The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.
Since late January, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.
We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.
The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.
As of March 10, 2023, the state with the highest number of COVID-19 cases was California. Almost 104 million cases have been reported across the United States, with the states of California, Texas, and Florida reporting the highest numbers.
From an epidemic to a pandemic The World Health Organization declared the COVID-19 outbreak a pandemic on March 11, 2020. The term pandemic refers to multiple outbreaks of an infectious illness threatening multiple parts of the world at the same time. When the transmission is this widespread, it can no longer be traced back to the country where it originated. The number of COVID-19 cases worldwide has now reached over 669 million.
The symptoms and those who are most at risk Most people who contract the virus will suffer only mild symptoms, such as a cough, a cold, or a high temperature. However, in more severe cases, the infection can cause breathing difficulties and even pneumonia. Those at higher risk include older persons and people with pre-existing medical conditions, including diabetes, heart disease, and lung disease. People aged 85 years and older have accounted for around 27 percent of all COVID-19 deaths in the United States, although this age group makes up just two percent of the U.S. population
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States recorded 103436829 Coronavirus Cases since the epidemic began, according to the World Health Organization (WHO). In addition, United States reported 1127152 Coronavirus Deaths. This dataset includes a chart with historical data for the United States Coronavirus Cases.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The World Health Organization reported 6932591 Coronavirus Deaths since the epidemic began. In addition, countries reported 766440796 Coronavirus Cases. This dataset provides - World Coronavirus Deaths- actual values, historical data, forecast, chart, statistics, economic calendar and news.
The counties of Trousdale and Lake – both in Tennessee – had the highest COVID-19 infection rates in the United States as of June 9, 2020. Dakota, Nobles, and Lincoln also ranked among the U.S. counties with the highest number of coronavirus cases per 100,000 people.
Coronavirus hits the East Coast In the United States, the novel coronavirus had infected around 5.4 million people and had caused nearly 170,000 deaths by mid-August 2020. The densely populated states of New York and New Jersey were at the epicenter of the outbreak in the country. New York City, which is composed of five counties, was one of the most severely impacted regions. However, the true level of transmission is likely to be much higher because many people will be asymptomatic or suffer only mild symptoms that are not diagnosed.
All states are in crisis The first coronavirus case in the U.S. was confirmed in the state of Washington in mid-January 2020. At the time, it was unclear how the virus was spreading; we now know that close contact with an infected person and breathing in their respiratory droplets is the primary mode of transmission. It is no surprise that the four states with the most coronavirus cases are those with the highest populations: New York, Texas, Florida, and California. However, Louisiana was the state with the highest COVID-19 infection rate per 100,000 people as of August 24, 2020.
2019 Novel Coronavirus COVID-19 (2019-nCoV) Visual Dashboard and Map:
https://www.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6
Downloadable data:
https://github.com/CSSEGISandData/COVID-19
Additional Information about the Visual Dashboard:
https://systems.jhu.edu/research/public-health/ncov
The COVID Tracking Project collects information from 50 US states, the District of Columbia, and 5 other US territories to provide the most comprehensive testing data we can collect for the novel coronavirus, SARS-CoV-2. We attempt to include positive and negative results, pending tests, and total people tested for each state or district currently reporting that data.
Testing is a crucial part of any public health response, and sharing test data is essential to understanding this outbreak. The CDC is currently not publishing complete testing data, so we’re doing our best to collect it from each state and provide it to the public. The information is patchy and inconsistent, so we’re being transparent about what we find and how we handle it—the spreadsheet includes our live comments about changing data and how we’re working with incomplete information.
From here, you can also learn about our methodology, see who makes this, and find out what information states provide and how we handle it.
Based on a comparison of coronavirus deaths in 210 countries relative to their population, Peru had the most losses to COVID-19 up until July 13, 2022. As of the same date, the virus had infected over 557.8 million people worldwide, and the number of deaths had totaled more than 6.3 million. Note, however, that COVID-19 test rates can vary per country. Additionally, big differences show up between countries when combining the number of deaths against confirmed COVID-19 cases. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.
The difficulties of death figures
This table aims to provide a complete picture on the topic, but it very much relies on data that has become more difficult to compare. As the coronavirus pandemic developed across the world, countries already used different methods to count fatalities, and they sometimes changed them during the course of the pandemic. On April 16, for example, the Chinese city of Wuhan added a 50 percent increase in their death figures to account for community deaths. These deaths occurred outside of hospitals and went unaccounted for so far. The state of New York did something similar two days before, revising their figures with 3,700 new deaths as they started to include “assumed” coronavirus victims. The United Kingdom started counting deaths in care homes and private households on April 29, adjusting their number with about 5,000 new deaths (which were corrected lowered again by the same amount on August 18). This makes an already difficult comparison even more difficult. Belgium, for example, counts suspected coronavirus deaths in their figures, whereas other countries have not done that (yet). This means two things. First, it could have a big impact on both current as well as future figures. On April 16 already, UK health experts stated that if their numbers were corrected for community deaths like in Wuhan, the UK number would change from 205 to “above 300”. This is exactly what happened two weeks later. Second, it is difficult to pinpoint exactly which countries already have “revised” numbers (like Belgium, Wuhan or New York) and which ones do not. One work-around could be to look at (freely accessible) timelines that track the reported daily increase of deaths in certain countries. Several of these are available on our platform, such as for Belgium, Italy and Sweden. A sudden large increase might be an indicator that the domestic sources changed their methodology.
Where are these numbers coming from?
The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.
On December 19, 2022, there were 3,553 new cases of COVID-19 in New York City. The state of New York has been one of the hardest hit U.S. states by the COVID-19 pandemic. This statistic shows the number of new COVID-19 cases in New York City from March 8, 2020 to December 19, 2022, by diagnosis date.
As of November 14, 2022, the United States had recorded almost 98 million cases of COVID-19. The country had also reported a total number of over one million deaths from the disease.
COVID-19 testing remains important The cumulative number of coronavirus cases worldwide reached almost 633 million towards the beginning of November 2022. Demand for test kits has at times exceeded production levels, but many countries continue to test citizens to more effectively control rises in cases. The U.S. has performed the most tests worldwide, followed by India and the United Kingdom.
The silent spread of the coronavirus Widespread testing will also help to detect people who might be asymptomatic – showing few or no symptoms of the illness. These carriers are unwittingly transmitting the virus to others, and the threat of silent transmission is one reason why mass lockdowns have been imposed around the world. However, as asymptomatic carriers produce no symptoms, they may have developed some natural immunity to the illness. Viruses are not as easily spread in communities with high rates of immunity, which helps to protect more vulnerable groups of people. When an infection rate is less than one, a community has achieved herd immunity.
As of May 2, 2023, there were roughly 687 million global cases of COVID-19. Around 660 million people had recovered from the disease, while there had been almost 6.87 million deaths. The United States, India, and Brazil have been among the countries hardest hit by the pandemic.
The various types of human coronavirus The SARS-CoV-2 virus is the seventh known coronavirus to infect humans. Its emergence makes it the third in recent years to cause widespread infectious disease following the viruses responsible for SARS and MERS. A continual problem is that viruses naturally mutate as they attempt to survive. Notable new variants of SARS-CoV-2 were first identified in the UK, South Africa, and Brazil. Variants are of particular interest because they are associated with increased transmission.
Vaccination campaigns Common human coronaviruses typically cause mild symptoms such as a cough or a cold, but the novel coronavirus SARS-CoV-2 has led to more severe respiratory illnesses and deaths worldwide. Several COVID-19 vaccines have now been approved and are being used around the world.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for CORONAVIRUS DEATHS reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.
Of the five boroughs of New York City, Stanten Island has the highest rate of coronavirus cases per 100,000 people. Brooklyn – the most populous borough – has around 36,008 cases per 100,000 people, and only Manhattan has a lower case rate.
Brooklyn hit hard by COVID-19 Towards the middle of December 2022, there had been almost 6.37 million positive infections in New York State, and Kings was the county with the highest number of coronavirus cases. Kings County, which has the same boundaries as the borough of Brooklyn, had also recorded the highest number of deaths due to the coronavirus in New York State. Since the start of the pandemic in the U.S., densely populated neighborhoods in Brooklyn and Queens have been severely affected, and government leaders across New York State have had to find solutions to some unprecedented challenges.
The COVID-19 dashboard includes data on city/town COVID-19 activity, confirmed and probable cases of COVID-19, confirmed and probable deaths related to COVID-19, and the demographic characteristics of cases and deaths.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Central Park is an iconic feature of New York City, which was the first and one of the hardest hit cities in the United States by the Coronavirus. State-level stay-at-home order, raising COVID-19 cases, as well as the public’s personal concerns regarding exposure to the virus, led to a significant reduction of Central Park visitation. We utilized extensive cellphone tracking data to conduct one of the pioneering empirical studies assessing the economic impact of COVID-19 on urban parks. We integrated the difference-in-difference (DID) design with the recreation-demand model. The DID design aids in identifying the causal impacts, controlling for unobservable factors that might confound the treatment effects of interest. Concurrently, the recreational demand model examines the driving factors of visitation changes and enables us to estimate the welfare changes experienced by New York City’s residents. Our findings shine a light on the substantial, yet often overlooked, welfare loss triggered by the pandemic. The analysis indicates that the pandemic resulted in a 94% reduction in visitation, corresponding to an annual consumer surplus loss of $450 million. We noted a rebound in visitation following the initial outbreak, influenced by shifts in government policy, weather conditions, holiday periods, and personal characteristics.
https://www.globaldata.com/privacy-policy/https://www.globaldata.com/privacy-policy/
Current Epidemiology Situation and Forecast
To date, the greatest numbers of cases and deaths have occurred in the US, India, and Brazil
The global case fatality rate (%) has continued to decline
Increasing uncertainty of infection rates renders forecasting difficult in the worst-hit countries Read More
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
IntroductionThe COVID-19 pandemic emerged in a context that lacked adequate prevention, preparedness, and response (PPR) activities, and global, regional, and national leadership. South American countries were among world’s hardest hit by the pandemic, accounting for 10.1% of total cases and 20.1% of global deaths.MethodsThis study explores how pandemic PPR were affected by political, socioeconomic, and health system contexts as well as how PPR may have shaped pandemic outcomes in Argentina, Brazil, Colombia, and Peru. We then identify lessons learned and advance an agenda for improving PPR capacity at regional and national levels. We do this through a mixed-methods sequential explanatory study in four South American countries based on structured interviews and focus groups with elite policy makers.ResultsThe results of our study demonstrate that structural and contextual barriers limited PPR activities at political, social, and economic levels in each country, as well as through the structure of the health care system. Respondents believe that top-level government officials had insufficient political will for prioritizing pandemic PPR and post-COVID-19 recovery programs within their countries’ health agendas.DiscussionWe recommend a regional COVID-19 task force, post-pandemic recovery, social and economic protection for vulnerable groups, improved primary health care and surveillance systems, risk communication strategies, and community engagement to place pandemic PPR on Argentina, Brazil, Colombia, and Peru and other South American countries’ national public health agendas.
As of January 23, 2021, Vermont had the highest Rt value of any U.S. state. The Rt value indicates the average number of people that one person with COVID-19 is expected to infect. A number higher than one means each infected person is passing the virus to more than one other person.
Which are the hardest-hit states? The U.S. reported its first confirmed coronavirus case toward the end of January 2020. More than 28 million positive cases have since been recorded as of February 24, 2021 – California and Texas are the states with the highest number of coronavirus cases in the United States. When figures are adjusted to reflect each state’s population, North Dakota has the highest rate of coronavirus cases. The vaccine rollout has provided Americans with a significant morale boost, and California is the state with the highest number of COVID-19 vaccine doses administered.
How have other nations responded? Countries around the world have responded to the pandemic in varied ways. The United Kingdom has approved three vaccines for emergency use and ranks among the countries with the highest number of COVID-19 vaccine doses administered worldwide. In the Asia-Pacific region, the outbreak has been brought under control in New Zealand, and the country’s response to the pandemic has been widely praised.
https://media.market.us/privacy-policyhttps://media.market.us/privacy-policy
New York, NY – July 21, 2025: The Global Infectious Disease Testing Market is projected to grow from USD 24.4 billion in 2024 to around USD 31.2 billion by 2034, expanding at a steady CAGR of 2.5%. This growth is driven by multiple factors, especially the increasing global burden of infectious diseases such as HIV, hepatitis, tuberculosis, and emerging threats like COVID-19 and monkeypox. According to the World Health Organization (WHO), globalization, urbanization, and climate change are accelerating the spread of these diseases, creating an urgent demand for faster and more efficient testing systems worldwide.
Government bodies and international health agencies are playing a major role in advancing diagnostic infrastructure. Many nations are investing in laboratory expansion, training programs, and rural testing access. The WHO has initiated several programs to assist countries in building robust disease surveillance and diagnostic networks. These developments are strengthening healthcare systems and ensuring that infectious diseases are diagnosed and controlled more effectively. Early detection remains central to stopping outbreaks, and this institutional support is increasing the global adoption of testing technologies.
The industry is also witnessing rapid innovation in diagnostic technology. Traditional testing methods are being replaced by advanced tools like PCR-based diagnostics, rapid antigen tests, and portable detection devices. These innovations provide faster, more accurate results and support quick medical decision-making. During outbreaks, these tools help contain disease by identifying cases early. Their growing use across both high-income and low-income countries reflects the global shift toward efficient and scalable testing options.
Another significant trend is the rise of point-of-care and home-based testing solutions. More individuals now prefer rapid tests that can be used at clinics or in their homes. These options are simple, do not need specialized lab equipment, and offer privacy. This shift in testing behavior has improved early diagnosis for diseases such as COVID-19, influenza, and sexually transmitted infections. It is also helping to reduce transmission in communities by promoting regular, convenient testing practices.
Developing countries are making strong progress in healthcare access, which is positively impacting the infectious disease testing market. Increased awareness about the importance of early diagnosis and rising healthcare spending are boosting demand. Global health organizations are partnering with these nations to enhance laboratory capabilities and deliver affordable testing solutions. Lastly, following the lessons of the COVID-19 pandemic, both global and national health authorities are investing in disease surveillance and emergency preparedness systems that depend heavily on regular and reliable diagnostic testing.
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
The scientific community is working against the clock to arrive at therapeutic interventions to treat patients with COVID-19. Among the strategies for drug discovery, virtual screening approaches have the capacity to search potential hits within millions of chemical structures in days, with the appropriate computing infrastructure. In this article, we first analyzed the published research targeting the inhibition of the main protease (Mpro), one of the most studied targets of SARS-CoV-2, by docking-based methods. An alarming finding was the lack of an adequate validation of the docking protocols (i.e., pose prediction and virtual screening accuracy) before applying them in virtual screening campaigns. The performance of the docking protocols was tested at some level in 57.7% of the 168 investigations analyzed. However, we found only three examples of a complete retrospective analysis of the scoring functions to quantify the virtual screening accuracy of the methods. Moreover, only two publications reported some experimental evaluation of the proposed hits until preparing this manuscript. All of these findings led us to carry out a retrospective performance validation of three different docking protocols, through the analysis of their pose prediction and screening accuracy. Surprisingly, we found that even though all tested docking protocols have a good pose prediction, their screening accuracy is quite limited as they fail to correctly rank a test set of compounds. These results highlight the importance of conducting an adequate validation of the docking protocols before carrying out virtual screening campaigns, and to experimentally confirm the predictions made by the models before drawing bold conclusions. Finally, successful structure-based drug discovery investigations published during the redaction of this manuscript allow us to propose the inclusion of target flexibility and consensus scoring as alternatives to improve the accuracy of the methods.
The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.
Since late January, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.
We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.
The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.