Commonwealth of the Northern Mariana Islands, and the U.S. Virgin Islands do not contain any 2020 PUMAs because the population is less than the minimum population requirement. Each PUMA is identified by a 5-character numeric census code that may contain leading zeros and a descriptive name. The 2020 PUMAs will appear in the 2022 TIGER/Line Shapefiles.
This resource is a member of a series. The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation.
Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2020 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some States and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States Population: North Carolina data was reported at 10,273,419.000 Person in 2017. This records an increase from the previous number of 10,156,689.000 Person for 2016. United States Population: North Carolina data is updated yearly, averaging 9,314,009.000 Person from Jun 2000 (Median) to 2017, with 18 observations. The data reached an all-time high of 10,273,419.000 Person in 2017 and a record low of 8,079,383.000 Person in 2000. United States Population: North Carolina data remains active status in CEIC and is reported by US Census Bureau. The data is categorized under Global Database’s USA – Table US.G003: Population By State.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the mean household income for each of the five quintiles in North Carolina, as reported by the U.S. Census Bureau. The dataset highlights the variation in mean household income across quintiles, offering valuable insights into income distribution and inequality.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Income Levels:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for North Carolina median household income. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the the household distribution across 16 income brackets among four distinct age groups in North Carolina: Under 25 years, 25-44 years, 45-64 years, and over 65 years. The dataset highlights the variation in household income, offering valuable insights into economic trends and disparities within different age categories, aiding in data analysis and decision-making..
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2022 1-Year Estimates.
Income brackets:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for North Carolina median household income by age. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the the household distribution across 16 income brackets among four distinct age groups in North Carolina: Under 25 years, 25-44 years, 45-64 years, and over 65 years. The dataset highlights the variation in household income, offering valuable insights into economic trends and disparities within different age categories, aiding in data analysis and decision-making..
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.
Income brackets:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for North Carolina median household income by age. You can refer the same here
The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Voting district is the generic name for geographic entities such as precincts, wards, and election districts established by State governments for the purpose of conducting elections. States participating in the 2010 Census Redistricting Data Program as part of Public Law 94-171 (1975) provided the Census Bureau with boundaries, codes, and names for their VTDs. Each VTD is identified by a 1- to 6-character alphanumeric census code that is unique within county. For the 2010 Census, Kentucky and Rhode Island are the only States that did not provide voting district boundaries as part of Phase 2 (the Voting District Project) of the Redistricting Data Program and no VTDs exist for these States in the 2020 Census data products. Note that only Montana and Oregon do not have complete coverage of VTDs for the 2020 Census.
The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. The TIGER/Line shapefiles include both incorporated places (legal entities) and census designated places or CDPs (statistical entities). An incorporated place is established to provide governmental functions for a concentration of people as opposed to a minor civil division (MCD), which generally is created to provide services or administer an area without regard, necessarily, to population. Places always nest within a state, but may extend across county and county subdivision boundaries. An incorporated place usually is a city, town, village, or borough, but can have other legal descriptions. CDPs are delineated for the decennial census as the statistical counterparts of incorporated places. CDPs are delineated to provide data for settled concentrations of population that are identifiable by name, but are not legally incorporated under the laws of the state in which they are located. The boundaries for CDPs often are defined in partnership with state, local, and/or tribal officials and usually coincide with visible features or the boundary of an adjacent incorporated place or another legal entity. CDP boundaries often change from one decennial census to the next with changes in the settlement pattern and development; a CDP with the same name as in an earlier census does not necessarily have the same boundary. The only population/housing size requirement for CDPs is that they must contain some housing and population. The boundaries of most incorporated places in this shapefile are as of January 1, 2021, as reported through the Census Bureau's Boundary and Annexation Survey (BAS). The boundaries of all CDPs were delineated as part of the Census Bureau's Participant Statistical Areas Program (PSAP) for the 2020 Census.
The 2023 cartographic boundary shapefiles are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files. County subdivisions are the primary divisions of counties and their equivalent entities for the reporting of Census Bureau data. They include legally-recognized minor civil divisions (MCDs) and statistical census county divisions (CCDs), and unorganized territories. In MCD states where no MCD exists or no MCD is defined, the Census Bureau creates statistical unorganized territories to complete coverage. The entire area of the United States, Puerto Rico, and the Island Areas are covered by county subdivisions. The generalized boundaries of legal MCDs are based on those as of January 1, 2023, as reported through the Census Bureau's Boundary and Annexation Survey (BAS). The generalized boundaries of all CCDs, delineated in 21 states, are based on those as reported as part of the Census Bureau's Participant Statistical Areas Program (PSAP) for the 2020 Census.
The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. After each decennial census, the Census Bureau delineates Public Use Microdata Areas (PUMAs) for the tabulation and dissemination of decennial census Public Use Microdata Sample (PUMS) data, American Community Survey (ACS) PUMS data, and ACS period estimates. Nesting within states, or equivalent entities, PUMAs cover the entirety of the United States, Puerto Rico, Guam, and the U.S. Virgin Islands. PUMA delineations are subject to population, building block geography, geographic nesting, and contiguity criteria. Each PUMA is identified by a 5-character numeric census code that may contain leading zeros and a descriptive name.
Population and household data for North Carolina, counties, and municipalities. Most data derived from from the US Census Bureau. decennial censuses. Also includes annual population estimates (US Bureau of Economic Analysis/US Census Bureau) and estimated historical and projected (through 2045) veteran populations from US Veterans Administration.