This dataset contains the US News rankings of the best American universities of undergraduate programs. This is how US News ranks the colleges: "We calculated 10 distinct overall rankings where colleges and universities were grouped by their academic missions. For each ranking, the sum of weighted, normalized values across 17 indicators of academic quality determine each school's overall score and, by extension, its overall rank. The top performer(s) in each ranking displays an overall score of 100. Others' overall scores are on a 0-99 scale reflecting the distance from their ranking's top-performing school(s). Those placing outside the top 75% display their ranking's bottom quartile range (e.g., No. 90-120) instead of their individual ranks (e.g., No. 102)."
This dataset contains the rankings of 392 American universities based on their undergraduate programs. It also contains the tuitions and enrollment numbers of each university. 2 colleges don't have tuition data, so it is labelled -1.
We acknowledge US News for providing these rankings.
As a high schooler applying to undergraduate programs in America, it would be useful to know which colleges are best, and to compare tuitions and enrollment numbers.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is accessed from https://www.kaggle.com/jessemostipak/college-tuition-diversity-and-pay and was downloaded on August 4, 2021.
The following excerpt is from Kaggle regarding the sources of this dataset:
The data this week comes from many different sources but originally came from the US Department of Education.
Tuition and fees by college/university for 2018-2019, along with school type, degree length, state, in-state vs out-of-state from the Chronicle of Higher Education. Diversity by college/university for 2014, along with school type, degree length, state, in-state vs out-of-state from the Chronicle of Higher Education. Example diversity graphics from Priceonomics. Average net cost by income bracket from TuitionTracker.org. Example price trend and graduation rates from TuitionTracker.org Salary potential data comes from payscale.com.
This dataset included the following files:
diversity_school.csv
historical_tuition.csv
salary_potential.csv
tuition_cost.csv
tuition_income.csv
After data cleaning, the data in diversity_school.csv and tuition_cost.csv were merged and the data in salary_potential.csv and tuition_income.csv were merged. The combined datasets were then split based on the US Census Regions into West, Midwest, Northeast and South (https://www2.census.gov/geo/pdfs/maps-data/maps/reference/us_regdiv.pdf).
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
It's no secret that US university students often graduate with debt repayment obligations that far outstrip their employment and income prospects. While it's understood that students from elite colleges tend to earn more than graduates from less prestigious universities, the finer relationships between future income and university attendance are quite murky. In an effort to make educational investments less speculative, the US Department of Education has matched information from the student financial aid system with federal tax returns to create the College Scorecard dataset.
Kaggle is hosting the College Scorecard dataset in order to facilitate shared learning and collaboration. Insights from this dataset can help make the returns on higher education more transparent and, in turn, more fair.
Here's a script showing an exploratory overview of some of the data.
college-scorecard-release-*.zip contains a compressed version of the same data available through Kaggle Scripts.
It consists of three components:
New to data exploration in R? Take the free, interactive DataCamp course, "Data Exploration With Kaggle Scripts," to learn the basics of visualizing data with ggplot. You'll also create your first Kaggle Scripts along the way.
This dataset contains locations and attributes of University and College, created as part of the DC Geographic Information System (DC GIS) for the Office of the Chief Technology Officer (OCTO) and participating D.C. government agencies. Information provided by OCTO, EMA, and other sources identified as University Areas and DC GIS staff geo-processed the data. This layer does not represent university areas contained in the campus plans from the DC Office of Zoning.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘U.S. News and World Report’s College Data’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/flyingwombat/us-news-and-world-reports-college-data on 30 September 2021.
--- Dataset description provided by original source is as follows ---
Statistics for a large number of US Colleges from the 1995 issue of US News and World Report.
A data frame with 777 observations on the following 18 variables.
Private A factor with levels No and Yes indicating private or public university
Apps Number of applications received
Accept Number of applications accepted
Enroll Number of new students enrolled
Top10perc Pct. new students from top 10% of H.S. class
Top25perc Pct. new students from top 25% of H.S. class
F.Undergrad Number of fulltime undergraduates
P.Undergrad Number of parttime undergraduates
Outstate Out-of-state tuition
Room.Board Room and board costs
Books Estimated book costs
Personal Estimated personal spending
PhD Pct. of faculty with Ph.D.’s
Terminal Pct. of faculty with terminal degree
S.F.Ratio Student/faculty ratio
perc.alumni Pct. alumni who donate
Expend Instructional expenditure per student
Grad.Rate Graduation rate
This dataset was taken from the StatLib library which is maintained at Carnegie Mellon University.
The dataset was used in the ASA Statistical Graphics Section’s 1995 Data Analysis Exposition.
--- Original source retains full ownership of the source dataset ---
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about universities in the United States. It has 333 rows. It features 5 columns: country, city, total students, and domain.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
The dataset is related to student data, from an educational research study focusing on student demographics, academic performance, and related factors. Here’s a general description of what each column likely represents:
Sex: The gender of the student (e.g., Male, Female). Age: The age of the student. Name: The name of the student. State: The state where the student resides or where the educational institution is located. Address: Indicates whether the student lives in an urban or rural area. Famsize: Family size category (e.g., LE3 for families with less than or equal to 3 members, GT3 for more than 3). Pstatus: Parental cohabitation status (e.g., 'T' for living together, 'A' for living apart). Medu: Mother's education level (e.g., Graduate, College). Fedu: Father's education level (similar categories to Medu). Mjob: Mother's job type. Fjob: Father's job type. Guardian: The primary guardian of the student. Math_Score: Score obtained by the student in Mathematics. Reading_Score: Score obtained by the student in Reading. Writing_Score: Score obtained by the student in Writing. Attendance_Rate: The percentage rate of the student’s attendance. Suspensions: Number of times the student has been suspended. Expulsions: Number of times the student has been expelled. Teacher_Support: Level of support the student receives from teachers (e.g., Low, Medium, High). Counseling: Indicates whether the student receives counseling services (Yes or No). Social_Worker_Visits: Number of times a social worker has visited the student. Parental_Involvement: The level of parental involvement in the student's academic life (e.g., Low, Medium, High). GPA: The student’s Grade Point Average, a standard measure of academic achievement in schools.
This dataset provides a comprehensive look at various factors that might influence a student's educational outcomes, including demographic factors, academic performance metrics, and support structures both at home and within the educational system. It can be used for statistical analysis to understand and improve student success rates, or for targeted interventions based on specific identified needs.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset provides comprehensive information about various Data Science and Analytics master's programs offered in the United States. It includes details such as the program name, university name, annual tuition fees, program duration, location of the university, and additional information about the programs.
Column Descriptions:
Subject Name:
The name or field of study of the master's program, such as Data Science, Data Analytics, or Applied Biostatistics.
University Name:
The name of the university offering the master's program.
Per Year Fees:
The tuition fees for the program, usually given in euros per year. For some programs, the fees may be listed as "full" or "full-time," indicating a lump sum for the entire program or for full-time enrollment, respectively.
About Program:
A brief description or overview of the master's program, providing insights into its curriculum, focus areas, and any unique features.
Program Duration:
The duration of the master's program, typically expressed in years or months.
University Location:
The location of the university where the program is offered, including the city and state.
Program Name:
The official name of the master's program, often indicating its degree type (e.g., M.Sc. for Master of Science) and format (e.g., full-time, part-time, online).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The data file (SPSS file) contains data compiled from Peterson's Guide in spring 2014 about college applications, including college name, number of applicants (male and female), acceptance rate, the college's national ranking, and the college's student body size. The dataset is part of a project on gender and competition.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of College Springs by gender, including both male and female populations. This dataset can be utilized to understand the population distribution of College Springs across both sexes and to determine which sex constitutes the majority.
Key observations
There is a majority of male population, with 56.68% of total population being male. Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis. No further analysis is done on the data reported from the Census Bureau.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for College Springs Population by Race & Ethnicity. You can refer the same here
The Project Information Literacy (PIL) lifelong learning survey dataset was produced as part of a two-year federally funded study on relatively recent US college graduates and their information-seeking behavior for continued learning. The goal of the survey was to collect quantitative data about the information-seeking behavior of a sample of recent graduates—the strategies, techniques, information support systems, and best practices—used to support lifelong learning in post-college life. The dataset contains responses from 1,651 respondents to a 21-item questionnaire administered between October 9, 2014 and December 15, 2014. The voluntary sample of respondents consisted of relatively recent graduates, who had completed their degrees between 2007 and 2012, from one of 10 US colleges and universities in the institutional sample. Quantitative data are included in the dataset about the learning needs of relatively recent graduates as well as the information sources they used in three arenas of their post-college lives (i.e., personal life, workplace, and the communities in which they resided). Demographic information—including age, gender, major, GPA, employment status, graduate school attendance, and geographic proximity of current residence to their alma mater—is also included in the dataset for the respondents. "Staying Smart: How Today's Graduates Continue to Learn Once They Complete College," Alison J. Head, Project Information Literacy Research Report, Seattle: University of Washington Information School (January 5, 2016), 112 pages, 6.9 MB.
New York City school level College Board AP results for 2010. Records with 5 or fewer students are suppressed. Students are linked to schools by identifying which school they attend when registering for a College Board exam. A student is only included in a school’s report if he/she self-reports being enrolled at that school. Data collected and processed by the College Board.
We know that students at elite universities tend to be from high-income families, and that graduates are more likely to end up in high-status or high-income jobs. But very little public data has been available on university admissions practices. This dataset, collected by Opportunity Insights, gives extensive detail on college application and admission rates for 139 colleges and universities across the United States, including data on the incomes of students. How do admissions practices vary by institution, and are wealthy students overrepresented?
Education equality is one of the most contested topics in society today. It can be defined and explored in many ways, from accessible education to disabled/low-income/rural students to the cross-generational influence of doctorate degrees and tenure track positions. One aspect of equality is the institutions students attend. Consider the “Ivy Plus” universities, which are all eight Ivy League schools plus MIT, Stanford, Duke, and Chicago. Although less than half of one percent of Americans attend Ivy-Plus colleges, they account for more than 10% of Fortune 500 CEOs, a quarter of U.S. Senators, half of all Rhodes scholars, and three-fourths of Supreme Court justices appointed in the last half-century.
A 2023 study (Chetty et al, 2023) tried to understand how these elite institutions affect educational equality:
Do highly selective private colleges amplify the persistence of privilege across generations by taking students from high-income families and helping them obtain high-status, high-paying leadership positions? Conversely, to what extent could such colleges diversify the socioeconomic backgrounds of society’s leaders by changing their admissions policies?
To answer these questions, they assembled a dataset documenting the admission and attendance rate for 13 different income bins for 139 selective universities around the country. They were able to access and link not only student SAT/ACT scores and high school grades, but also parents’ income through their tax records, students’ post-college graduate school enrollment or employment (including earnings, employers, and occupations), and also for some selected colleges, their internal admission ratings for each student. This dataset covers students in the entering classes of 2010–2015, or roughly 2.4 million domestic students.
They found that children from families in the top 1% (by income) are more than twice as likely to attend an Ivy-Plus college as those from middle-class families with comparable SAT/ACT scores, and two-thirds of this gap can be attributed to higher admission rates with similar scores, with the remaining third due to the differences in rates of application and matriculation (enrollment conditional on admission). This is not a shocking conclusion, but we can further explore elite college admissions by socioeconomic status to understand the differences between elite private colleges and public flagships admission practices, and to reflect on the privilege we have here and to envision what a fairer higher education system could look like.
The data has been aggregated by university and by parental income level, grouped into 13 income brackets. The income brackets are grouped by percentile relative to the US national income distribution, so for instance the 75.0 bin represents parents whose incomes are between the 70th and 80th percentile. The top two bins overlap: the 99.4 bin represents parents between the 99 and 99.9th percentiles, while the 99.5 bin represents parents in the top 1%.
Each row represents students’ admission and matriculation outcomes from one income bracket at a given university. There are 139 colleges covered in this dataset.
The variables include an array of different college-level-income-binned estimates for things including attendance rate (both raw and reweighted by SAT/ACT scores), application rate, and relative attendance rate conditional on application, also with respect to specific test score bands for each college and in/out-of state. Colleges are categorized into six tiers: Ivy Plus, other elite schools (public and private), highly selective public/private, and selective public/private, with selectivity generally in descending order. It also notes whether a college is public and/or flagship, where “flagship” means public flagship universities. Furthermore, they also report the relative application rate for each income bin within specific test bands, which are 50-point bands that had the most attendees in each school tier/category.
Several values are reported in “test-score-reweighted” form. These values control for SAT score: they are calculated separately for each SAT score value, then averaged with weights based on the distribution of SAT scores at the institution.
Note that since private schools typically don’t differentiate between in-...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about books. It has 7 rows and is filtered where the book subjects is Universities and colleges-United States-Public services. It features 9 columns including author, publication date, language, and book publisher.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is data and code for "How Do Institutions of Higher Education Affect Local Invention? Evidence from the Establishment of U.S. Colleges." In this project, I use narrative historical data on site selection decisions for a subset of U.S. colleges to identify "runner-up" locations that were strongly considered to become the sites of new colleges. Using runner-up counties as counterfactuals in a difference-in-difference model, I find that establishing a college causes 62% more patents per year. Linking patents to novel college yearbook data reveal that only 12% of patents in a college's county came from that college’s alumni or faculty. I find only small differences in patenting between establishing colleges and establishing other institutions, as well as between colleges with different focuses on technical fields.
https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de450955https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de450955
Abstract (en): The American College Catalog Study Database (CCS) contains academic data on 286 four-year colleges and universities in the United States. CCS is one of two databases produced by the Colleges and Universities 2000 project based at the University of California-Riverside. The CCS database comprises a sampled subset of institutions from the related Institutional Data Archive (IDA) on American Higher Education (ICPSR 34874). Coding for CCS was based on college catalogs obtained from College Source, Inc. The data are organized in a panel design, with measurements taken at five-year intervals: academic years 1975-76, 1980-81, 1985-86, 1990-91, 1995-96, 2000-01, 2005-06, and 2010-11. The database is based on information reported in each institution's college catalog, and includes data regarding changes in major academic units (schools and colleges), departments, interdisciplinary programs, and general education requirements. For schools and departments, changes in structure were coded, including new units, name changes, splits in units, units moved to new schools, reconstituted units, consolidated units, departments reduced to program status, and eliminated units. The American College Catalog Study Database (CCS) is intended to allow researchers to examine changes in the structure of institutionalized knowledge in four-year colleges and universities within the United States. For information on the study design, including detailed coding conventions, please see the Original P.I. Documentation section of the ICPSR Codebook. The data are not weighted. Dataset 1, Characteristics Variables, contains three weight variables (IDAWT, CCSWT, and CASEWEIGHT) which users may wish to apply during analysis. For additional information on weights, please see the Original P.I. Documentation section of the ICPSR Codebook. ICPSR data undergo a confidentiality review and are altered when necessary to limit the risk of disclosure. ICPSR also routinely creates ready-to-go data files along with setups in the major statistical software formats as well as standard codebooks to accompany the data. In addition to these procedures, ICPSR performed the following processing steps for this data collection: Checked for undocumented or out-of-range codes.. Response Rates: Approximately 75 percent of IDA institutions are included in CCS. For additional information on response rates, please see the Original P.I. Documentation section of the ICPSR Codebook. Four-year not-for-profit colleges and universities in the United States. Smallest Geographic Unit: state CCS includes 286 institutions drawn from the IDA sample of 384 United States four-year colleges and universities. CCS contains every IDA institution for which a full set of catalogs could be located at the initiation of the project in 2000. CCS contains seven datasets that can be linked through an institutional identification number variable (PROJ_ID). Since the data are organized in a panel format, it is also necessary to use a second variable (YEAR) to link datasets. For a brief description of each CCS dataset, please see Appendix B within the Original P.I. Documentation section of the ICPSR Codebook.There are date discrepancies between the data and the Original P.I. Documentation. Study Time Periods and Collection Dates reflect dates that are present in the data. No additional information was provided.Please note that the related data collection featuring the Institutional Data Archive on American Higher Education, 1970-2011, will be available as ICPSR 34874. Additional information on the American College Catalog Study Database (CCS) and the Institutional Data Archive (IDA) database can be found on the Colleges and Universities 2000 Web site.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Higher education plays a critical role in driving an innovative economy by equipping students with knowledge and skills demanded by the workforce.While researchers and practitioners have developed data systems to track detailed occupational skills, such as those established by the U.S. Department of Labor (DOL), much less effort has been made to document which of these skills are being developed in higher education at a similar granularity.Here, we fill this gap by presenting Course-Skill Atlas -- a longitudinal dataset of skills inferred from over three million course syllabi taught at nearly three thousand U.S. higher education institutions. To construct Course-Skill Atlas, we apply natural language processing to quantify the alignment between course syllabi and detailed workplace activities (DWAs) used by the DOL to describe occupations. We then aggregate these alignment scores to create skill profiles for institutions and academic majors. Our dataset offers a large-scale representation of college education's role in preparing students for the labor market.Overall, Course-Skill Atlas can enable new research on the source of skills in the context of workforce development and provide actionable insights for shaping the future of higher education to meet evolving labor demands, especially in the face of new technologies.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about books. It has 27 rows and is filtered where the book subjects is Community and college-United States. It features 9 columns including author, publication date, language, and book publisher.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the College Place population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for College Place. The dataset can be utilized to understand the population distribution of College Place by age. For example, using this dataset, we can identify the largest age group in College Place.
Key observations
The largest age group in College Place, WA was for the group of age 20 to 24 years years with a population of 1,306 (13.29%), according to the ACS 2019-2023 5-Year Estimates. At the same time, the smallest age group in College Place, WA was the 80 to 84 years years with a population of 134 (1.36%). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for College Place Population by Age. You can refer the same here
This dataset was created by Kaustav
This dataset contains the US News rankings of the best American universities of undergraduate programs. This is how US News ranks the colleges: "We calculated 10 distinct overall rankings where colleges and universities were grouped by their academic missions. For each ranking, the sum of weighted, normalized values across 17 indicators of academic quality determine each school's overall score and, by extension, its overall rank. The top performer(s) in each ranking displays an overall score of 100. Others' overall scores are on a 0-99 scale reflecting the distance from their ranking's top-performing school(s). Those placing outside the top 75% display their ranking's bottom quartile range (e.g., No. 90-120) instead of their individual ranks (e.g., No. 102)."
This dataset contains the rankings of 392 American universities based on their undergraduate programs. It also contains the tuitions and enrollment numbers of each university. 2 colleges don't have tuition data, so it is labelled -1.
We acknowledge US News for providing these rankings.
As a high schooler applying to undergraduate programs in America, it would be useful to know which colleges are best, and to compare tuitions and enrollment numbers.