As of 2023, 27.3 percent of California's population were born in a country other than the United States. New Jersey, New York, Florida, and Nevada rounded out the top five states with the largest population of foreign born residents in that year. For the country as a whole, 14.3 percent of residents were foreign born.
The United States hosted, by far, the highest number of immigrants in the world in 2024. That year, there were over ** million people born outside of the States residing in the country. Germany and Saudi Arabia followed behind at around **** and **** million, respectively. There are varying reasons for people to emigrate from their country of origin, from poverty and unemployment to war and persecution. American Migration People migrate to the United States for a variety of reasons, from job and educational opportunities to family reunification. Overall, in 2021, most people that became legal residents of the United States did so for family reunification purposes, totaling ******* people that year. An additional ******* people became legal residents through employment opportunities. In terms of naturalized citizenship, ******* people from Mexico became naturalized American citizens in 2021, followed by people from India, the Philippines, Cuba, and China. German Migration Behind the United States, Germany also has a significant migrant population. Migration to Germany increased during the mid-2010's, in light of the Syrian Civil War and refugee crisis, and during the 2020’s, in light of conflict in Afghanistan and Ukraine. Moreover, as German society continues to age, there are less workers in the labor market. In a low-migration scenario, Germany will have **** million skilled workers by 2040, compared to **** million by 2040 in a high-migration scenario. In both scenarios, this is still a decrease from **** skilled workers in 2020.
Public use data set on new legal immigrants to the U.S. that can address scientific and policy questions about migration behavior and the impacts of migration. A survey pilot project, the NIS-P, was carried out in 1996 to inform the fielding and design of the full NIS. Baseline interviews were ultimately conducted with 1,127 adult immigrants. Sample members were interviewed at baseline, 6 months, and 12 months, with half of the sample also interviewed at three months. The first full cohort, NIS-2003, is based on a nationally representative sample of the electronic administrative records compiled for new immigrants by the US government. NIS-2003 sampled immigrants in the period May-November 2003. The geographic sampling design takes advantage of the natural clustering of immigrants. It includes all top 85 Metropolitan Statistical Areas (MSAs) and all top 38 counties, plus a random sample of other MSAs and counties. Interviews were conducted in respondents'' preferred languages. The baseline was multi-modal: 60% of adult interviews were administered by telephone; 40% were in-person. The baseline round was in the field from June 2003 to June 2004, and includes in the Adult Sample 8,573 respondents, 4,336 spouses, and 1,072 children aged 8-12. A follow-up was planned for 2007. Several modules of the NIS were designed to replicate sections of the continuing surveys of the US population that provide a natural comparison group. Questionnaire topics include Health (self-reports of conditions, symptoms, functional status, smoking and drinking history) and use/source/costs of health care services, depression, pain; background; (2) Background: Childhood history and living conditions, education, migration history, marital history, military history, fertility history, language skills, employment history in the US and foreign countries, social networks, religion; Family: Rosters of all children; for each, demographic attributes, education, current work status, migration, marital status and children; for some, summary indicators of childhood and current health, language ability; Economic: Sources and amounts of income, including wages, pensions, and government subsidies; type, value of assets and debts, financial assistance given/received to/from respondent from/to relatives, friends, employer, type of housing and ownership of consumable durables. * Dates of Study: 2003-2007 * Study Features: Longitudinal * Sample Size: 13,981
This map shows what the most common year naturalized for foreign-born population is in an area using the predominance style. Areas with weaker predominance have higher transparency. The popup is configured to show:Total foreign-born population out of total populationTotal naturalized citizensPredominant year naturalizedBreakdown by year naturalizedData is available in 5-year estimates at the state, county, and tract level for the entire US.The data in this map contains the most recent American Community Survey (ACS) data from the U.S. Census Bureau. The Living Atlas layer in this map updates annually when the Census releases their new figures. To learn more, visit this FAQ, or visit the ACS website.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units and the group quarters population for states and counties..Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2019-2023 American Community Survey 5-Year Estimates.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year..Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..Occupation titles and their 4-digit codes are based on the 2018 Standard Occupational Classification..Industry titles and their 4-digit codes are based on the North American Industry Classification System (NAICS). The Census industry codes for 2023 and later years are based on the 2022 revision of the NAICS. To allow for the creation of multiyear tables, industry data in the multiyear files (prior to data year 2023) were recoded to the 2022 Census industry codes. We recommend using caution when comparing data coded using 2022 Census industry codes with data coded using Census industry codes prior to data year 2023. For more information on the Census industry code changes, please visit our website at https://www.census.gov/topics/employment/industry-occupation/guidance/code-lists.html..Telephone service data are not available for certain geographic areas due to problems with data collection of this question that occurred in 2019. Both ACS 1-year and ACS 5-year files were affected. It may take several years in the ACS 5-year files until the estimates are available for the geographic areas affected..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution. For a 5-year median estimate, the margin of error associated with a median was larger than the median itself.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate beca...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This layer was developed by the Research & Analytics Group of the Atlanta Regional Commission, using data from the U.S. Census Bureau’s American Community Survey 5-year estimates for 2013-2017, to show the birth and citizenship status by ARC 20 County in the Atlanta region.
The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent.
The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2013-2017). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available.
For further explanation of ACS estimates and margin of error, visit Census ACS website.
Naming conventions:
Prefixes:
None
Count
p
Percent
r
Rate
m
Median
a
Mean (average)
t
Aggregate (total)
ch
Change in absolute terms (value in t2 - value in t1)
pch
Percent change ((value in t2 - value in t1) / value in t1)
chp
Change in percent (percent in t2 - percent in t1)
Suffixes:
None
Change over two periods
_e
Estimate from most recent ACS
_m
Margin of Error from most recent ACS
_00
Decennial 2000
Attributes:
SumLevel
Summary level of geographic unit (e.g., County, Tract, NSA, NPU, DSNI, Super District, etc)
GEOID
Census tract Federal Information Processing Series (FIPS) code
NAME
Name of geographic unit
Planning_Region
Planning region designation for ARC purposes
Acres
Total area within the tract (in acres)
SqMi
Total area within the tract (in square miles)
County
County identifier (combination of Federal Information Processing Series (FIPS) codes for state and county)
CountyName
County Name
TotPop_e
# Total population, 2017
TotPop_m
# Total population, 2017 (MOE)
Native_e
# U.S. Native, 2017
Native_m
# U.S. Native, 2017 (MOE)
pNative_e
% U.S. Native, 2017
pNative_m
% U.S. Native, 2017 (MOE)
BornUS_e
# Born in the United States, 2017
BornUS_m
# Born in the United States, 2017 (MOE)
pBornUS_e
% Born in the United States, 2017
pBornUS_m
% Born in the United States, 2017 (MOE)
BornState_e
# Born in state of residence, 2017
BornState_m
# Born in state of residence, 2017 (MOE)
pBornState_e
% Born in state of residence, 2017
pBornState_m
% Born in state of residence, 2017 (MOE)
BornDiffState_e
# Born in different state, 2017
BornDiffState_m
# Born in different state, 2017 (MOE)
pBornDiffState_e
% Born in different state, 2017
pBornDiffState_m
% Born in different state, 2017 (MOE)
BornTerr_e
# Born in Puerto Rico, U.S. Island Areas, or born abroad to American parent(s), 2017
BornTerr_m
# Born in Puerto Rico, U.S. Island Areas, or born abroad to American parent(s), 2017 (MOE)
pBornTerr_e
% Born in Puerto Rico, U.S. Island Areas, or born abroad to American parent(s), 2017
pBornTerr_m
% Born in Puerto Rico, U.S. Island Areas, or born abroad to American parent(s), 2017 (MOE)
ForBorn_e
# Foreign born, 2017
ForBorn_m
# Foreign born, 2017 (MOE)
pForBorn_e
% Foreign born, 2017
pForBorn_m
% Foreign born, 2017 (MOE)
Naturalized_e
# Naturalized U.S. citizen, 2017
Naturalized_m
# Naturalized U.S. citizen, 2017 (MOE)
pNaturalized_e
% Naturalized U.S. citizen, 2017
pNaturalized_m
% Naturalized U.S. citizen, 2017 (MOE)
NotNaturalized_e
# Not a U.S. citizen, 2017
NotNaturalized_m
# Not a U.S. citizen, 2017 (MOE)
pNotNaturalized_e
% Not a U.S. citizen, 2017
pNotNaturalized_m
% Not a U.S. citizen, 2017 (MOE)
last_edited_date
Last date the feature was edited by ARC
Source: U.S. Census Bureau, Atlanta Regional Commission
Date: 2013-2017
For additional information, please visit the Census ACS website.
This layer shows children by nativity of parents by age group. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the percentage of children who are in immigrant families (children who are foreign born or live with at least one parent who is foreign born). To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B05009Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.
Knowing the place of birth of the foreign-born population can help us understand the experience of different immigrant groups, as well as enforce laws, policies, and regulations against discrimination based on national origin. This information can also help tailor services to accommodate cultural differences.Place of birth is broken down by continent: Latin America, Asia, Europe, Africa, North America, and Oceania. Map opens to the Washington - Baltimore metro area but has national coverage.This map is multi-scale, with data for states, counties, and tracts. This map uses these hosted feature layers containing the most recent American Community Survey data. These layers are part of the ArcGIS Living Atlas, and are updated every year when the American Community Survey releases new estimates, so values in the map always reflect the newest data available.
https://www.icpsr.umich.edu/web/ICPSR/studies/35032/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/35032/terms
This dataset was produced in the 1990s by Myron Gutmann and others at the University of Texas to assess demographic change in European- and Mexican-origin populations in Texas from the mid-nineteenth to early-twentieth centuries. Most of the data come from manuscript records for six rural Texas counties - Angelina, DeWitt, Gillespie, Jack, Red River, and Webb - for the U.S. Censuses of 1850-1880 and 1900-1910, and tax records where available. Together, the populations of these counties reflect the cultural, ethnic, economic, and ecological diversity of rural Texas. Red River and Angelina Counties, in Eastern Texas, had largely native-born white and black populations and cotton economies. DeWitt County in Southeast Texas had the most diverse population, including European and Mexican immigrants as well as native-born white and black Americans, and its economy was divided between cotton and cattle. The population of Webb County, on the Mexican border, was almost entirely of Mexican origin, and economic activities included transportation services as well as cattle ranching. Gillespie County in Central Texas had a mostly European immigrant population and an economy devoted to cropping and livestock. Jack County in North-Central Texas was sparsely populated, mainly by native-born white cattle ranchers. These counties were selected to over-represent the European and Mexican immigrant populations. Slave schedules were not included, so there are no African Americans in the samples for 1850 or 1860. In some years and counties, the Census records were sub-sampled, using a letter-based sample with the family as the primary sampling unit (families were chosen if the surname of the head began with one of the sample letters for the county). In other counties and years, complete populations were transcribed from the Census microfilms. For details and sample sizes by county, see the County table in the Original P.I. Documentation section of the ICPSR Codebook, or see Gutmann, Myron P. and Kenneth H. Fliess, How to Study Southern Demography in the Nineteenth Century: Early Lessons of the Texas Demography Project (Austin: Texas Population Research Center Papers, no. 11.11, 1989).
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units and the group quarters population for states and counties..Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2019-2023 American Community Survey 5-Year Estimates.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year..Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..Occupation titles and their 4-digit codes are based on the 2018 Standard Occupational Classification..Industry titles and their 4-digit codes are based on the North American Industry Classification System (NAICS). The Census industry codes for 2023 and later years are based on the 2022 revision of the NAICS. To allow for the creation of multiyear tables, industry data in the multiyear files (prior to data year 2023) were recoded to the 2022 Census industry codes. We recommend using caution when comparing data coded using 2022 Census industry codes with data coded using Census industry codes prior to data year 2023. For more information on the Census industry code changes, please visit our website at https://www.census.gov/topics/employment/industry-occupation/guidance/code-lists.html..Telephone service data are not available for certain geographic areas due to problems with data collection of this question that occurred in 2019. Both ACS 1-year and ACS 5-year files were affected. It may take several years in the ACS 5-year files until the estimates are available for the geographic areas affected..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution. For a 5-year median estimate, the margin of error associated with a median was larger than the median itself.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate beca...
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units and the group quarters population for states and counties..Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2023 American Community Survey 1-Year Estimates.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year..Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..These data for the occupied housing units lines refer to the native or foreign-born status of the householder..Industry titles and their 4-digit codes are based on the 2022 North American Industry Classification System. The Industry categories adhere to the guidelines issued in Clarification Memorandum No. 2, "NAICS Alternate Aggregation Structure for Use By U.S. Statistical Agencies," issued by the Office of Management and Budget..Occupation titles and their 4-digit codes are based on the 2018 Standard Occupational Classification..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution. For a 5-year median estimate, the margin of error associated with a median was larger than the median itself.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate because the corresponding estimate is controlled to an independent population or housing estimate. Effectively, the corresponding estimate has no sampling error and the margin of error may be treated as zero.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This layer was developed by the Research & Analytics Group of the Atlanta Regional Commission, using data from the U.S. Census Bureau’s American Community Survey 5-year estimates for 2013-2017, to show the birth and citizenship status by Strong, Prosperous, And Resilient Communities Challenge in the Atlanta region.
The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent.
The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2013-2017). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available.
For further explanation of ACS estimates and margin of error, visit Census ACS website.
Naming conventions:
Prefixes:
None
Count
p
Percent
r
Rate
m
Median
a
Mean (average)
t
Aggregate (total)
ch
Change in absolute terms (value in t2 - value in t1)
pch
Percent change ((value in t2 - value in t1) / value in t1)
chp
Change in percent (percent in t2 - percent in t1)
Suffixes:
None
Change over two periods
_e
Estimate from most recent ACS
_m
Margin of Error from most recent ACS
_00
Decennial 2000
Attributes:
SumLevel
Summary level of geographic unit (e.g., County, Tract, NSA, NPU, DSNI, Super District, etc)
GEOID
Census tract Federal Information Processing Series (FIPS) code
NAME
Name of geographic unit
Planning_Region
Planning region designation for ARC purposes
Acres
Total area within the tract (in acres)
SqMi
Total area within the tract (in square miles)
County
County identifier (combination of Federal Information Processing Series (FIPS) codes for state and county)
CountyName
County Name
TotPop_e
# Total population, 2017
TotPop_m
# Total population, 2017 (MOE)
Native_e
# U.S. Native, 2017
Native_m
# U.S. Native, 2017 (MOE)
pNative_e
% U.S. Native, 2017
pNative_m
% U.S. Native, 2017 (MOE)
BornUS_e
# Born in the United States, 2017
BornUS_m
# Born in the United States, 2017 (MOE)
pBornUS_e
% Born in the United States, 2017
pBornUS_m
% Born in the United States, 2017 (MOE)
BornState_e
# Born in state of residence, 2017
BornState_m
# Born in state of residence, 2017 (MOE)
pBornState_e
% Born in state of residence, 2017
pBornState_m
% Born in state of residence, 2017 (MOE)
BornDiffState_e
# Born in different state, 2017
BornDiffState_m
# Born in different state, 2017 (MOE)
pBornDiffState_e
% Born in different state, 2017
pBornDiffState_m
% Born in different state, 2017 (MOE)
BornTerr_e
# Born in Puerto Rico, U.S. Island Areas, or born abroad to American parent(s), 2017
BornTerr_m
# Born in Puerto Rico, U.S. Island Areas, or born abroad to American parent(s), 2017 (MOE)
pBornTerr_e
% Born in Puerto Rico, U.S. Island Areas, or born abroad to American parent(s), 2017
pBornTerr_m
% Born in Puerto Rico, U.S. Island Areas, or born abroad to American parent(s), 2017 (MOE)
ForBorn_e
# Foreign born, 2017
ForBorn_m
# Foreign born, 2017 (MOE)
pForBorn_e
% Foreign born, 2017
pForBorn_m
% Foreign born, 2017 (MOE)
Naturalized_e
# Naturalized U.S. citizen, 2017
Naturalized_m
# Naturalized U.S. citizen, 2017 (MOE)
pNaturalized_e
% Naturalized U.S. citizen, 2017
pNaturalized_m
% Naturalized U.S. citizen, 2017 (MOE)
NotNaturalized_e
# Not a U.S. citizen, 2017
NotNaturalized_m
# Not a U.S. citizen, 2017 (MOE)
pNotNaturalized_e
% Not a U.S. citizen, 2017
pNotNaturalized_m
% Not a U.S. citizen, 2017 (MOE)
last_edited_date
Last date the feature was edited by ARC
Source: U.S. Census Bureau, Atlanta Regional Commission
Date: 2013-2017
For additional information, please visit the Census ACS website.
IIMMLA was supported by the Russell Sage Foundation. Since 1991, the Russell Sage Foundation has funded a program of research aimed at assessing how well the young adult offspring of recent immigrants are faring as they move through American schools and into the labor market. Two previous major studies have begun to tell us about the paths to incorporation of the children of contemporary immigrants: The Children of Immigrants Longitudinal Study (CILS), and the Immigrant Second Generation in New York study. The Immigration and Intergenerational Mobility in Metropolitan Los Angeles study is the third major initiative analyzing the progress of the new second generation in the United States. The Immigration and Intergenerational Mobility in Metropolitan Los Angeles (IIMMLA) study focused on young adult children of immigrants (1.5- and second-generation) in greater Los Angeles. IIMMLA investigated mobility among young adult (ages 20-39) children of immigrants in metropolitan Los Angeles and, in the case of the Mexican-origin population there, among young adult members of the third- or later generations. The five-county Los Angeles metropolitan area (Los Angeles, Orange, Ventura, Riverside and San Bernardino counties) contains the largest concentrations of Mexicans, Salvadorans, Guatemalans, Filipinos, Chinese, Vietnamese, Koreans, and other nationalities in the United States. The diverse migration histories and modes of incorporation of these groups made the Los Angeles metropolitan area a strategic choice for a comparison study of the pathways of immigrant incorporation and mobility from one generation to the next. The IIMMLA study compared six foreign-born (1.5-generation) and foreign-parentage (second-generation) groups (Mexicans, Vietnamese, Filipinos, Koreans, Chinese, and Central Americans from Guatemala and El Salvador) with three native-born and native-parentage comparison groups (third- or later-generation Mexican Americans, and non-Hispanic Whites and Blacks). The targeted groups represent both the diversity of modes of incorporation in the United States and the range of occupational backgrounds and immigration status among contemporary immigrants (from professionals and entrepreneurs to laborers, refugees, and unauthorized migrants). The surveys provide basic demographic information as well as extensive data about socio-cultural orientation and mobility (e.g., language use, ethnic identity, religion, remittances, intermarriage, experiences of discrimination), economic mobility (e.g., parents' background, respondents' education, first and current job, wealth and income, encounters with the law), geographic mobility (childhood and present neighborhood of residence), and civic engagement and politics (political attitudes, voting behavior, as well as naturalization and transnational ties).
Immigration system statistics quarterly release.
The Microsoft Excel .xlsx files may not be suitable for users of assistive technology.
If you use assistive technology (such as a screen reader) and need a version of these documents in a more accessible format, please email migrationstatistics@homeoffice.gov.uk
Please tell us what format you need. It will help us if you say what assistive technology you use.
https://assets.publishing.service.gov.uk/media/68a6ecc6bceafd8d0d96a086/regional-and-local-authority-dataset-jun-2025.ods">Regional and local authority data on immigration groups, year ending June 2025 (ODS, 264 KB)
Reg_01: Immigration groups, by Region and Devolved Administration
Reg_02: Immigration groups, by Local Authority
Please note that the totals across all pathways and per capita percentages for City of London and Isles of Scilly do not include Homes for Ukraine arrivals due to suppression, in line with published Homes for Ukraine figures.
https://assets.publishing.service.gov.uk/media/6825e438a60aeba5ab34e046/regional-and-local-authority-dataset-mar-2025.xlsx">Regional and local authority data on immigration groups, year ending March 2025 (MS Excel Spreadsheet, 279 KB)
https://assets.publishing.service.gov.uk/media/67bc89984ad141d90835347b/regional-and-local-authority-dataset-dec-2024.ods">Regional and local authority data on immigration groups, year ending December 2024 (ODS, 263 KB)
https://assets.publishing.service.gov.uk/media/675c7e1a98302e574b91539f/regional-and-local-authority-dataset-sep-24.ods">Regional and local authority data on immigration groups, year ending September 2024 (ODS, 262 KB)
https://assets.publishing.service.gov.uk/media/66bf74a8dcb0757928e5bd4c/regional-and-local-authority-dataset-jun-24.ods">Regional and local authority data on immigration groups, year ending June 2024 (ODS, 263 KB)
https://assets.publishing.service.gov.uk/media/66c31766b75776507ecdf3a1/regional-and-local-authority-dataset-mar-24-third-edition.ods">Regional and local authority data on immigration groups, year ending March 2024 (third edition) (ODS, 91.4 KB)
https://assets.publishing.service.gov.uk/media/65ddd9ebf1cab3001afc4795/regional-and-local-authority-dataset-dec-2023.ods">Regional and local authority data on immigration groups, year ending December 2023 (ODS, 91.6 KB)
https://assets.publishing.service.gov.uk/media/65ddda05cf7eb10011f57fbd/regional-and-local-authority-dataset-sep-2023.ods">Regional and local authority data on immigration groups, year ending September 2023 (ODS<
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, for 2020, the 2020 Census provides the official counts of the population and housing units for the nation, states, counties, cities, and towns. For 2016 to 2019, the Population Estimates Program provides estimates of the population for the nation, states, counties, cities, and towns and intercensal housing unit estimates for the nation, states, and counties..Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Technical Documentation section.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2016-2020 American Community Survey 5-Year Estimates.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..Methodological changes to citizenship edits may have affected citizenship data for those born in American Samoa. Users should be aware of these changes when using 2018 data or multi-year data containing data from 2018. For more information, see: American Samoa Citizenship User Note..The 2016-2020 American Community Survey (ACS) data generally reflect the September 2018 Office of Management and Budget (OMB) delineations of metropolitan and micropolitan statistical areas. In certain instances, the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB delineation lists due to differences in the effective dates of the geographic entities..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on Census 2010 data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate because the corresponding estimate is controlled to an independent population or housing estimate. Effectively, the corresponding estimate has no sampling error and the margin of error may be treated as zero.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, for 2020, the 2020 Census provides the official counts of the population and housing units for the nation, states, counties, cities, and towns. For 2016 to 2019, the Population Estimates Program provides estimates of the population for the nation, states, counties, cities, and towns and intercensal housing unit estimates for the nation, states, and counties..Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Technical Documentation section.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2016-2020 American Community Survey 5-Year Estimates.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..Methodological changes to citizenship edits may have affected citizenship data for those born in American Samoa. Users should be aware of these changes when using 2018 data or multi-year data containing data from 2018. For more information, see: American Samoa Citizenship User Note..The 2016-2020 American Community Survey (ACS) data generally reflect the September 2018 Office of Management and Budget (OMB) delineations of metropolitan and micropolitan statistical areas. In certain instances, the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB delineation lists due to differences in the effective dates of the geographic entities..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on Census 2010 data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate because the corresponding estimate is controlled to an independent population or housing estimate. Effectively, the corresponding estimate has no sampling error and the margin of error may be treated as zero.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, it is the Census Bureau's Population Estimates Program that produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units for states and counties..Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Technical Documentation section.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2021 American Community Survey 1-Year Estimates.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..The 2021 American Community Survey (ACS) data generally reflect the March 2020 Office of Management and Budget (OMB) delineations of metropolitan and micropolitan statistical areas. In certain instances the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB delineations due to differences in the effective dates of the geographic entities..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on Census 2010 data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution. For a 5-year median estimate, the margin of error associated with a median was larger than the median itself.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate because the corresponding estimate is controlled to an independent population or housing estimate. Effectively, the corresponding estimate has no sampling error and the margin of error may be treated as zero.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This layer was developed by the Research & Analytics Group of the Atlanta Regional Commission, using data from the U.S. Census Bureau’s American Community Survey 5-year estimates for 2013-2017, to show the birth and citizenship status by Westside Future Fund in the Atlanta region.
The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent.
The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2013-2017). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available.
For further explanation of ACS estimates and margin of error, visit Census ACS website.
Naming conventions:
Prefixes:
None
Count
p
Percent
r
Rate
m
Median
a
Mean (average)
t
Aggregate (total)
ch
Change in absolute terms (value in t2 - value in t1)
pch
Percent change ((value in t2 - value in t1) / value in t1)
chp
Change in percent (percent in t2 - percent in t1)
Suffixes:
None
Change over two periods
_e
Estimate from most recent ACS
_m
Margin of Error from most recent ACS
_00
Decennial 2000
Attributes:
SumLevel
Summary level of geographic unit (e.g., County, Tract, NSA, NPU, DSNI, Super District, etc)
GEOID
Census tract Federal Information Processing Series (FIPS) code
NAME
Name of geographic unit
Planning_Region
Planning region designation for ARC purposes
Acres
Total area within the tract (in acres)
SqMi
Total area within the tract (in square miles)
County
County identifier (combination of Federal Information Processing Series (FIPS) codes for state and county)
CountyName
County Name
TotPop_e
# Total population, 2017
TotPop_m
# Total population, 2017 (MOE)
Native_e
# U.S. Native, 2017
Native_m
# U.S. Native, 2017 (MOE)
pNative_e
% U.S. Native, 2017
pNative_m
% U.S. Native, 2017 (MOE)
BornUS_e
# Born in the United States, 2017
BornUS_m
# Born in the United States, 2017 (MOE)
pBornUS_e
% Born in the United States, 2017
pBornUS_m
% Born in the United States, 2017 (MOE)
BornState_e
# Born in state of residence, 2017
BornState_m
# Born in state of residence, 2017 (MOE)
pBornState_e
% Born in state of residence, 2017
pBornState_m
% Born in state of residence, 2017 (MOE)
BornDiffState_e
# Born in different state, 2017
BornDiffState_m
# Born in different state, 2017 (MOE)
pBornDiffState_e
% Born in different state, 2017
pBornDiffState_m
% Born in different state, 2017 (MOE)
BornTerr_e
# Born in Puerto Rico, U.S. Island Areas, or born abroad to American parent(s), 2017
BornTerr_m
# Born in Puerto Rico, U.S. Island Areas, or born abroad to American parent(s), 2017 (MOE)
pBornTerr_e
% Born in Puerto Rico, U.S. Island Areas, or born abroad to American parent(s), 2017
pBornTerr_m
% Born in Puerto Rico, U.S. Island Areas, or born abroad to American parent(s), 2017 (MOE)
ForBorn_e
# Foreign born, 2017
ForBorn_m
# Foreign born, 2017 (MOE)
pForBorn_e
% Foreign born, 2017
pForBorn_m
% Foreign born, 2017 (MOE)
Naturalized_e
# Naturalized U.S. citizen, 2017
Naturalized_m
# Naturalized U.S. citizen, 2017 (MOE)
pNaturalized_e
% Naturalized U.S. citizen, 2017
pNaturalized_m
% Naturalized U.S. citizen, 2017 (MOE)
NotNaturalized_e
# Not a U.S. citizen, 2017
NotNaturalized_m
# Not a U.S. citizen, 2017 (MOE)
pNotNaturalized_e
% Not a U.S. citizen, 2017
pNotNaturalized_m
% Not a U.S. citizen, 2017 (MOE)
last_edited_date
Last date the feature was edited by ARC
Source: U.S. Census Bureau, Atlanta Regional Commission
Date: 2013-2017
For additional information, please visit the Census ACS website.
This layer shows the predominant level of insurance coverage for non-citizens in the USA. This is shown by county centroids. The data values are from the 2012-2016 American Community Survey 5-year estimate in the B27020 Table for health insurance coverage status and type by citizenship status. This map helps to answer a few questions:Do non-citizens have health insurance?Where are the non-citizens in the US?The color of the symbols represent the most common form of insurance held by foreign born non-citizens in the USA. This predominance map style compares the count of people who are insured or not insured, and returns the value with the highest count.Foreign born non-citizen without insuranceForeign born non-citizen with insuranceThe size of the symbol represents the count of all non-citizens in the area, which shows in the legend as "sum of categories". The strength of the color represents HOW predominant the form of insurance is for non-citizens. The stronger the symbol, the larger proportion of the non-citizens.This map is designed for a dark basemap such as the Human Geography Basemap or the Dark Gray Canvas Basemap. It helps show a regional pattern about the uninsured and insured non-citizen population. This data was downloaded from the United States Census Bureau American Fact Finder on March 1, 2018. It was then joined with 2016 vintage centroid points and hosted to ArcGIS Online and into the Living Atlas. The data contains additional attributes that can be used for mapping and analysis. Nationally, the breakdown of insurance for the civilian noninstitutionalized population in the US is:Total:313,576,137+/-10,365Native Born:271,739,505+/-102,340With health insurance coverage246,142,724+/-281,131With private health insurance186,765,058+/-576,448With public coverage92,452,853+/-209,370No health insurance coverage25,596,781+/-190,502Foreign Born:41,836,632+/-109,590Naturalized:19,819,629+/-35,976With health insurance coverage17,489,342+/-42,261With private health insurance12,927,060+/-50,505With public coverage6,687,375+/-16,733No health insurance coverage2,330,287+/-20,148Noncitizen:22,017,003+/-118,842With health insurance coverage13,243,825+/-44,108With private health insurance9,320,483+/-26,031With public coverage4,459,972+/-34,270No health insurance coverage8,773,178+/-86,951Data note from the US Census Bureau:[ACS] data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, for 2020, the 2020 Census provides the official counts of the population and housing units for the nation, states, counties, cities, and towns. For 2016 to 2019, the Population Estimates Program provides estimates of the population for the nation, states, counties, cities, and towns and intercensal housing unit estimates for the nation, states, and counties..Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Technical Documentation section.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2016-2020 American Community Survey 5-Year Estimates.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..Methodological changes to citizenship edits may have affected citizenship data for those born in American Samoa. Users should be aware of these changes when using 2018 data or multi-year data containing data from 2018. For more information, see: American Samoa Citizenship User Note..The 2016-2020 American Community Survey (ACS) data generally reflect the September 2018 Office of Management and Budget (OMB) delineations of metropolitan and micropolitan statistical areas. In certain instances, the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB delineation lists due to differences in the effective dates of the geographic entities..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on Census 2010 data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate because the corresponding estimate is controlled to an independent population or housing estimate. Effectively, the corresponding estimate has no sampling error and the margin of error may be treated as zero.
As of 2023, 27.3 percent of California's population were born in a country other than the United States. New Jersey, New York, Florida, and Nevada rounded out the top five states with the largest population of foreign born residents in that year. For the country as a whole, 14.3 percent of residents were foreign born.