Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Table contains total population and population density summarized at county, city, zip code, and census tract level. Population density is defined as number of people residing per square mile of area. Data are presented for zip codes (ZCTAs) fully within the county. Source: U.S. Census Bureau, 2016-2020 American Community Survey 5-year estimates, Table B01001; data accessed on April 11, 2022 from https://api.census.gov. The 2020 Decennial geographies are used for data summarization.METADATA:notes (String): Lists table title, notes, sourcesgeolevel (String): Level of geographyGEOID (String): Geography IDNAME (String): Name of geographyt_pop (Numeric): Total populationpop_density (Numeric): Area in square milesarea (Numeric): Population density
Facebook
TwitterThis data comes from the 2010 Census Profile of General Population and Housing Characteristics. Zip codes are limited to those that fall at least partially within LA city boundaries. The dataset will be updated after the next census in 2020. To view all possible columns and access the data directly, visit http://factfinder.census.gov/faces/affhelp/jsf/pages/metadata.xhtml?lang=en&type=table&id=table.en.DEC_10_SF1_SF1DP1#main_content.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Count and percentage of county residents by age groups. Data are summarized at county, city, zip code and census tract of residence. Data are presented for zip codes (ZCTAs) fully within the county. Source: U.S. Census Bureau, 2016-2020 American Community Survey 5-year estimates, Table B01001; data accessed on April 11, 2022 from https://api.census.gov. The 2020 Decennial geographies are used for data summarization.METADATA:notes (String): Lists table title, notes, sourcesgeolevel (String): Level of geographyGEOID (Numeric): Geography IDNAME (String): Name of geographyt_pop (Numeric): Total populationt0_4 (Numeric): Population count ages less than 5 yearst5_14 (Numeric): Population count ages 5 to 14 yearst15_24 (Numeric): Population count ages 15 to 24 yearst25_34 (Numeric): Population count ages 25 to 34 yearst35_44 (Numeric): Population count ages 35 to 44 yearst45_54 (Numeric): Population count ages 45 to 54 yearst55_64 (Numeric): Population count ages 55 to 64 yearst65over (Numeric): Population count ages 65 years and olderp_0_4 (Numeric): Percent of people ages less than 5 yearsp_5_14 (Numeric): Percent of people ages 5 to 14 yearsp_15_24 (Numeric): Percent of people ages 15 to 24 yearsp_25_34 (Numeric): Percent of people ages 25 to 34 yearsp_35_44 (Numeric): Percent of people ages 35 to 44 yearsp_45_54 (Numeric): Percent of people ages 45 to 54 yearsp_55_64 (Numeric): Percent of people ages 55 to 64 yearsp_65over (Numeric): Percent of people ages 65 years and older
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Table contains count and percent distribution of county residents by racial/ethnic categories. Data are summarized at county, city, zip code and census tract of residence. Data are presented for zip codes (ZCTAs) fully within the county. People of color category includes people who identify as Latino, African American, American Indian/Alaska Native, Asian, Pacific Islander, or multi-race. Source: U.S. Census Bureau, 2016-2020 American Community Survey 5-year estimates, Table B03002; data accessed on April 11, 2022 from https://api.census.gov. The 2020 Decennial geographies are used for data summarization.METADATA:notes (String): Lists table title, notes, sourcesgeolevel (String): Level of geographyGEOID (String): Geography IDNAME (String): Name of geographyt_pop (Numeric): Total populationAfrican_American_NH (Numeric): Number of non-Hispanic African Americansp_African_American_NH (Numeric): Percent of non-Hispanic African AmericansAsian_NH (Numeric): Number of non-Hispanic Asiansp_Asian_NH (Numeric): Percent of non-Hispanic AsiansLatino (Numeric): Number of Latinosp_Latino (Numeric): Percent of LatinosWhite_NH (Numeric): Number of non-Hispanic Whitep_White_NH (Numeric): Percent of non-Hispanic Whitepeople_of_color2 (Numeric): Number of people of colorp_poc2 (Numeric): Percent of people of color
Facebook
TwitterVITAL SIGNS INDICATOR Life Expectancy (EQ6)
FULL MEASURE NAME Life Expectancy
LAST UPDATED April 2017
DESCRIPTION Life expectancy refers to the average number of years a newborn is expected to live if mortality patterns remain the same. The measure reflects the mortality rate across a population for a point in time.
DATA SOURCE State of California, Department of Health: Death Records (1990-2013) No link
California Department of Finance: Population Estimates Annual Intercensal Population Estimates (1990-2010) Table P-2: County Population by Age (2010-2013) http://www.dof.ca.gov/Forecasting/Demographics/Estimates/
U.S. Census Bureau: Decennial Census ZCTA Population (2000-2010) http://factfinder.census.gov
U.S. Census Bureau: American Community Survey 5-Year Population Estimates (2013) http://factfinder.census.gov
CONTACT INFORMATION vitalsigns.info@mtc.ca.gov
METHODOLOGY NOTES (across all datasets for this indicator) Life expectancy is commonly used as a measure of the health of a population. Life expectancy does not reflect how long any given individual is expected to live; rather, it is an artificial measure that captures an aspect of the mortality rates across a population that can be compared across time and populations. More information about the determinants of life expectancy that may lead to differences in life expectancy between neighborhoods can be found in the Bay Area Regional Health Inequities Initiative (BARHII) Health Inequities in the Bay Area report at http://www.barhii.org/wp-content/uploads/2015/09/barhii_hiba.pdf. Vital Signs measures life expectancy at birth (as opposed to cohort life expectancy). A statistical model was used to estimate life expectancy for Bay Area counties and ZIP Codes based on current life tables which require both age and mortality data. A life table is a table which shows, for each age, the survivorship of a people from a certain population.
Current life tables were created using death records and population estimates by age. The California Department of Public Health provided death records based on the California death certificate information. Records include age at death and residential ZIP Code. Single-year age population estimates at the regional- and county-level comes from the California Department of Finance population estimates and projections for ages 0-100+. Population estimates for ages 100 and over are aggregated to a single age interval. Using this data, death rates in a population within age groups for a given year are computed to form unabridged life tables (as opposed to abridged life tables). To calculate life expectancy, the probability of dying between the jth and (j+1)st birthday is assumed uniform after age 1. Special consideration is taken to account for infant mortality.
For the ZIP Code-level life expectancy calculation, it is assumed that postal ZIP Codes share the same boundaries as ZIP Code Census Tabulation Areas (ZCTAs). More information on the relationship between ZIP Codes and ZCTAs can be found at http://www.census.gov/geo/reference/zctas.html. ZIP Code-level data uses three years of mortality data to make robust estimates due to small sample size. Year 2013 ZIP Code life expectancy estimates reflects death records from 2011 through 2013. 2013 is the last year with available mortality data. Death records for ZIP Codes with zero population (like those associated with P.O. Boxes) were assigned to the nearest ZIP Code with population. ZIP Code population for 2000 estimates comes from the Decennial Census. ZIP Code population for 2013 estimates are from the American Community Survey (5-Year Average). ACS estimates are adjusted using Decennial Census data for more accurate population estimates. An adjustment factor was calculated using the ratio between the 2010 Decennial Census population estimates and the 2012 ACS 5-Year (with middle year 2010) population estimates. This adjustment factor is particularly important for ZCTAs with high homeless population (not living in group quarters) where the ACS may underestimate the ZCTA population and therefore underestimate the life expectancy. The ACS provides ZIP Code population by age in five-year age intervals. Single-year age population estimates were calculated by distributing population within an age interval to single-year ages using the county distribution. Counties were assigned to ZIP Codes based on majority land-area.
ZIP Codes in the Bay Area vary in population from over 10,000 residents to less than 20 residents. Traditional life expectancy estimation (like the one used for the regional- and county-level Vital Signs estimates) cannot be used because they are highly inaccurate for small populations and may result in over/underestimation of life expectancy. To avoid inaccurate estimates, ZIP Codes with populations of less than 5,000 were aggregated with neighboring ZIP Codes until the merged areas had a population of more than 5,000. ZIP Code 94103, representing Treasure Island, was dropped from the dataset due to its small population and having no bordering ZIP Codes. In this way, the original 305 Bay Area ZIP Codes were reduced to 217 ZIP Code areas for 2013 estimates. Next, a form of Bayesian random-effects analysis was used which established a prior distribution of the probability of death at each age using the regional distribution. This prior is used to shore up the life expectancy calculations where data were sparse.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Description taken from the US Census ZCTA Website.First introduced in 1963, ZIP Code is a trademark of the USPS created to coordinate mail handling and delivery. The USPS assigns ZIP Code ranges to regional post offices, which in turn assign ZIP Codes to delivery routes. Each delivery route is composed of street networks, and/or individual units with high mail volumes, such as high-rise buildings or individual business locations. Within the Census Bureau’s MAF/TIGER System, ZIP Codes are stored as one component of discrete addresses tied to delivery points, including specific housing unit locations. The result is a point-based dataset unsuitable for mapping and many analysis applications.ZCTAs are generalized areal representations of the geographic extent and distribution of the point-based ZIP Codes built using 2020 Census tabulation blocks. The Census Bureau is restricted by Title 13 from releasing individual housing unit addresses or location information to the public, so point-based ZIP Code data are unsuitable for distribution and publication. However, by aggregating the points and extrapolating them to a polygonal-based unit (census tabulation blocks), disclosure concerns can be addressed and “geographic subtraction*” is prevented.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset was developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau across all standard and custom geographies at statewide summary level where applicable. For a deep dive into the data model including every specific metric, see the ACS 2017-2021 Data Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics. Find naming convention prefixes/suffixes, geography definitions and user notes below.Prefixes:NoneCountpPercentrRatemMedianaMean (average)tAggregate (total)chChange in absolute terms (value in t2 - value in t1)pchPercent change ((value in t2 - value in t1) / value in t1)chpChange in percent (percent in t2 - percent in t1)sSignificance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computedSuffixes:_e21Estimate from 2017-21 ACS_m21Margin of Error from 2017-21 ACS_e102006-10 ACS, re-estimated to 2020 geography_m10Margin of Error from 2006-10 ACS, re-estimated to 2020 geography_e10_21Change, 2010-21 (holding constant at 2020 geography)GeographiesAAA = Area Agency on Aging (12 geographic units formed from counties providing statewide coverage)ARC21 = Atlanta Regional Commission modeling area (21 counties merged to a single geographic unit)ARWDB7 = Atlanta Regional Workforce Development Board (7 counties merged to a single geographic unit)BeltLine (buffer)BeltLine Study (subareas)Census Tract (statewide)CFGA23 = Community Foundation for Greater Atlanta (23 counties merged to a single geographic unit)City (statewide)City of Atlanta Council Districts (City of Atlanta)City of Atlanta Neighborhood Planning Unit (City of Atlanta)City of Atlanta Neighborhood Planning Unit STV (3 NPUs merged to a single geographic unit within City of Atlanta)City of Atlanta Neighborhood Statistical Areas (City of Atlanta)City of Atlanta Neighborhood Statistical Areas E02E06 (2 NSAs merged to single geographic unit within City of Atlanta)County (statewide)Georgia House (statewide)Georgia Senate (statewide)MetroWater15 = Atlanta Metropolitan Water District (15 counties merged to a single geographic unit)Regional Commissions (statewide)SPARCC = Strong, Prosperous And Resilient Communities ChallengeState of Georgia (single geographic unit)Superdistrict (ARC region)US Congress (statewide)UWGA13 = United Way of Greater Atlanta (13 counties merged to a single geographic unit)WFF = Westside Future Fund (subarea of City of Atlanta)ZIP Code Tabulation Areas (statewide)The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2017-2021). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2017-2021Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the data manifest: https://garc.maps.arcgis.com/sharing/rest/content/items/34b9adfdcc294788ba9c70bf433bd4c1/data
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Frontier and Remote Area (FAR) codes provide a statistically-based, nationally-consistent, and adjustable definition of territory in the U.S. characterized by low population density and high geographic remoteness.
To assist in providing policy-relevant information about conditions in sparsely settled, remote areas of the U.S. to public officials, researchers, and the general public, ERS has developed ZIP-code-level frontier and remote (FAR) area codes. The aim is not to provide a single definition. Instead, it is to meet the demand for a delineation that is both geographically detailed and adjustable within reasonable ranges, in order to be usefully applied in diverse research and policy contexts. This initial set, based on urban-rural data from the 2000 decennial census, provides four separate FAR definition levels, ranging from one that is relatively inclusive (18 million FAR residents) to one that is more restrictive (4.8 million FAR residents).This record was taken from the USDA Enterprise Data Inventory that feeds into the https://data.gov catalog. Data for this record includes the following resources: State and ZIP code level tables For complete information, please visit https://data.gov.
Facebook
TwitterNote: These layers were compiled by Esri's Demographics Team using data from the Census Bureau's American Community Survey. These data sets are not owned by the City of Rochester.Overview of the map/data: This map shows the percentage of the population living below the federal poverty level over the previous 12 months, shown by tract, county, and state boundaries. Estimates are from the 2018 ACS 5-year samples. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. Current Vintage: 2019-2023ACS Table(s): B17020, C17002Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer will be updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2010 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto Rico.Census tracts with no population are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -555555...) have been set to null. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small. NOTE: any calculated percentages or counts that contain estimates that have null margins of error yield null margins of error for the calculated fields.
Facebook
TwitterThis data layer is an element of the Oregon GIS Framework. The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation.
Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2020 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some States and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census and beyond, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.
Facebook
TwitterThe rural-urban commuting area codes (RUCA) classify U.S. census tracts using measures of urbanization, population density, and daily commuting from the decennial census. The most recent RUCA codes are based on data from the 2000 decennial census. The classification contains two levels. Whole numbers (1-10) delineate metropolitan, micropolitan, small town, and rural commuting areas based on the size and direction of the primary (largest) commuting flows. These 10 codes are further subdivided to permit stricter or looser delimitation of commuting areas, based on secondary (second largest) commuting flows. The approach errs in the direction of more codes, providing flexibility in combining levels to meet varying definitional needs and preferences. The 1990 codes are similarly defined. However, the Census Bureau's methods of defining urban cores and clusters changed between the two censuses. And, census tracts changed in number and shapes. The 2000 rural-urban commuting codes are not directly comparable with the 1990 codes because of these differences. An update of the Rural-Urban Commuting Area Codes is planned for late 2013.
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
A dataset comprising various variables around housing and demographics for the top 50 American cities by population.
Variables:
Zip Code: Zip code within which the listing is present.
Price: Listed price for the property.
Beds: Number of beds mentioned in the listing.
Baths: Number of baths mentioned in the listing.
Living Space: The total size of the living space, in square feet, mentioned in the listing.
Address: Street address of the listing.
City: City name where the listing is located.
State: State name where the listing is located.
Zip Code Population: The estimated number of individuals within the zip code. Data from Simplemaps.com.
Zip Code Density: The estimated number of individuals per square mile within the zip code. Data from Simplemaps.com.
County: County where the listing is located.
Median Household income: Estimated median household income. Data from the U.S. Census Bureau.
Latitude: Latitude of the zip code. ** Data from Simplemaps.com.**
Longitude: Longitude of the zip code. Data from Simplemaps.com.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Release Date: 2021-09-16.Release Schedule:..The data in this file come from the 2017 Economic Census. For information about economic census planned data releases, see Economic Census: About: 2017 Release Schedules...Key Table Information:..Includes only establishments of firms with payroll..Data may be subject to employment- and/or sales-size minimums that vary by industry...Reliability for some of these data items can be found in the Geographic Area Series Reports for 2012 and 2017...Data Items and Other Identifying Records:..Number of Establishments.Sales, value of shipments, or revenue ($1,000).Annual Payroll ($1,000).Number of Employees..For Professional, Scientific, and Technical Services (54), data are published by Tax Status (All Establishments) only...Geography Coverage:..The data are shown for employer establishments at the U.S. level only. For information about economic census geographies, including changes for 2017, see Economic Census: Economic Geographies...Industry Coverage:..The data are shown at the 6-digit 2012 NAICS code by 8-digit 2017 NAICS bridge code levels for selected industries including Mining (21), Manufacturing (31-33), Retail Trade (44-45), Information (51), Real Estate and Rental and Leasing (53), and Professional, Scientific, and Technical Services (54). For information about NAICS, see Economic Census: Technical Documentation: Economic Census Code Lists...Footnotes:..Not applicable...FTP Download:..Download the entire table at: http://www2.census.gov/programs-surveys/economic-census/data/2017/sector00/EC1700BRIDGE2.zip...API Information..Economic census data are housed in the Census Bureau API. For more information, see Explore Data: Developers: Available APIs: Economic Census..Methodology:.To maintain confidentiality, the U.S. Census Bureau suppresses data to protect the identity of any business or individual. The census results in this file contain sampling and/or nonsampling error. Data users who create their own estimates using data from this file should cite the U.S. Census Bureau as the source of the original data only...To comply with disclosure avoidance guidelines, data rows with fewer than three contributing establishments are not presented. Additionally, establishment counts are suppressed when other select statistics in the same row are suppressed. For detailed information about the methods used to collect and produce statistics, including sampling, eligibility, questions, data collection and processing, data quality, review, weighting, estimation, coding operations, confidentiality protection, sampling error, nonsampling error, and more, see Economic Census: Technical Documentation: Methodology...Symbols:.D - Withheld to avoid disclosing data for individual companies; data are included in higher level totals.N - Not available or not comparable.S - Estimate does not meet publication standards because of high sampling variability, poor response quality, or other concerns about the estimate quality. Unpublished estimates derived from this table by subtraction are subject to these same limitations and should not be attributed to the U.S. Census Bureau. For a description of publication standards and the total quantity response rate, see link to program methodology page..X - Not applicable.A - Relative standard error of 100% or more.r - Revised.s - Relative standard error exceeds 40%.For a complete list of symbols, see Economic Census: Technical Documentation: Data Dictionary.. .Source:.U.S. Census Bureau, 2017 Economic Census.For information about the economic census, see Business and Economy: Economic Census...Contact Information:.U.S. Census Bureau.For general inquiries:. (800) 242-2184/ (301) 763-5154. ewd.outreach@census.gov.For specific data questions:. (800) 541-8345.For additional contacts, see Economic Census: About: Contact Us.
Facebook
Twitterhttps://www.florida-demographics.com/terms_and_conditionshttps://www.florida-demographics.com/terms_and_conditions
A dataset listing Florida zip codes by population for 2024.
Facebook
Twitterhttps://www.incomebyzipcode.com/terms#TERMShttps://www.incomebyzipcode.com/terms#TERMS
A dataset listing the richest zip codes in New York per the most current US Census data, including information on rank and average income.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
For information on economic census geographies, including changes for 2012, see the economic census Help Center..Includes only establishments of firms with payroll. Definition of paid employees varies among NAICS sectors. Data based on the 2012 Economic Census. For information on confidentiality protection, sampling error, nonsampling error, and definitions, see Methodology....Table Name.All sectors: Core Business Statistics Series: Industry Bridge Statistics on 2012 NAICS Basis With Distribution Among 2007 NAICS-Based Industries for the United States: 2012 ....ReleaseSchedule.The data in this file were released in June 2016.....Key TableInformation.Includes only establishments of firms with payroll. Definition of paid employees varies among NAICS sectors. Data based on the 2012 Economic Census. For information on confidentiality protection, sampling error, non-sampling error, and definitions, see Methodology.....Universe.The universe of this file is all establishments with one or more paid employees in selected North American Industry Classification System (NAICS) industries. These selected industries include establishments classified in NAICS sectors 22 (Utilities), 23 (Construction), 31-33 (Manufacturing), 42 (Wholesale trade), 44 (Retail trade), and 72 (Accommodation and food services). These are the only sectors affected by the 2012 NAICS revision....GeographyCoverage.The data are shown at the U.S. level only...IndustryCoverage.The data are shown at the 6-digit 2012 NAICS code by 8-digit 2007 NAICS Bridge code levels.....Data ItemsandOtherIdentifyingRecords.This file contains data on:.. . Number of establishments. Value of sales, shipments, receipts, revenue, or business done ($1,000). Annual payroll ($1,000). Number of employees. .....Sort Order.Data are presented in ascending 2012 NAICS Code (NAICS2012) by 2007 NAICS Bridge Code (NAICS2007BDG) sequence.....FTP Download.Download the entire table at https://www2.census.gov/econ2012/EC/sector00/EC1200CBDG1.zip....ContactInformation.U.S. Census Bureau, Economy Wide Statistics Division .Data User Outreach and Education Staff .Washington, DC 20233-6900.Tel: (800) 242-2184.Tel: (301) 763-5154.ewd.outreach@census.gov...Symbols:D - Withheld to avoid disclosing data for individual companies; data are included in higher level totalsN - Not available or not comparableFor a complete list of all economic programs symbols, see the Symbols Glossary.Source: U.S. Census Bureau, 2012 Economic Census..Note: The data in this file are based on the 2012 Economic Census. To maintain confidentiality, the Census Bureau suppresses data to protect the identity of any business or individual. The census results in this file contain sampling and nonsampling error. Data users who create their own estimates using data from this file should cite the Census Bureau as the source of the original data only. For the full technical documentation, see Survey Methodology link in headnote above.
Facebook
TwitterThis dataset was created for the Appalachia Ohio GIS Collaborative Hub by taking the 2020 Census TIGER/Line Tract boundaries and ZIP Code boundaries, filtered for Ohio, and joining them to the 2020 USDA Rural Urban Commuting Area (RUCA) Codes tables downloaded from the USDA. RUCA codes are a classification scheme allowing for flexible, census tract and ZIP code delineation of rural and urban areas throughout the United States and its territories. There are two layers in this dataset, census tracts and ZIP codes. By default they are symbolized by the Primary RUCA code. Both layers include Primary and Secondary RUCA codes. The census tract layer additionally includes the Urban Area Cluster associated with a tract, the Urban Core Type, primary and secondary commuting destinations, population, and population density. More detail about attributes can be found in the description for each layer.2020 Rural-Urban Commuting Area (RUCA) CodesThe USDA, Economic Research Service’s (ERS) Rural-Urban Commuting Area (RUCA) codes are a classification scheme allowing for flexible, census tract delineation of rural and urban areas throughout the United States and its territories. RUCA codes were designed to address a major limitation associated with county-based classifications; they are often too large to accurately delineate boundaries between rural and urban areas. The more geographically-detailed information provided by RUCA codes can be used to improve rural research and policy—such as addressing concerns that remote, rural communities in large metropolitan counties are not eligible for some rural assistance programs.The RUCA codes consist of two levels. The primary RUCA codes establish urban cores and the census tracts that are the most economically integrated with those cores through commuting. The secondary RUCA codes indicate whether a census tract has a strong secondary connection (through commuting) to an even larger urban core. This two-level structure provides flexibility in combining levels to meet varying definitional needs and preferences. The RUCA codes were created using census tract data and were subsequently adapted to ZIP codes.The tables used for the joins were the USDA 2020 Rural-Urban Commuting Area Codes, census tracts table and the 2020 Rural-Urban Commuting Area Codes, ZIP codes table. Both were marked as last updated 7/31/2025, and are available for download from https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes. Tables used for join were downloaded 9/25/2025.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Table contains total population and population density summarized at county, city, zip code, and census tract level. Population density is defined as number of people residing per square mile of area. Data are presented for zip codes (ZCTAs) fully within the county. Source: U.S. Census Bureau, 2016-2020 American Community Survey 5-year estimates, Table B01001; data accessed on April 11, 2022 from https://api.census.gov. The 2020 Decennial geographies are used for data summarization.METADATA:notes (String): Lists table title, notes, sourcesgeolevel (String): Level of geographyGEOID (String): Geography IDNAME (String): Name of geographyt_pop (Numeric): Total populationpop_density (Numeric): Area in square milesarea (Numeric): Population density