100+ datasets found
  1. Number of COVID-19 deaths in the United States from 2020 to 2022, by year

    • statista.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Number of COVID-19 deaths in the United States from 2020 to 2022, by year [Dataset]. https://www.statista.com/statistics/1382334/number-covid-deaths-us-by-year/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In 2020, there were around ******* deaths in the United States caused by COVID-19, compared to ******* COVID-19 deaths in 2021. This statistic shows the total number of deaths due to COVID-19 in the United States in 2020, 2021, and 2022.

  2. COVID-19 death rates in the United States 2020-2022, by age

    • statista.com
    Updated Nov 29, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). COVID-19 death rates in the United States 2020-2022, by age [Dataset]. https://www.statista.com/statistics/1382357/covid-death-rates-us-by-age/
    Explore at:
    Dataset updated
    Nov 29, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In 2020, the death rate for COVID-19 in the United States among those aged 85 years and older was 1,843 per 100,000 population. That year there was a total of 122,707 deaths from COVID-19 among this age group. This statistic shows the death rate for COVID-19 in the United States in 2020, 2021, and 2022, by age.

  3. n

    Coronavirus (Covid-19) Data in the United States

    • nytimes.com
    • openicpsr.org
    • +4more
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New York Times, Coronavirus (Covid-19) Data in the United States [Dataset]. https://www.nytimes.com/interactive/2020/us/coronavirus-us-cases.html
    Explore at:
    Dataset provided by
    New York Times
    Description

    The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.

    Since late January, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.

    We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.

    The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.

  4. Provisional COVID-19 death counts and rates by month, jurisdiction of...

    • catalog.data.gov
    • data.virginia.gov
    • +3more
    Updated Sep 26, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). Provisional COVID-19 death counts and rates by month, jurisdiction of residence, and demographic characteristics [Dataset]. https://catalog.data.gov/dataset/provisional-covid-19-death-counts-and-rates-by-month-jurisdiction-of-residence-and-demogra
    Explore at:
    Dataset updated
    Sep 26, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    This file contains COVID-19 death counts and rates by month and year of death, jurisdiction of residence (U.S., HHS Region) and demographic characteristics (sex, age, race and Hispanic origin, and age/race and Hispanic origin). United States death counts and rates include the 50 states, plus the District of Columbia. Deaths with confirmed or presumed COVID-19, coded to ICD–10 code U07.1. Number of deaths reported in this file are the total number of COVID-19 deaths received and coded as of the date of analysis and may not represent all deaths that occurred in that period. Counts of deaths occurring before or after the reporting period are not included in the file. Data during recent periods are incomplete because of the lag in time between when the death occurred and when the death certificate is completed, submitted to NCHS and processed for reporting purposes. This delay can range from 1 week to 8 weeks or more, depending on the jurisdiction and cause of death. Death counts should not be compared across jurisdictions. Data timeliness varies by state. Some states report deaths on a daily basis, while other states report deaths weekly or monthly. The ten (10) United States Department of Health and Human Services (HHS) regions include the following jurisdictions. Region 1: Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, Vermont; Region 2: New Jersey, New York; Region 3: Delaware, District of Columbia, Maryland, Pennsylvania, Virginia, West Virginia; Region 4: Alabama, Florida, Georgia, Kentucky, Mississippi, North Carolina, South Carolina, Tennessee; Region 5: Illinois, Indiana, Michigan, Minnesota, Ohio, Wisconsin; Region 6: Arkansas, Louisiana, New Mexico, Oklahoma, Texas; Region 7: Iowa, Kansas, Missouri, Nebraska; Region 8: Colorado, Montana, North Dakota, South Dakota, Utah, Wyoming; Region 9: Arizona, California, Hawaii, Nevada; Region 10: Alaska, Idaho, Oregon, Washington. Rates were calculated using the population estimates for 2021, which are estimated as of July 1, 2021 based on the Blended Base produced by the US Census Bureau in lieu of the April 1, 2020 decennial population count. The Blended Base consists of the blend of Vintage 2020 postcensal population estimates, 2020 Demographic Analysis Estimates, and 2020 Census PL 94-171 Redistricting File (see https://www2.census.gov/programs-surveys/popest/technical-documentation/methodology/2020-2021/methods-statement-v2021.pdf). Rate are based on deaths occurring in the specified week and are age-adjusted to the 2000 standard population using the direct method (see https://www.cdc.gov/nchs/data/nvsr/nvsr70/nvsr70-08-508.pdf). These rates differ from annual age-adjusted rates, typically presented in NCHS publications based on a full year of data and annualized weekly age-adjusted rates which have been adjusted to allow comparison with annual rates. Annualization rates presents deaths per year per 100,000 population that would be expected in a year if the observed period specific (weekly) rate prevailed for a full year. Sub-national death counts between 1-9 are suppressed in accordance with NCHS data confidentiality standards. Rates based on death counts less than 20 are suppressed in accordance with NCHS standards of reliability as specified in NCHS Data Presentation Standards for Proportions (available from: https://www.cdc.gov/nchs/data/series/sr_02/sr02_175.pdf.).

  5. AH Provisional COVID-19 Deaths by Age, United States, Week 40 2020 through...

    • catalog.data.gov
    • datahub.hhs.gov
    • +3more
    Updated Apr 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). AH Provisional COVID-19 Deaths by Age, United States, Week 40 2020 through Week 39 2021 [Dataset]. https://catalog.data.gov/dataset/ah-provisional-covid-19-deaths-by-age-united-states-week-40-2020-through-week-39-2021-8dd73
    Explore at:
    Dataset updated
    Apr 23, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Area covered
    United States
    Description

    Provisional deaths involving coronavirus disease 2019 (COVID-19) reported to NCHS by age group among United States residents, from MMWR Week 40 2020 through MMWR Week 39 2021. Age groups: 0-4, 5-11, 12-15, 16-17, 18-24, 25-39, 40-49, 50-64, 65-74, and 75+ years

  6. COVID-19 mortality rate in the U.S. from Dec.8, 2020 to Mar. 2, 2021, by...

    • statista.com
    Updated Mar 8, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2021). COVID-19 mortality rate in the U.S. from Dec.8, 2020 to Mar. 2, 2021, by race [Dataset]. https://www.statista.com/statistics/1133269/coronavirus-covid19-death-rate-by-race-date-us/
    Explore at:
    Dataset updated
    Mar 8, 2021
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In the United States, the cumulative mortality rate of COVID-19 on March 2, 2021 was approximately 180 deaths per 100,000 population for Black Americans, compared to 150 per 100,000 population among Whites. This statistic shows the COVID-19 death rate per 100,000 population in the United States from December 8, 2020 to March 2, 2021, by race and ethnicity.

  7. d

    Johns Hopkins COVID-19 Case Tracker

    • data.world
    • kaggle.com
    csv, zip
    Updated Dec 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Associated Press (2025). Johns Hopkins COVID-19 Case Tracker [Dataset]. https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    Dec 3, 2025
    Authors
    The Associated Press
    Time period covered
    Jan 22, 2020 - Mar 9, 2023
    Area covered
    Description

    Updates

    • Notice of data discontinuation: Since the start of the pandemic, AP has reported case and death counts from data provided by Johns Hopkins University. Johns Hopkins University has announced that they will stop their daily data collection efforts after March 10. As Johns Hopkins stops providing data, the AP will also stop collecting daily numbers for COVID cases and deaths. The HHS and CDC now collect and visualize key metrics for the pandemic. AP advises using those resources when reporting on the pandemic going forward.

    • April 9, 2020

      • The population estimate data for New York County, NY has been updated to include all five New York City counties (Kings County, Queens County, Bronx County, Richmond County and New York County). This has been done to match the Johns Hopkins COVID-19 data, which aggregates counts for the five New York City counties to New York County.
    • April 20, 2020

      • Johns Hopkins death totals in the US now include confirmed and probable deaths in accordance with CDC guidelines as of April 14. One significant result of this change was an increase of more than 3,700 deaths in the New York City count. This change will likely result in increases for death counts elsewhere as well. The AP does not alter the Johns Hopkins source data, so probable deaths are included in this dataset as well.
    • April 29, 2020

      • The AP is now providing timeseries data for counts of COVID-19 cases and deaths. The raw counts are provided here unaltered, along with a population column with Census ACS-5 estimates and calculated daily case and death rates per 100,000 people. Please read the updated caveats section for more information.
    • September 1st, 2020

      • Johns Hopkins is now providing counts for the five New York City counties individually.
    • February 12, 2021

      • The Ohio Department of Health recently announced that as many as 4,000 COVID-19 deaths may have been underreported through the state’s reporting system, and that the "daily reported death counts will be high for a two to three-day period."
      • Because deaths data will be anomalous for consecutive days, we have chosen to freeze Ohio's rolling average for daily deaths at the last valid measure until Johns Hopkins is able to back-distribute the data. The raw daily death counts, as reported by Johns Hopkins and including the backlogged death data, will still be present in the new_deaths column.
    • February 16, 2021

      - Johns Hopkins has reconciled Ohio's historical deaths data with the state.

      Overview

    The AP is using data collected by the Johns Hopkins University Center for Systems Science and Engineering as our source for outbreak caseloads and death counts for the United States and globally.

    The Hopkins data is available at the county level in the United States. The AP has paired this data with population figures and county rural/urban designations, and has calculated caseload and death rates per 100,000 people. Be aware that caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.

    This data is from the Hopkins dashboard that is updated regularly throughout the day. Like all organizations dealing with data, Hopkins is constantly refining and cleaning up their feed, so there may be brief moments where data does not appear correctly. At this link, you’ll find the Hopkins daily data reports, and a clean version of their feed.

    The AP is updating this dataset hourly at 45 minutes past the hour.

    To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.

    Queries

    Use AP's queries to filter the data or to join to other datasets we've made available to help cover the coronavirus pandemic

    Interactive

    The AP has designed an interactive map to track COVID-19 cases reported by Johns Hopkins.

    @(https://datawrapper.dwcdn.net/nRyaf/15/)

    Interactive Embed Code

    <iframe title="USA counties (2018) choropleth map Mapping COVID-19 cases by county" aria-describedby="" id="datawrapper-chart-nRyaf" src="https://datawrapper.dwcdn.net/nRyaf/10/" scrolling="no" frameborder="0" style="width: 0; min-width: 100% !important;" height="400"></iframe><script type="text/javascript">(function() {'use strict';window.addEventListener('message', function(event) {if (typeof event.data['datawrapper-height'] !== 'undefined') {for (var chartId in event.data['datawrapper-height']) {var iframe = document.getElementById('datawrapper-chart-' + chartId) || document.querySelector("iframe[src*='" + chartId + "']");if (!iframe) {continue;}iframe.style.height = event.data['datawrapper-height'][chartId] + 'px';}}});})();</script>
    

    Caveats

    • This data represents the number of cases and deaths reported by each state and has been collected by Johns Hopkins from a number of sources cited on their website.
    • In some cases, deaths or cases of people who've crossed state lines -- either to receive treatment or because they became sick and couldn't return home while traveling -- are reported in a state they aren't currently in, because of state reporting rules.
    • In some states, there are a number of cases not assigned to a specific county -- for those cases, the county name is "unassigned to a single county"
    • This data should be credited to Johns Hopkins University's COVID-19 tracking project. The AP is simply making it available here for ease of use for reporters and members.
    • Caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.
    • Population estimates at the county level are drawn from 2014-18 5-year estimates from the American Community Survey.
    • The Urban/Rural classification scheme is from the Center for Disease Control and Preventions's National Center for Health Statistics. It puts each county into one of six categories -- from Large Central Metro to Non-Core -- according to population and other characteristics. More details about the classifications can be found here.

    Johns Hopkins timeseries data - Johns Hopkins pulls data regularly to update their dashboard. Once a day, around 8pm EDT, Johns Hopkins adds the counts for all areas they cover to the timeseries file. These counts are snapshots of the latest cumulative counts provided by the source on that day. This can lead to inconsistencies if a source updates their historical data for accuracy, either increasing or decreasing the latest cumulative count. - Johns Hopkins periodically edits their historical timeseries data for accuracy. They provide a file documenting all errors in their timeseries files that they have identified and fixed here

    Attribution

    This data should be credited to Johns Hopkins University COVID-19 tracking project

  8. Preliminary 2024-2025 U.S. COVID-19 Burden Estimates

    • data.cdc.gov
    • data.virginia.gov
    • +1more
    csv, xlsx, xml
    Updated Sep 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Coronavirus and Other Respiratory Viruses Division (CORVD), National Center for Immunization and Respiratory Diseases (NCIRD). (2025). Preliminary 2024-2025 U.S. COVID-19 Burden Estimates [Dataset]. https://data.cdc.gov/Public-Health-Surveillance/Preliminary-2024-2025-U-S-COVID-19-Burden-Estimate/ahrf-yqdt
    Explore at:
    xlsx, csv, xmlAvailable download formats
    Dataset updated
    Sep 26, 2025
    Dataset provided by
    National Center for Immunization and Respiratory Diseases
    Authors
    Coronavirus and Other Respiratory Viruses Division (CORVD), National Center for Immunization and Respiratory Diseases (NCIRD).
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Description

    This dataset represents preliminary estimates of cumulative U.S. COVID-19 disease burden for the 2024-2025 period, including illnesses, outpatient visits, hospitalizations, and deaths. The weekly COVID-19-associated burden estimates are preliminary and based on continuously collected surveillance data from patients hospitalized with laboratory-confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. The data come from the Coronavirus Disease 2019 (COVID-19)-Associated Hospitalization Surveillance Network (COVID-NET), a surveillance platform that captures data from hospitals that serve about 10% of the U.S. population. Each week CDC estimates a range (i.e., lower estimate and an upper estimate) of COVID-19 -associated burden that have occurred since October 1, 2024.

    Note: Data are preliminary and subject to change as more data become available. Rates for recent COVID-19-associated hospital admissions are subject to reporting delays; as new data are received each week, previous rates are updated accordingly.

    References

    1. Reed C, Chaves SS, Daily Kirley P, et al. Estimating influenza disease burden from population-based surveillance data in the United States. PLoS One. 2015;10(3):e0118369. https://doi.org/10.1371/journal.pone.0118369 
    2. Rolfes, MA, Foppa, IM, Garg, S, et al. Annual estimates of the burden of seasonal influenza in the United States: A tool for strengthening influenza surveillance and preparedness. Influenza Other Respi Viruses. 2018; 12: 132– 137. https://doi.org/10.1111/irv.12486
    3. Tokars JI, Rolfes MA, Foppa IM, Reed C. An evaluation and update of methods for estimating the number of influenza cases averted by vaccination in the United States. Vaccine. 2018;36(48):7331-7337. doi:10.1016/j.vaccine.2018.10.026 
    4. Collier SA, Deng L, Adam EA, Benedict KM, Beshearse EM, Blackstock AJ, Bruce BB, Derado G, Edens C, Fullerton KE, Gargano JW, Geissler AL, Hall AJ, Havelaar AH, Hill VR, Hoekstra RM, Reddy SC, Scallan E, Stokes EK, Yoder JS, Beach MJ. Estimate of Burden and Direct Healthcare Cost of Infectious Waterborne Disease in the United States. Emerg Infect Dis. 2021 Jan;27(1):140-149. doi: 10.3201/eid2701.190676. PMID: 33350905; PMCID: PMC7774540.
    5. Reed C, Kim IK, Singleton JA,  et al. Estimated influenza illnesses and hospitalizations averted by vaccination–United States, 2013-14 influenza season. MMWR Morb Mortal Wkly Rep. 2014 Dec 12;63(49):1151-4. https://www.cdc.gov/mmwr/preview/mmwrhtml/mm6349a2.htm 
    6. Reed C, Angulo FJ, Swerdlow DL, et al. Estimates of the Prevalence of Pandemic (H1N1) 2009, United States, April–July 2009. Emerg Infect Dis. 2009;15(12):2004-2007. https://dx.doi.org/10.3201/eid1512.091413
    7. Devine O, Pham H, Gunnels B, et al. Extrapolating Sentinel Surveillance Information to Estimate National COVID-19 Hospital Admission Rates: A Bayesian Modeling Approach. Influenza and Other Respiratory Viruses. https://onlinelibrary.wiley.com/doi/10.1111/irv.70026. Volume18, Issue10. October 2024.
    8. https://www.cdc.gov/covid/php/covid-net/index.html">COVID-NET | COVID-19 | CDC 
    9. https://www.cdc.gov/covid/hcp/clinical-care/systematic-review-process.html 
    10. https://academic.oup.com/pnasnexus/article/1/3/pgac079/6604394?login=false">Excess natural-cause deaths in California by cause and setting: March 2020 through February 2021 | PNAS Nexus | Oxford Academic (oup.com)
    11. Kruschke, J. K. 2011. Doing Bayesian data analysis: a tutorial with R and BUGS. Elsevier, Amsterdam, Section 3.3.5.

  9. US Covid Deaths By State Over Time

    • kaggle.com
    zip
    Updated Jul 4, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    David Roberts (2021). US Covid Deaths By State Over Time [Dataset]. https://www.kaggle.com/davidbroberts/us-covid-deaths-by-state-over-time
    Explore at:
    zip(783961 bytes)Available download formats
    Dataset updated
    Jul 4, 2021
    Authors
    David Roberts
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    United States
    Description

    Covid 19 Deaths by US state.

    CDC reports aggregate counts of COVID-19 cases and death numbers daily online. Data on the COVID-19 website and CDC’s COVID Data Tracker are based on these most recent numbers reported by states, territories, and other jurisdictions. This data set of “United States COVID-19 Cases and Deaths by State over Time” combines this information. However, data are dependent on jurisdictions’ timely and accurate reporting.

    This data was downloaded from the CDC website -> https://data.cdc.gov/Case-Surveillance/United-States-COVID-19-Cases-and-Deaths-by-State-o/9mfq-cb36

    It contains 31.7K rows and 15 columns of data with counts of suspected and confirmed deaths by Covid 19 in the US during the pandemic.

    Date ranges are from Jan 2020 to July 2021

    Thanks to https://unsplash.com/@fusion_medical_animation for the splash pic.

  10. D

    ARCHIVED: COVID-19 Cases and Deaths Summarized by Geography

    • data.sfgov.org
    Updated Sep 11, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Public Health - Population Health Division (2023). ARCHIVED: COVID-19 Cases and Deaths Summarized by Geography [Dataset]. https://data.sfgov.org/COVID-19/ARCHIVED-COVID-19-Cases-and-Deaths-Summarized-by-G/tpyr-dvnc
    Explore at:
    xml, csv, kml, kmz, application/geo+json, xlsxAvailable download formats
    Dataset updated
    Sep 11, 2023
    Dataset authored and provided by
    Department of Public Health - Population Health Division
    License

    ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
    License information was derived automatically

    Description

    A. SUMMARY Medical provider confirmed COVID-19 cases and confirmed COVID-19 related deaths in San Francisco, CA aggregated by several different geographic areas and normalized by 2016-2020 American Community Survey (ACS) 5-year estimates for population data to calculate rate per 10,000 residents.

    On September 12, 2021, a new case definition of COVID-19 was introduced that includes criteria for enumerating new infections after previous probable or confirmed infections (also known as reinfections). A reinfection is defined as a confirmed positive PCR lab test more than 90 days after a positive PCR or antigen test. The first reinfection case was identified on December 7, 2021.

    Cases and deaths are both mapped to the residence of the individual, not to where they were infected or died. For example, if one was infected in San Francisco at work but lives in the East Bay, those are not counted as SF Cases or if one dies in Zuckerberg San Francisco General but is from another county, that is also not counted in this dataset.

    Dataset is cumulative and covers cases going back to 3/2/2020 when testing began.

    Geographic areas summarized are: 1. Analysis Neighborhoods 2. Census Tracts 3. Census Zip Code Tabulation Areas

    B. HOW THE DATASET IS CREATED Addresses from medical data are geocoded by the San Francisco Department of Public Health (SFDPH). Those addresses are spatially joined to the geographic areas. Counts are generated based on the number of address points that match each geographic area. The 2016-2020 American Community Survey (ACS) population estimates provided by the Census are used to create a rate which is equal to ([count] / [acs_population]) * 10000) representing the number of cases per 10,000 residents.

    C. UPDATE PROCESS Geographic analysis is scripted by SFDPH staff and synced to this dataset daily at 7:30 Pacific Time.

    D. HOW TO USE THIS DATASET San Francisco population estimates for geographic regions can be found in a view based on the San Francisco Population and Demographic Census dataset. These population estimates are from the 2016-2020 5-year American Community Survey (ACS).

    Privacy rules in effect To protect privacy, certain rules are in effect: 1. Case counts greater than 0 and less than 10 are dropped - these will be null (blank) values 2. Death counts greater than 0 and less than 10 are dropped - these will be null (blank) values 3. Cases and deaths dropped altogether for areas where acs_population < 1000

    Rate suppression in effect where counts lower than 20 Rates are not calculated unless the case count is greater than or equal to 20. Rates are generally unstable at small numbers, so we avoid calculating them directly. We advise you to apply the same approach as this is best practice in epidemiology.

    A note on Census ZIP Code Tabulation Areas (ZCTAs) ZIP Code Tabulation Areas are special boundaries created by the U.S. Census based on ZIP Codes developed by the USPS. They are not, however, the same thing. ZCTAs are areal representations of routes. Read how the Census develops ZCTAs on their website.

    Row included for Citywide case counts, incidence rate, and deaths A single row is included that has the Citywide case counts and incidence rate. This can be used for comparisons. Citywide will capture all cases regardless of address quality. While some cases cannot be mapped to sub-areas like Census Tracts, ongoing data quality efforts result in improved mapping on a rolling basis.

    E. CHANGE LOG

    • 9/11/2023 - data on COVID-19 cases and deaths summarized by geography are no longer being updated. This data is currently through 9/6/2023 and will not include any new data after this date.
    • 4/6/2023 - the State implemented system updates to improve the integrity of historical data.
    • 2/21/2023 - system updates to improve reliability and accuracy of cases data were implemented.
    • 1/31/2023 - updated “acs_population” column to reflect the 2020 Census Bureau American Community Survey (ACS) San Francisco Population estimates.
    • 1/31/2023 - implemented system updates to streamline and improve our geo-coded data, resulting in small shifts in our case and death data by geography.
    • 1/31/2023 - renamed column “last_updated_at” to “data_as_of”.
    • 2/23/2022 - the New Cases Map dashboard began pulling from this dataset. To access Cases by Geography Over Time, please refer to this dataset.
    • 1/22/2022 - system updates to improve timeliness and accuracy of cases and deaths data were implemented.
    • 7/15/2022 - reinfections added to cases dataset. See section SUMMARY for more information on how reinfections are identified.
    • 4/16/2021 - dataset updated to refresh with a five-day data lag.

  11. COVID-19 cases and deaths per million in 210 countries as of July 13, 2022

    • statista.com
    Updated Jul 13, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2022). COVID-19 cases and deaths per million in 210 countries as of July 13, 2022 [Dataset]. https://www.statista.com/statistics/1104709/coronavirus-deaths-worldwide-per-million-inhabitants/
    Explore at:
    Dataset updated
    Jul 13, 2022
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    Based on a comparison of coronavirus deaths in 210 countries relative to their population, Peru had the most losses to COVID-19 up until July 13, 2022. As of the same date, the virus had infected over 557.8 million people worldwide, and the number of deaths had totaled more than 6.3 million. Note, however, that COVID-19 test rates can vary per country. Additionally, big differences show up between countries when combining the number of deaths against confirmed COVID-19 cases. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.

    The difficulties of death figures

    This table aims to provide a complete picture on the topic, but it very much relies on data that has become more difficult to compare. As the coronavirus pandemic developed across the world, countries already used different methods to count fatalities, and they sometimes changed them during the course of the pandemic. On April 16, for example, the Chinese city of Wuhan added a 50 percent increase in their death figures to account for community deaths. These deaths occurred outside of hospitals and went unaccounted for so far. The state of New York did something similar two days before, revising their figures with 3,700 new deaths as they started to include “assumed” coronavirus victims. The United Kingdom started counting deaths in care homes and private households on April 29, adjusting their number with about 5,000 new deaths (which were corrected lowered again by the same amount on August 18). This makes an already difficult comparison even more difficult. Belgium, for example, counts suspected coronavirus deaths in their figures, whereas other countries have not done that (yet). This means two things. First, it could have a big impact on both current as well as future figures. On April 16 already, UK health experts stated that if their numbers were corrected for community deaths like in Wuhan, the UK number would change from 205 to “above 300”. This is exactly what happened two weeks later. Second, it is difficult to pinpoint exactly which countries already have “revised” numbers (like Belgium, Wuhan or New York) and which ones do not. One work-around could be to look at (freely accessible) timelines that track the reported daily increase of deaths in certain countries. Several of these are available on our platform, such as for Belgium, Italy and Sweden. A sudden large increase might be an indicator that the domestic sources changed their methodology.

    Where are these numbers coming from?

    The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.

  12. Conditions Contributing to COVID-19 Deaths, by State and Age, Provisional...

    • datasets.ai
    • datahub.hhs.gov
    • +4more
    23, 40, 55, 8
    Updated Nov 10, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Health & Human Services (2020). Conditions Contributing to COVID-19 Deaths, by State and Age, Provisional 2020-2023 [Dataset]. https://datasets.ai/datasets/conditions-contributing-to-deaths-involving-coronavirus-disease-2019-covid-19-by-age-group
    Explore at:
    40, 23, 8, 55Available download formats
    Dataset updated
    Nov 10, 2020
    Dataset provided by
    United States Department of Health and Human Serviceshttp://www.hhs.gov/
    Authors
    U.S. Department of Health & Human Services
    Description

    Effective September 27, 2023, this dataset will no longer be updated. Similar data are accessible from wonder.cdc.gov.

    This dataset shows health conditions and contributing causes mentioned in conjunction with deaths involving coronavirus disease 2019 (COVID-19) by age group and jurisdiction of occurrence.

    2022 and 2023 data are provisional. Estimates for 2020 and 2021 are based on final data.

  13. ah-provisional-covid-19-death-counts-by-quarter-an

    • huggingface.co
    Updated Apr 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Health and Human Services (2025). ah-provisional-covid-19-death-counts-by-quarter-an [Dataset]. https://huggingface.co/datasets/HHS-Official/ah-provisional-covid-19-death-counts-by-quarter-an
    Explore at:
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    United States Department of Health and Human Serviceshttp://www.hhs.gov/
    Authors
    Department of Health and Human Services
    Description

    AH Provisional COVID-19 Death Counts by Quarter and County

      Description
    

    Provisional counts of deaths involving coronavirus disease 2019 (COVID-19) by quarter and county of residence, in the United States, 2020-2021.

      Dataset Details
    

    Publisher: Centers for Disease Control and Prevention Last Modified: 2025-04-21 Contact: National Center for Health Statistics (cdcinfo@cdc.gov)

      Source
    

    Original data can be found at:… See the full description on the dataset page: https://huggingface.co/datasets/HHS-Official/ah-provisional-covid-19-death-counts-by-quarter-an.

  14. COVID-19 death rates in the United States 2020-2022, by year

    • statista.com
    Updated May 11, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2023). COVID-19 death rates in the United States 2020-2022, by year [Dataset]. https://www.statista.com/statistics/1382356/covid-death-rates-us-by-year/
    Explore at:
    Dataset updated
    May 11, 2023
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In 2020, the death rate due to COVID-19 in the United States was 93.2 per 100,000 population. In 2022, the COVID-19 death rate dropped to 61.3 per 100,000 population. This statistic shows the death rate for COVID-19 in the United States in 2020, 2021, and 2022.

  15. AH Provisional COVID-19 Death Counts by Quarter and County

    • data.virginia.gov
    • datahub.hhs.gov
    • +3more
    csv, json, rdf, xsl
    Updated Apr 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). AH Provisional COVID-19 Death Counts by Quarter and County [Dataset]. https://data.virginia.gov/dataset/ah-provisional-covid-19-death-counts-by-quarter-and-county
    Explore at:
    json, rdf, csv, xslAvailable download formats
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    Provisional counts of deaths involving coronavirus disease 2019 (COVID-19) by quarter and county of residence, in the United States, 2020-2021.

  16. f

    Data_Sheet_1_Sex disparities of the effect of the COVID-19 pandemic on...

    • datasetcatalog.nlm.nih.gov
    • frontiersin.figshare.com
    Updated Jun 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    He, Xinyuan; Qi, Mingyan; Ji, Fanpu; Li, Xiaofeng; Gao, Ning; Zeng, Qing-Lei; Lv, Fan; Bo, Yajing; Liu, Yishan; Qiu, Sikai; Deng, Huan (2024). Data_Sheet_1_Sex disparities of the effect of the COVID-19 pandemic on mortality among patients living with tuberculosis in the United States.docx [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0001429023
    Explore at:
    Dataset updated
    Jun 18, 2024
    Authors
    He, Xinyuan; Qi, Mingyan; Ji, Fanpu; Li, Xiaofeng; Gao, Ning; Zeng, Qing-Lei; Lv, Fan; Bo, Yajing; Liu, Yishan; Qiu, Sikai; Deng, Huan
    Area covered
    United States
    Description

    BackgroundWe aimed to determine the trend of TB-related deaths during the COVID-19 pandemic.MethodsTB-related mortality data of decedents aged ≥25 years from 2006 to 2021 were analyzed. Excess deaths were estimated by determining the difference between observed and projected mortality rates during the pandemic.ResultsA total of 18,628 TB-related deaths were documented from 2006 to 2021. TB-related age-standardized mortality rates (ASMRs) were 0.51 in 2020 and 0.52 in 2021, corresponding to an excess mortality of 10.22 and 9.19%, respectively. Female patients with TB demonstrated a higher relative increase in mortality (26.33 vs. 2.17% in 2020; 21.48 vs. 3.23% in 2021) when compared to male. Female aged 45–64 years old showed a surge in mortality, with an annual percent change (APC) of −2.2% pre-pandemic to 22.8% (95% CI: −1.7 to 68.7%) during the pandemic, corresponding to excess mortalities of 62.165 and 99.16% in 2020 and 2021, respectively; these excess mortality rates were higher than those observed in the overall female population ages 45–64 years in 2020 (17.53%) and 2021 (33.79%).ConclusionThe steady decline in TB-related mortality in the United States has been reversed by COVID-19. Female with TB were disproportionately affected by the pandemic.

  17. U

    United States Excess Deaths excl COVID: Predicted: Above Expected: New York...

    • ceicdata.com
    Updated Mar 15, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2021). United States Excess Deaths excl COVID: Predicted: Above Expected: New York City [Dataset]. https://www.ceicdata.com/en/united-states/number-of-excess-deaths-by-states-all-causes-excluding-covid19-predicted/excess-deaths-excl-covid-predicted-above-expected-new-york-city
    Explore at:
    Dataset updated
    Mar 15, 2021
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Aug 14, 2021 - Oct 30, 2021
    Area covered
    United States
    Variables measured
    Vital Statistics
    Description

    United States Excess Deaths excl COVID: Predicted: Above Expected: New York City data was reported at 0.000 Number in 30 Oct 2021. This stayed constant from the previous number of 0.000 Number for 23 Oct 2021. United States Excess Deaths excl COVID: Predicted: Above Expected: New York City data is updated weekly, averaging 0.000 Number from Jan 2017 (Median) to 30 Oct 2021, with 251 observations. The data reached an all-time high of 1,877.000 Number in 11 Apr 2020 and a record low of 0.000 Number in 30 Oct 2021. United States Excess Deaths excl COVID: Predicted: Above Expected: New York City data remains active status in CEIC and is reported by Centers for Disease Control and Prevention. The data is categorized under Global Database’s United States – Table US.G012: Number of Excess Deaths: by States: All Causes excluding COVID-19: Predicted (Discontinued).

  18. U

    United States Excess Deaths excl COVID: Predicted: Above Upper Bound: Puerto...

    • ceicdata.com
    Updated Mar 15, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2021). United States Excess Deaths excl COVID: Predicted: Above Upper Bound: Puerto Rico [Dataset]. https://www.ceicdata.com/en/united-states/number-of-excess-deaths-by-states-all-causes-excluding-covid19-predicted/excess-deaths-excl-covid-predicted-above-upper-bound-puerto-rico
    Explore at:
    Dataset updated
    Mar 15, 2021
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Aug 14, 2021 - Oct 30, 2021
    Area covered
    United States
    Variables measured
    Vital Statistics
    Description

    United States Excess Deaths excl COVID: Predicted: Above Upper Bound: Puerto Rico data was reported at 352.000 Number in 30 Oct 2021. This records an increase from the previous number of 269.000 Number for 23 Oct 2021. United States Excess Deaths excl COVID: Predicted: Above Upper Bound: Puerto Rico data is updated weekly, averaging 15.000 Number from Jan 2017 (Median) to 30 Oct 2021, with 251 observations. The data reached an all-time high of 352.000 Number in 30 Oct 2021 and a record low of 0.000 Number in 03 Oct 2020. United States Excess Deaths excl COVID: Predicted: Above Upper Bound: Puerto Rico data remains active status in CEIC and is reported by Centers for Disease Control and Prevention. The data is categorized under Global Database’s United States – Table US.G012: Number of Excess Deaths: by States: All Causes excluding COVID-19: Predicted (Discontinued).

  19. COVID-19 Death Counts in the US by County

    • kaggle.com
    zip
    Updated Nov 22, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bojan Tunguz (2021). COVID-19 Death Counts in the US by County [Dataset]. https://www.kaggle.com/datasets/tunguz/covid19-death-counts-in-the-us-by-county
    Explore at:
    zip(43495 bytes)Available download formats
    Dataset updated
    Nov 22, 2021
    Authors
    Bojan Tunguz
    License

    https://www.usa.gov/government-works/https://www.usa.gov/government-works/

    Area covered
    United States
    Description

    Context

    Provisional count of deaths involving coronavirus disease 2019 (COVID-19) by county of occurrence, in the United States, 2020-2021.

    Contact Name

    National Center for Health Statistics

    Footnotes

    Deaths with confirmed or presumed COVID-19, coded to ICD–10 code U07.1. Counties included in this table have more than one (1) death overall at the time of analysis. Number of deaths reported in this table are the total number of deaths received and coded as of the date of analysis and do not represent all deaths that occurred in that period. Data during this period are incomplete because of the lag in time between when the death occurred and when the death certificate is completed, submitted to NCHS and processed for reporting purposes.

  20. Z

    Life table data for "Bounce backs amid continued losses: Life expectancy...

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jul 20, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Schöley, Jonas; Aburto, José Manuel; Kashnitsky, Ilya; Kniffka, Maxi S.; Zhang, Luyin; Jaadla, Hannaliis; Dowd, Jennifer B.; Kashyap, Ridhi (2022). Life table data for "Bounce backs amid continued losses: Life expectancy changes since COVID-19" [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_6241024
    Explore at:
    Dataset updated
    Jul 20, 2022
    Dataset provided by
    Cambridge Group for the History of Population and Social Structure, Department of Geography, University of Cambridge
    Leverhulme Centre for Demographic Science and Department of Sociology, University of Oxford
    Max Planck Institute for Demographic Research, Rostock
    Interdisciplinary Centre on Population Dynamics, University of Southern Denmark
    Authors
    Schöley, Jonas; Aburto, José Manuel; Kashnitsky, Ilya; Kniffka, Maxi S.; Zhang, Luyin; Jaadla, Hannaliis; Dowd, Jennifer B.; Kashyap, Ridhi
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Life table data for "Bounce backs amid continued losses: Life expectancy changes since COVID-19"

    cc-by Jonas Schöley, José Manuel Aburto, Ilya Kashnitsky, Maxi S. Kniffka, Luyin Zhang, Hannaliis Jaadla, Jennifer B. Dowd, and Ridhi Kashyap. "Bounce backs amid continued losses: Life expectancy changes since COVID-19".

    These are CSV files of life tables over the years 2015 through 2021 across 29 countries analyzed in the paper "Bounce backs amid continued losses: Life expectancy changes since COVID-19".

    40-lifetables.csv

    Life table statistics 2015 through 2021 by sex, region and quarter with uncertainty quantiles based on Poisson replication of death counts. Actual life tables and expected life tables (under the assumption of pre-COVID mortality trend continuation) are provided.

    30-lt_input.csv

    Life table input data.

    id: unique row identifier

    region_iso: iso3166-2 region codes

    sex: Male, Female, Total

    year: iso year

    age_start: start of age group

    age_width: width of age group, Inf for age_start 100, otherwise 1

    nweeks_year: number of weeks in that year, 52 or 53

    death_total: number of deaths by any cause

    population_py: person-years of exposure (adjusted for leap-weeks and missing weeks in input data on all cause deaths)

    death_total_nweeksmiss: number of weeks in the raw input data with at least one missing death count for this region-sex-year stratum. missings are counted when the week is implicitly missing from the input data or if any NAs are encounted in this week or if age groups are implicitly missing for this week in the input data (e.g. 40-45, 50-55)

    death_total_minnageraw: the minimum number of age-groups in the raw input data within this region-sex-year stratum

    death_total_maxnageraw: the maximum number of age-groups in the raw input data within this region-sex-year stratum

    death_total_minopenageraw: the minimum age at the start of the open age group in the raw input data within this region-sex-year stratum

    death_total_maxopenageraw: the maximum age at the start of the open age group in the raw input data within this region-sex-year stratum

    death_total_source: source of the all-cause death data

    death_total_prop_q1: observed proportion of deaths in first quarter of year

    death_total_prop_q2: observed proportion of deaths in second quarter of year

    death_total_prop_q3: observed proportion of deaths in third quarter of year

    death_total_prop_q4: observed proportion of deaths in fourth quarter of year

    death_expected_prop_q1: expected proportion of deaths in first quarter of year

    death_expected_prop_q2: expected proportion of deaths in second quarter of year

    death_expected_prop_q3: expected proportion of deaths in third quarter of year

    death_expected_prop_q4: expected proportion of deaths in fourth quarter of year

    population_midyear: midyear population (July 1st)

    population_source: source of the population count/exposure data

    death_covid: number of deaths due to covid

    death_covid_date: number of deaths due to covid as of

    death_covid_nageraw: the number of age groups in the covid input data

    ex_wpp_estimate: life expectancy estimates from the World Population prospects for a five year period, merged at the midpoint year

    ex_hmd_estimate: life expectancy estimates from the Human Mortality Database

    nmx_hmd_estimate: death rate estimates from the Human Mortality Database

    nmx_cntfc: Lee-Carter death rate projections based on trend in the years 2015 through 2019

    Deaths

    source:

    STMF input data series (https://www.mortality.org/Public/STMF/Outputs/stmf.csv)

    ONS for GB-EAW pre 2020

    CDC for US pre 2020

    STMF:

    harmonized to single ages via pclm

    pclm iterates over country, sex, year, and within-year age grouping pattern and converts irregular age groupings, which may vary by country, year and week into a regular age grouping of 0:110

    smoothing parameters estimated via BIC grid search seperately for every pclm iteration

    last age group set to [110,111)

    ages 100:110+ are then summed into 100+ to be consistent with mid-year population information

    deaths in unknown weeks are considered; deaths in unknown ages are not considered

    ONS:

    data already in single ages

    ages 100:105+ are summed into 100+ to be consistent with mid-year population information

    PCLM smoothing applied to for consistency reasons

    CDC:

    The CDC data comes in single ages 0:100 for the US. For 2020 we only have the STMF data in a much coarser age grouping, i.e. (0, 1, 5, 15, 25, 35, 45, 55, 65, 75, 85+). In order to calculate life-tables in a manner consistent with 2020, we summarise the pre 2020 US death counts into the 2020 age grouping and then apply the pclm ungrouping into single year ages, mirroring the approach to the 2020 data

    Population

    source:

    for years 2000 to 2019: World Population Prospects 2019 single year-age population estimates 1950-2019

    for year 2020: World Population Prospects 2019 single year-age population projections 2020-2100

    mid-year population

    mid-year population translated into exposures:

    if a region reports annual deaths using the Gregorian calendar definition of a year (365 or 366 days long) set exposures equal to mid year population estimates

    if a region reports annual deaths using the iso-week-year definition of a year (364 or 371 days long), and if there is a leap-week in that year, set exposures equal to 371/364*mid_year_population to account for the longer reporting period. in years without leap-weeks set exposures equal to mid year population estimates. further multiply by fraction of observed weeks on all weeks in a year.

    COVID deaths

    source: COVerAGE-DB (https://osf.io/mpwjq/)

    the data base reports cumulative numbers of COVID deaths over days of a year, we extract the most up to date yearly total

    External life expectancy estimates

    source:

    World Population Prospects (https://population.un.org/wpp/Download/Files/1_Indicators%20(Standard)/CSV_FILES/WPP2019_Life_Table_Medium.csv), estimates for the five year period 2015-2019

    Human Mortality Database (https://mortality.org/), single year and age tables

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista, Number of COVID-19 deaths in the United States from 2020 to 2022, by year [Dataset]. https://www.statista.com/statistics/1382334/number-covid-deaths-us-by-year/
Organization logo

Number of COVID-19 deaths in the United States from 2020 to 2022, by year

Explore at:
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
United States
Description

In 2020, there were around ******* deaths in the United States caused by COVID-19, compared to ******* COVID-19 deaths in 2021. This statistic shows the total number of deaths due to COVID-19 in the United States in 2020, 2021, and 2022.

Search
Clear search
Close search
Google apps
Main menu