Facebook
TwitterBy US Open Data Portal, data.gov [source]
This U.S. Household Pandemic Impacts dataset assesses the mental health care that households in America have been receiving over the past four weeks during the Covid-19 pandemic. Produced by a collaboration between the U.S. Census Bureau, and five other federal agencies, this survey was designed to measure both social and economic impacts of Covid-19 on American households, such as employment status, consumer spending trends, food security levels and housing disruptions among other important factors. The data collected was based on an internet questionnaire which was conducted through emails and text messages sent to randomly selected housing units from across America linked with email addresses or cell phone numbers from the Census Bureau Master Address File Data; all estimates comply with NCHS Data Presentation Standards for Proportions. Be sure to check out more about how U.S Government Works for further details!
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This dataset can be useful to examine the impact of the Covid-19 pandemic on access to and utilization of mental health care by U.S. households in the last 4 weeks.
By studying this dataset, you can gain insight into how people’s mental health has been affected by the pandemic and identify trends based on population subgroups, states, phases of the survey and more.
Instructions for Use: - To get started, open up ‘csv-1’ found in this dataset. This file contains information on access to and utilization of mental health care by U.S households in the last 4 weeks, broken down into 14 different columns (e.g., Indicator, Group, State).
- Familiarize yourself with each column label (e.g., Time Period Start Date), data type (e
- Analyzing the impact of pandemic-induced stress on different demographic groups, such as age and race/ethnicity.
- Comparing the mental health care services received in different states over time.
- Investigating the correlation between socio-economic status and access to mental health care services during Covid-19 pandemic
If you use this dataset in your research, please credit the original authors. Data Source
License: Dataset copyright by authors - You are free to: - Share - copy and redistribute the material in any medium or format for any purpose, even commercially. - Adapt - remix, transform, and build upon the material for any purpose, even commercially. - You must: - Give appropriate credit - Provide a link to the license, and indicate if changes were made. - ShareAlike - You must distribute your contributions under the same license as the original. - Keep intact - all notices that refer to this license, including copyright notices.
File: csv-1.csv | Column name | Description | |:---------------------------|:-------------------------------------------------------------------| | Indicator | The type of indicator being measured. (String) | | Group | The group (by age, gender or race) being measured. (String) | | State | The state where the data was collected. (String) | | Subgroup | A narrower level categorization within Group. (String) | | Phase | Phase number reflective of survey iteration. (Integer) | | Time Period | A label indicating duration captured by survey period. (String) | | Time Period Label | A label indicating duration captured by survey period. (String) | | Time Period Start Date | Beginning date for surveyed period. (DateFormat ‘YYYY-MM-DD’) | | Time Period End Date | End date for surveyed period. (DateFormat ‘YYYY-MM-DD’) | | Value | The value of the indicator being measured. (Float) | | LowCI | The lower confidence interval of the value. (Float) | | HighCI | The higher confidence interval of the value. (Float) | | Quartile Range | The quartile range of the value. (String) | | Suppression Flag | A f...
Facebook
Twitter Coronaviruses are a large family of viruses which may cause illness in animals or humans. In humans, several coronaviruses are known to cause respiratory infections ranging from the common cold to more severe diseases such as Middle East Respiratory Syndrome (MERS) and Severe Acute Respiratory Syndrome (SARS). The most recently discovered coronavirus causes coronavirus disease COVID-19 - World Health Organization
This visualization addresses the question of how the hospital resources needed for COVID-19 patients have varied across the 5 different US States (New York, California, Louisiana, Washington & Alabama) during the Coronavirus pandemic.
The hospital resource taken into consideration are:
a)The total no of beds b)The total no of ICU beds c)The total no of Invasive ventilators.
Data for this analysis is obtained from Institute for Health Metrics and Evaluation. Sincere thanks to them for making it available to the public. A time period of 6 months ranging from February to August was analysed and plotted to help the reader identify when the hospital resource needed for COVID-19 patients will attain its peak!
Sincere thanks to Institute for Health Metrics and Evaluation (https://covid19.healthdata.org/united-states-of-america) from whom the data is acquired.
Facebook
TwitterNote: After May 3, 2024, this dataset will no longer be updated because hospitals are no longer required to report data on COVID-19 hospital admissions, hospital capacity, or occupancy data to HHS through CDC’s National Healthcare Safety Network (NHSN). The related CDC COVID Data Tracker site was revised or retired on May 10, 2023.
Note: May 3,2024: Due to incomplete or missing hospital data received for the April 21,2024 through April 27, 2024 reporting period, the COVID-19 Hospital Admissions Level could not be calculated for CNMI and will be reported as “NA” or “Not Available” in the COVID-19 Hospital Admissions Level data released on May 3, 2024.
This dataset represents COVID-19 hospitalization data and metrics aggregated to county or county-equivalent, for all counties or county-equivalents (including territories) in the United States as of the initial date of reporting for each weekly metric. COVID-19 hospitalization data are reported to CDC’s National Healthcare Safety Network, which monitors national and local trends in healthcare system stress, capacity, and community disease levels for approximately 6,000 hospitals in the United States. Data reported by hospitals to NHSN and included in this dataset represent aggregated counts and include metrics capturing information specific to COVID-19 hospital admissions, and inpatient and ICU bed capacity occupancy.
Reporting information:
Facebook
TwitterNote: After May 3, 2024, this dataset will no longer be updated because hospitals are no longer required to report data on COVID-19 hospital admissions, hospital capacity, or occupancy data to HHS through CDC’s National Healthcare Safety Network (NHSN). The related CDC COVID Data Tracker site was revised or retired on May 10, 2023.
Note: May 3,2024: Due to incomplete or missing hospital data received for the April 21,2024 through April 27, 2024 reporting period, the COVID-19 Hospital Admissions Level could not be calculated for CNMI and will be reported as “NA” or “Not Available” in the COVID-19 Hospital Admissions Level data released on May 3, 2024.
This dataset represents COVID-19 hospitalization data and metrics aggregated to county or county-equivalent, for all counties or county-equivalents (including territories) in the United States. COVID-19 hospitalization data are reported to CDC’s National Healthcare Safety Network, which monitors national and local trends in healthcare system stress, capacity, and community disease levels for approximately 6,000 hospitals in the United States. Data reported by hospitals to NHSN and included in this dataset represent aggregated counts and include metrics capturing information specific to COVID-19 hospital admissions, and inpatient and ICU bed capacity occupancy.
Reporting information:
Facebook
TwitterNote: After May 3, 2024, this dataset will no longer be updated because hospitals are no longer required to report data on COVID-19 hospital admissions, hospital capacity, or occupancy data to HHS through CDC’s National Healthcare Safety Network (NHSN). The related CDC COVID Data Tracker site was revised or retired on May 10, 2023.
This dataset represents weekly COVID-19 hospitalization data and metrics aggregated to national, state/territory, and regional levels. COVID-19 hospitalization data are reported to CDC’s National Healthcare Safety Network, which monitors national and local trends in healthcare system stress, capacity, and community disease levels for approximately 6,000 hospitals in the United States. Data reported by hospitals to NHSN and included in this dataset represent aggregated counts and include metrics capturing information specific to COVID-19 hospital admissions, and inpatient and ICU bed capacity occupancy.
Reporting information:
Metric details:
Facebook
TwitterAfter May 3, 2024, this dataset and webpage will no longer be updated because hospitals are no longer required to report data on COVID-19 hospital admissions, and hospital capacity and occupancy data, to HHS through CDC’s National Healthcare Safety Network. Data voluntarily reported to NHSN after May 1, 2024, will be available starting May 10, 2024, at COVID Data Tracker Hospitalizations. The following dataset provides state-aggregated data for hospital utilization in a timeseries format dating back to January 1, 2020. These are derived from reports with facility-level granularity across three main sources: (1) HHS TeleTracking, (2) reporting provided directly to HHS Protect by state/territorial health departments on behalf of their healthcare facilities and (3) National Healthcare Safety Network (before July 15). The file will be updated regularly and provides the latest values reported by each facility within the last four days for all time. This allows for a more comprehensive picture of the hospital utilization within a state by ensuring a hospital is represented, even if they miss a single day of reporting. No statistical analysis is applied to account for non-response and/or to account for missing data. The below table displays one value for each field (i.e., column). Sometimes, reports for a given facility will be provided to more than one reporting source: HHS TeleTracking, NHSN, and HHS Protect. When this occurs, to ensure that there are not duplicate reports, prioritization is applied to the numbers for each facility. On April 27, 2022 the following pediatric fields were added: all_pediatric_inpatient_bed_occupied all_pediatric_inpatient_bed_occupied_coverage all_pediatric_inpatient_beds all_pediatric_inpatient_beds_coverage previous_day_admission_pediatric_covid_confirmed_0_4 previous_day_admission_pediatric_covid_confirmed_0_4_coverage previous_day_admission_pediatric_covid_confirmed_12_17 previous_day_admission_pediatric_covid_confirmed_12_17_coverage previous_day_admission_pediatric_covid_confirmed_5_11 previous_day_admission_pediatric_covid_confirmed_5_11_coverage previous_day_admission_pediatric_covid_confirmed_unknown previous_day_admission_pediatric_covid_confirmed_unknown_coverage staffed_icu_pediatric_patients_confirmed_covid staffed_icu_pediatric_patients_confirmed_covid_coverage staffed_pediatric_icu_bed_occupancy staffed_pediatric_icu_bed_occupancy_coverage total_staffed_pediatric_icu_beds total_staffed_pediatric_icu_beds_coverage On January 19, 2022, the following fields have been added to this dataset: inpatient_beds_used_covid inpatient_beds_used_covid_coverage On September 17, 2021, this data set has had the following fields added: icu_patients_confirmed_influenza, icu_patients_confirmed_influenza_coverage, previous_day_admission_influenza_confirmed, previous_day_admission_influenza_confirmed_coverage, previous_day_deaths_covid_and_influenza, previous_day_deaths_covid_and_influenza_coverage, previous_day_deaths_influenza, previous_day_deaths_influenza_coverage, total_patients_hospitalized_confirmed_influenza, total_patients_hospitalized_confirmed_influenza_and_covid, total_patients_hospitalized_confirmed_influenza_and_covid_coverage, total_patients_hospitalized_confirmed_influenza_coverage On September 13, 2021, this data set has had the following fields added: on_hand_supply_therapeutic_a_casirivimab_imdevimab_courses, on_hand_supply_therapeutic_b_bamlanivimab_courses, on_hand_supply_therapeutic_c_bamlanivimab_etesevimab_courses, previous_week_therapeutic_a_casirivimab_imdevimab_courses_used, previous_week_therapeutic_b_bamlanivimab_courses_used, previous_week_therapeutic_c_bamlanivima
Facebook
TwitterDeprecated report. This report was created early in the response to the COVID-19 pandemic. Increased reporting and quality in hospital data have rendered the estimated datasets obsolete. Updates to this report will be discontinued on July 29, 2021. The following dataset provides state-aggregated data for estimated patient impact and hospital utilization. The source data for estimation is derived from reports with facility-level granularity across two main sources: (1) HHS TeleTracking, and (2) reporting provided directly to HHS Protect by state/territorial health departments on behalf of their healthcare facilities. Estimates Basis: These files are representative estimates for each state and are updated weekly. These projections are based on the information we have from those who reported. As more hospitals report more frequently our projections become more accurate. The actual data for these data points are updated every day, once a day on healthdata.gov and these are the downloadable data sets.
Facebook
TwitterSPRC19 seeks to document as completely as possible all U.S. state policy responses to the COVID-19 pandemic. This includes all policy actions originating from the executive (governor’s office as well as executive agencies), legislative, and judicial branches. An action represents any change in current COVID-19 policy set at the state level. Actions are identified by reading through source documents collected from state websites and other sources according to their effects on any of over two hundred different policy areas. Each action is coded on a variety of features. These include its policy topic area, the branch that made the action, the announcement date, the effective date, an expiration date (if given), and the relationship to prior actions in the same policy area. To access the data and documentation quickly, search the Table view for "SPRC19" or switch to the Tree view. SPRC19 contains over 40,000 policy actions covering over 200 different policy areas. The current version is completed through December 31, 2020. We are currently in the process of updating through March 2021. The current release extends the previous release by adding actions from September through December 2020. The SPRC19 database was assembled with the support of the National Science Foundation through the following grants (grants #1558509, #1637095, #1558661, #1558781, #1558561, #2028724, #2028675, and #2028674, #2148216) and the NIH (grant #1R21AI164391-01).
Facebook
TwitterAs the United States battles the coronavirus, news consumers across the country have been attempting to keep themselves updated with how the pandemic is progressing, and a survey held in March 2020 revealed that the most trusted news source for details on COVID-19 was the CDC, with ** percent of respondents saying that they trusted the centers to provide accurate information on the topic. Following closely behind was the World Health Organization and then the state government, but just ** percent of consumers said that they trusted social media sites to publish reliable and accurate news about the coronavirus outbreak.
Facebook
Twitterhttps://www.usa.gov/government-workshttps://www.usa.gov/government-works
The following dataset provides facility-level data for hospital utilization aggregated on a weekly basis (Friday to Thursday). These are derived from reports with facility-level granularity across two main sources: (1) HHS TeleTracking, and (2) reporting provided directly to HHS Protect by state/territorial health departments on behalf of their healthcare facilities.
The hospital population includes all hospitals registered with Centers for Medicare & Medicaid Services (CMS) as of June 1, 2020. It includes non-CMS hospitals that have reported since July 15, 2020. It does not include psychiatric, rehabilitation, Indian Health Service (IHS) facilities, U.S. Department of Veterans Affairs (VA) facilities, Defense Health Agency (DHA) facilities, and religious non-medical facilities.
For a given entry, the term “collection_week” signifies the start of the period that is aggregated. For example, a “collection_week” of 2020-11-20 means the average/sum/coverage of the elements captured from that given facility starting and including Friday, November 20, 2020, and ending and including reports for Thursday, November 26, 2020.
Reported elements include an append of either “_coverage”, “_sum”, or “_avg”.
A “_coverage” append denotes how many times the facility reported that element during that collection week. A “_sum” append denotes the sum of the reports provided for that facility for that element during that collection week. A “_avg” append is the average of the reports provided for that facility for that element during that collection week. The file will be updated weekly. No statistical analysis is applied to impute non-response. For averages, calculations are based on the number of values collected for a given hospital in that collection week. Suppression is applied to the file for sums and averages less than four (4). In these cases, the field will be replaced with “-999,999”.
This data is preliminary and subject to change as more data become available. Data is available starting on July 31, 2020.
Sometimes, reports for a given facility will be provided to both HHS TeleTracking and HHS Protect. When this occurs, to ensure that there are not duplicate reports, deduplication is applied according to prioritization rules within HHS Protect.
For influenza fields listed in the file, the current HHS guidance marks these fields as optional. As a result, coverage of these elements are varied.
Facebook
TwitterWeekly United States COVID-19 Hospitalization Metrics by Jurisdiction – ARCHIVED
Description
Note: After May 3, 2024, this dataset will no longer be updated because hospitals are no longer required to report data on COVID-19 hospital admissions, hospital capacity, or occupancy data to HHS through CDC’s National Healthcare Safety Network (NHSN). The related CDC COVID Data Tracker site was revised or retired on May 10, 2023. This dataset represents weekly COVID-19… See the full description on the dataset page: https://huggingface.co/datasets/HHS-Official/weekly-united-states-covid-19-hospitalization-metr.
Facebook
TwitterODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
COVID-19 pandemic had a significant impact on the United States. Since the first cases were reported in early 2020, the country experienced waves of infections, resulting in millions of confirmed cases and hundreds of thousands of deaths.
Various factors influenced the spread of the virus across different states, including public health measures, vaccination efforts, population density, and regional demographics. At times, some states faced surges in cases and overwhelmed healthcare systems, while others managed to control the spread more effectively.
Throughout the pandemic, health authorities and the government implemented measures such as social distancing, mask mandates, business restrictions, and vaccination campaigns to mitigate the virus's impact and protect public health.
It's important to note that the COVID-19 situation may have evolved significantly beyond my last update, and I recommend referring to current and reputable sources for the latest developments and statistics on COVID-19 cases in the United States.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
With the current COVID-19 pandemic, there have been various principal questions left unanswered. In response to these vital questions, many leading health professionals and researchers have brought forward new datasets. This data set uses several trusted sources to provide reliable information relating to the socioeconomic, racial, weather, healthcare resource utilization and travel data from all of the 50 states of the United States of America including District of Columbia in one dataset. The dataset includes numerous possible determinants of COVID-19 spread and mortality, all organized in a simple spreadsheet.COVID-19 positive rates and mortality in the dataset were obtained from https://covidtracking.com/data. All the data is accurate as of April 30,2020, reported through the sources.Two researchers collected data from available resources which include governmental and non-governmental sources.(See article and source table references below).With this dataset, explainable machine learning models showing relationship of these determinants with COVID-19 mortality in the United States cases were created.Reference: Mathur P, Sethi T, Mathur A, et al. Explainable machine learning models to understand determinants of COVID-19 mortality in the United States. medRxiv. 2020:2020.2005.2023.20110189.(Source table for the dataset is available as supplemental to this article.)This particular dataset was created for the purpose of continuing research into COVID-19. However, there are many other uses for this large dataset. With information from all 50 states and the District of Columbia, many US statistics can be compared.The data from this dataset can also be used to make new datasets with different purposes.
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Note: This dataset has been limited to show metrics for Ramsey County, Minnesota.
This dataset represents COVID-19 hospitalization data and metrics aggregated to county or county-equivalent, for all counties or county-equivalents (including territories) in the United States. COVID-19 hospitalization data are reported to CDC’s National Healthcare Safety Network, which monitors national and local trends in healthcare system stress, capacity, and community disease levels for approximately 6,000 hospitals in the United States. Data reported by hospitals to NHSN and included in this dataset represent aggregated counts and include metrics capturing information specific to COVID-19 hospital admissions, and inpatient and ICU bed capacity occupancy.
Reporting information: As of December 15, 2022, COVID-19 hospital data are required to be reported to NHSN, which monitors national and local trends in healthcare system stress, capacity, and community disease levels for approximately 6,000 hospitals in the United States. Data reported by hospitals to NHSN represent aggregated counts and include metrics capturing information specific to hospital capacity, occupancy, hospitalizations, and admissions. Prior to December 15, 2022, hospitals reported data directly to the U.S. Department of Health and Human Services (HHS) or via a state submission for collection in the HHS Unified Hospital Data Surveillance System (UHDSS). While CDC reviews these data for errors and corrects those found, some reporting errors might still exist within the data. To minimize errors and inconsistencies in data reported, CDC removes outliers before calculating the metrics. CDC and partners work with reporters to correct these errors and update the data in subsequent weeks. Many hospital subtypes, including acute care and critical access hospitals, as well as Veterans Administration, Defense Health Agency, and Indian Health Service hospitals, are included in the metric calculations provided in this report. Psychiatric, rehabilitation, and religious non-medical hospital types are excluded from calculations. Data are aggregated and displayed for hospitals with the same Centers for Medicare and Medicaid Services (CMS) Certification Number (CCN), which are assigned by CMS to counties based on the CMS Provider of Services files. Full details on COVID-19 hospital data reporting guidance can be found here: https://www.hhs.gov/sites/default/files/covid-19-faqs-hospitals-hospital-laboratory-acute-care-facility-data-reporting.pdf
Calculation of county-level hospital metrics: County-level hospital data are derived using calculations performed at the Health Service Area (HSA) level. An HSA is defined by CDC’s National Center for Health Statistics as a geographic area containing at least one county which is self-contained with respect to the population’s provision of routine hospital care. Every county in the United States is assigned to an HSA, and each HSA must contain at least one hospital. Therefore, use of HSAs in the calculation of local hospital metrics allows for more accurate characterization of the relationship between health care utilization and health status at the local level. Data presented at the county-level represent admissions, hospital inpatient and ICU bed capacity and occupancy among hospitals within the selected HSA. Therefore, admissions, capacity, and occupancy are not limited to residents of the selected HSA. For all county-level hospital metrics listed below the values are calculated first for the entire HSA, and then the HSA-level value is then applied to each county within the HSA. For all county-level hospital metrics listed below the values are calculated first for the entire HSA, and then the HSA-level value is then applied to each county within the HSA.
Metric details: Time period: data for the previous MMWR week (Sunday-Saturday) will update weekly on Thursdays as soon as they are reviewed and verified, usually before 8 pm ET. Updates will occur the following day when reporting coincides with a federal holiday. Note: Weekly updates might be delayed due to delays in reporting. All data are provisional. Because these provisional counts are subject to change, including updates to data reported previously, adjustments can occur. Data may be updated since original publication due to delays in reporting (to account for data received after a given Thursday publication) or data quality corrections. New hospital admissions (count): Total number of admissions of patients with laboratory-confirmed COVID-19 in the previous week (including both adult and pediatric admissions) in the entire jurisdiction New Hospital Admissions Rate Value (Admissions per 100k): Total number of new admissions of patients with laboratory-confirmed COVID-19 in the past week (including both adult and pediatric admissions) for the entire jurisdiction divided by 2019 intercensal population estimate for that jurisdiction multiplied by 100,000. (Note: This metric is used to determine each county’s COVID-19 Hospital Admissions Level for a given week). New COVID-19 Hospital Admissions Rate Level: qualitative value of new COVID-19 hospital admissions rate level [Low, Medium, High, Insufficient Data] New hospital admissions percent change from prior week: Percent change in the current weekly total new admissions of patients with laboratory-confirmed COVID-19 per 100,000 population compared with the prior week. New hospital admissions percent change from prior week level: Qualitative value of percent change in hospital admissions rate from prior week [Substantial decrease, Moderate decrease, Stable, Moderate increase, Substantial increase, Insufficient data] COVID-19 Inpatient Bed Occupancy Value: Percentage of all staffed inpatient beds occupied by patients with laboratory-confirmed COVID-19 (including both adult and pediatric patients) within the in the entire jurisdiction is calculated as an average of valid daily values within the past week (e.g., if only three valid values, the average of those three is taken). Averages are separately calculated for the daily numerators (patients hospitalized with confirmed COVID-19) and denominators (staffed inpatient beds). The average percentage can then be taken as the ratio of these two values for the entire jurisdiction. COVID-19 Inpatient Bed Occupancy Level: Qualitative value of inpatient beds occupied by COVID-19 patients level [Minimal, Low, Moderate, Substantial, High, Insufficient data] COVID-19 Inpatient Bed Occupancy percent change from prior week: The absolute change in the percent of staffed inpatient beds occupied by patients with laboratory-confirmed COVID-19 represents the week-over-week absolute difference between the average occupancy of patients with confirmed COVID-19 in staffed inpatient beds in the past week, compared with the prior week, in the entire jurisdiction. COVID-19 ICU Bed Occupancy Value: Percentage of all staffed inpatient beds occupied by adult patients with confirmed COVID-19 within the entire jurisdiction is calculated as an average of valid daily values within the past week (e.g., if only three valid values, the average of those three is taken). Averages are separately calculated for the daily numerators (adult patients hospitalized with confirmed COVID-19) and denominators (staffed adult ICU beds). The average percentage can then be taken as the ratio of these two values for the entire jurisdiction. COVID-19 ICU Bed Occupancy Level: Qualitative value of ICU beds occupied by COVID-19 patients level [Minimal, Low, Moderate, Substantial, High, Insufficient data] COVID-19 ICU Bed Occupancy percent change from prior week: The absolute change in the percent of staffed ICU beds occupied by patients with laboratory-confirmed COVID-19 represents the week-over-week absolute difference between the average occupancy of patients with confirmed COVID-19 in staffed adult ICU beds for the past week, compared with the prior week, in the in the entire jurisdiction. For all metrics, if there are no data in the specified locality for a given week, the metric value is displayed as “insufficient data”.
Facebook
Twitterhttps://qdr.syr.edu/policies/qdr-standard-access-conditionshttps://qdr.syr.edu/policies/qdr-standard-access-conditions
Project Overview This dataset comprises 5,223 unique documents published online on the official websites of governors’ or health departments’ offices across all U.S. states in relation to the COVID-19 vaccination program. The dataset covers the timeframe from December 2020, when states began preparing for Phase 1a of the COVID-19 vaccination allocation program, to September 2021, when COVID-19 vaccines were widely available to all adults and frequently mandated. It is a collaborative effort between the Yale School of Medicine and Yale's Tobin Center for Economic Policy. Our aim is to archive publications from State Governors and Departments of Health across 50 U.S. states and the District of Columbia, which researchers can utilize to assess the efficacy of communication strategies employed during this period. Ultimately, we aim to support policymakers in making more informed decisions. Data and Data Collection Overview This collection comprises 5,223 unique publications from the governors’ office and the State Department of Health from 50 states and the District of Columbia, released during the period from December 1, 2020 to September 30, 2021, and collected by the research team (specifically AM) between September 2021 and July 2024. Data were collected from the respective states’ Governor’s and Department of Health websites, using search with a custom data range, in week-long increments (e.g., 12/01/2020-12/07/2020), and key words . Search results were reviewed to satisfy the following inclusion/exclusion criteria: Inclusion criteria: Publications from state-run websites ending in .gov that relate to the COVID-19 vaccination program (except New Mexico’s Department of Health which ends in .org and Minnesota’s Department of Health which ends in .us). Exclusion criteria: Publications from county-level organizations, universities, and other organizations not related to state government branches or health sectors (e.g., .org, .com); videos with no transcription posted by the source; publications with no text; publications that refer to other than COVID-19 vaccines; publications not in the English language. The included publications are organized by sources → month → week of the publication. Next, the publications were organized by the publication type (classification done by BV, FFB, PW, LVDM, AG, and AM): information from the Governor and other state officials, policy from the Governor or other state officials, information from the State Department of Health or other state health officials, policy from the State Department of Health or other state health officials, flyers (1-2 pages with primarily visual information), and milestones (publications of quantitative patterns in the form of tables or graphs only). AM and HP conducted the final quality control. The number of publications from each state’s officials, by type and by month from December 2020 to September 2021 are also listed as documentation (see file named Number_of_publications_by_state_by_month_December_2020_September_2021.csv). Selection and Organization of Shared Data The top-level-organization of all 10,446 primary files is by state, using conventional two-letter acronyms. Additionally, each item is classified both by time of publication (in folders labeled “raw”) and by type (in folders with self-explanatory labels, “Policy”, “Flyer”, “Info” and “Milestones”). Thus, each unique item appears more than once in the full deposit. A full inventory of the items is also shared in both Excel and CSV formats, containing a full list of publications with their upload dates, as well as the number of publications by state and by type, organized by month from December 2020 to September 2021. Additionally, the documentation includes this Data Narrative and an administrative README file.
Facebook
Twitterhttps://choosealicense.com/licenses/odbl/https://choosealicense.com/licenses/odbl/
COVID-19 State, Tribal, Local, and Territorial Funding
Description
The U.S. government has taken unprecedented action to address the public health threat posed by this new coronavirus. To accelerate response efforts, CDC received supplemental funds through five congressional acts: the Coronavirus Preparedness and Response Supplemental Appropriations Act, 2020; Coronavirus Aid, Relief, and Economic Security Act; Paycheck Protection Program and Health Care Enhancement Act;… See the full description on the dataset page: https://huggingface.co/datasets/HHS-Official/covid-19-state-tribal-local-and-territorial-fundin.
Facebook
TwitterOpen Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
Deprecated report. This report was created early in the response to the COVID-19 pandemic. Increased reporting and quality in hospital data have rendered the estimated datasets obsolete. Updates to this report will be discontinued on July 29, 2021.
The following dataset provides state-aggregated data for estimated patient impact and hospital utilization.
The source data for estimation is derived from reports with facility-level granularity across two main sources: (1) HHS TeleTracking, and (2) reporting provided directly to HHS Protect by state/territorial health departments on behalf of their healthcare facilities.
Estimates Basis: These files are representative estimates for each state and are updated weekly. These projections are based on the information we have from those who reported. As more hospitals report more frequently our projections become more accurate. The actual data for these data points are updated every day, once a day on healthdata.gov and these are the downloadable data sets.
Facebook
Twitterhttps://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Introduction
Intensive care has played a pivotal role during the COVID-19 pandemic as many patients developed severe pulmonary complications. The availability of information in pediatric intensive care (PICUs) remains limited. The purpose of this study is to characterize COVID-19 positive admissions (CPAs) in the United States and to determine factors that may impact those admissions.
Materials and Methods
This is a retrospective cohort study using data from the COVID-19 dashboard virtual pediatric system) containing information regarding respiratory support and comorbidities for all CPAs between March and April 2020. The state level data contained 13 different factors from population density, comorbid conditions and social distancing score. The absolute CPAs count was converted to frequency using the state’s population. Univariate and multivariate regression analyses were performed to assess the association between CPAs frequency and endpoints.
Results
A total of 205 CPAs were reported by 167 PICUs across 48 states. The estimated CPAs frequency was 2.8 per million children. A total of 3,235 tests were conducted with 6.3% positive tests. Children above 11 years of age comprised 69.7% of the total cohort and 35.1% had moderated or severe comorbidities. The median duration of a CPA was 4.9 days [1.25-12.00 days]. Out of the 1,132 total CPA days, 592 [52.2%] were for mechanical ventilation. The inpatient mortalities were 3 [1.4%]. Multivariate analyses demonstrated an association between CPAs with greater population density [beta-coefficient 0.01, p<0.01] and increased percent of children receiving the influenza vaccination [beta-coefficient 0.17, p=0.01].
Conclusions
Inpatient mortality during PICU CPAs is relatively low at 1.4%. CPA frequency seems to be impacted by population density while characteristics of illness severity appear to be associated with ultraviolet index, temperature, and comorbidities such as Type 1 diabetes. These factors should be included in future studies using patient-level data.
Methods This study utilized only publicly available, deidentified, state-level data. As such, no institutional review board review or approval was sought.
Endpoint identification and data collection
The following data was identified for collection regarding the CPAs themselves: number, duration, need for various ventilatory support measures, severity of comorbidities, and the total number of COVID-19 tests conducted. The following data was collected regarding US states: pediatric population, state population (pediatric and adult) density, air and drinking water quality, average temperature, average ultraviolet index, prevalence of pediatric obesity, type 1 diabetes mellitus (DM) and asthma, the proportion of children who smoke cigarettes, received the influenza vaccine, had health insurance, and received home health care, race, percent of households with children below the poverty line, highest education level of adults in homes with children, and the social distancing score by global positional satellite data (Supplementary Table 1).
The data regarding the CPAs themselves was collected from the publicly available COVID-19 dashboard provided by the Virtual Pediatric System (VPS), which collects data from several PICUs in the US. COVID-19 data was collected from March 14th through April 14th, 2020, in order to represent one full month of data. Data regarding number of centers, number of tests, and number of CPAs was captured in absolute counts. Data regarding CPAs duration was collected in days. The respiratory support modalities for which data was available were room air (RA), nasal cannula (NC) and for the advanced respiratory support modalities (i.e. other than RA and NC) there was available data for high flow nasal cannula (HFNC), non-invasive positive pressure ventilation (NIPPV), conventional mechanical ventilation (MCV), high frequency oscillatory ventilation (HFOV), and extracorporeal membrane oxygenation (ECMO), and was captured in duration (days) of their use. Data regarding severity of comorbidities is reported in the VPS dashboard and the percentage of CPAs with moderate or severe degree of comorbidities was collected.
State-wide data for the analyses were collected from a variety of sources with the complete list of sources provided as Supplementary Material 1. Children’s population data and pediatric comorbidity data was obtained from 2018, as these were the most recent and comprehensive data available. The sources for these other data points were generally US government-based efforts to capture state-level data on various medical issues, however, not all states reported data for all the endpoints (Supplementary Table 2).
Endpoints were assigned to the authors for collection. One author was responsible for collecting data for each state for the variables assigned. Once these data were collected a different author, who did not primarily collect data for that specific endpoint, verified the numbers for accuracy. Finally, values in the top and bottom 10th percentile were identified and verified by a third author.
Statistical analyses
As the data was collected for each state and intended for state-level analyses, and each state has a different pediatric population, the absolute numbers of CPAs for each state were not directly comparable. Thus, the absolute CPAs count for each state was first converted to a frequency of CPAs per 1,000,000 children using the specific state’s population. This CPAs frequency was then used as the dependent variable in a series of single-independent variable linear regressions to determine the univariate association between CPAs frequency and the other endpoints. Multivariate regression was conducted with CPAs frequency as the dependent variable and with other variables entered as independent variables. Forward stepwise regression was utilized with the model with greatest R-squared value being used for the analyses.
Next, a composite endpoint called “percent of PICUs days requiring advanced respiratory support” was created. This consisted of the total duration of HFNC, NIPPV, MCV, HFOV, and ECMO divided by the total PICUs admission duration. This was then modeled similarly to CPAs frequency. Next, a composite outcome called “percent of PICU days requiring intubation” was created. This consisted of the total duration of MCV and HFOV divided by the total PICU admission duration. This, too, was then modeled similarly as CPA frequency. Lastly, an endpoint called “PICUs duration per admission” was created for each state and consisted of the total CPAs PICUs duration for that specific state divided by the number of CPAs reported by that state. This was also then modeled similarly to CPA frequency.
All statistical analyses were done using the user-coded, syntax-based interface of SPSS Version 23.0. A p-value of 0.05 was considered statistically significant. All statistical analyses were done at the state-level with state-level data. Analyses were not conducted at a patient-level with patient-level data. Any use of the word significant here-on in the manuscript refers to “statistically significant” unless explicitly specified otherwise.
Facebook
TwitterNotice of data discontinuation: Since the start of the pandemic, AP has reported case and death counts from data provided by Johns Hopkins University. Johns Hopkins University has announced that they will stop their daily data collection efforts after March 10. As Johns Hopkins stops providing data, the AP will also stop collecting daily numbers for COVID cases and deaths. The HHS and CDC now collect and visualize key metrics for the pandemic. AP advises using those resources when reporting on the pandemic going forward.
April 9, 2020
April 20, 2020
April 29, 2020
September 1st, 2020
February 12, 2021
new_deaths column.February 16, 2021
The AP is using data collected by the Johns Hopkins University Center for Systems Science and Engineering as our source for outbreak caseloads and death counts for the United States and globally.
The Hopkins data is available at the county level in the United States. The AP has paired this data with population figures and county rural/urban designations, and has calculated caseload and death rates per 100,000 people. Be aware that caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.
This data is from the Hopkins dashboard that is updated regularly throughout the day. Like all organizations dealing with data, Hopkins is constantly refining and cleaning up their feed, so there may be brief moments where data does not appear correctly. At this link, you’ll find the Hopkins daily data reports, and a clean version of their feed.
The AP is updating this dataset hourly at 45 minutes past the hour.
To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.
Use AP's queries to filter the data or to join to other datasets we've made available to help cover the coronavirus pandemic
Filter cases by state here
Rank states by their status as current hotspots. Calculates the 7-day rolling average of new cases per capita in each state: https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker/workspace/query?queryid=481e82a4-1b2f-41c2-9ea1-d91aa4b3b1ac
Find recent hotspots within your state by running a query to calculate the 7-day rolling average of new cases by capita in each county: https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker/workspace/query?queryid=b566f1db-3231-40fe-8099-311909b7b687&showTemplatePreview=true
Join county-level case data to an earlier dataset released by AP on local hospital capacity here. To find out more about the hospital capacity dataset, see the full details.
Pull the 100 counties with the highest per-capita confirmed cases here
Rank all the counties by the highest per-capita rate of new cases in the past 7 days here. Be aware that because this ranks per-capita caseloads, very small counties may rise to the very top, so take into account raw caseload figures as well.
The AP has designed an interactive map to track COVID-19 cases reported by Johns Hopkins.
@(https://datawrapper.dwcdn.net/nRyaf/15/)
<iframe title="USA counties (2018) choropleth map Mapping COVID-19 cases by county" aria-describedby="" id="datawrapper-chart-nRyaf" src="https://datawrapper.dwcdn.net/nRyaf/10/" scrolling="no" frameborder="0" style="width: 0; min-width: 100% !important;" height="400"></iframe><script type="text/javascript">(function() {'use strict';window.addEventListener('message', function(event) {if (typeof event.data['datawrapper-height'] !== 'undefined') {for (var chartId in event.data['datawrapper-height']) {var iframe = document.getElementById('datawrapper-chart-' + chartId) || document.querySelector("iframe[src*='" + chartId + "']");if (!iframe) {continue;}iframe.style.height = event.data['datawrapper-height'][chartId] + 'px';}}});})();</script>
Johns Hopkins timeseries data - Johns Hopkins pulls data regularly to update their dashboard. Once a day, around 8pm EDT, Johns Hopkins adds the counts for all areas they cover to the timeseries file. These counts are snapshots of the latest cumulative counts provided by the source on that day. This can lead to inconsistencies if a source updates their historical data for accuracy, either increasing or decreasing the latest cumulative count. - Johns Hopkins periodically edits their historical timeseries data for accuracy. They provide a file documenting all errors in their timeseries files that they have identified and fixed here
This data should be credited to Johns Hopkins University COVID-19 tracking project
Facebook
TwitterThe COVID Tracking Project collects information from 50 US states, the District of Columbia, and 5 other US territories to provide the most comprehensive testing data we can collect for the novel coronavirus, SARS-CoV-2. We attempt to include positive and negative results, pending tests, and total people tested for each state or district currently reporting that data.
Testing is a crucial part of any public health response, and sharing test data is essential to understanding this outbreak. The CDC is currently not publishing complete testing data, so we’re doing our best to collect it from each state and provide it to the public. The information is patchy and inconsistent, so we’re being transparent about what we find and how we handle it—the spreadsheet includes our live comments about changing data and how we’re working with incomplete information.
From here, you can also learn about our methodology, see who makes this, and find out what information states provide and how we handle it.
Facebook
TwitterBy US Open Data Portal, data.gov [source]
This U.S. Household Pandemic Impacts dataset assesses the mental health care that households in America have been receiving over the past four weeks during the Covid-19 pandemic. Produced by a collaboration between the U.S. Census Bureau, and five other federal agencies, this survey was designed to measure both social and economic impacts of Covid-19 on American households, such as employment status, consumer spending trends, food security levels and housing disruptions among other important factors. The data collected was based on an internet questionnaire which was conducted through emails and text messages sent to randomly selected housing units from across America linked with email addresses or cell phone numbers from the Census Bureau Master Address File Data; all estimates comply with NCHS Data Presentation Standards for Proportions. Be sure to check out more about how U.S Government Works for further details!
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This dataset can be useful to examine the impact of the Covid-19 pandemic on access to and utilization of mental health care by U.S. households in the last 4 weeks.
By studying this dataset, you can gain insight into how people’s mental health has been affected by the pandemic and identify trends based on population subgroups, states, phases of the survey and more.
Instructions for Use: - To get started, open up ‘csv-1’ found in this dataset. This file contains information on access to and utilization of mental health care by U.S households in the last 4 weeks, broken down into 14 different columns (e.g., Indicator, Group, State).
- Familiarize yourself with each column label (e.g., Time Period Start Date), data type (e
- Analyzing the impact of pandemic-induced stress on different demographic groups, such as age and race/ethnicity.
- Comparing the mental health care services received in different states over time.
- Investigating the correlation between socio-economic status and access to mental health care services during Covid-19 pandemic
If you use this dataset in your research, please credit the original authors. Data Source
License: Dataset copyright by authors - You are free to: - Share - copy and redistribute the material in any medium or format for any purpose, even commercially. - Adapt - remix, transform, and build upon the material for any purpose, even commercially. - You must: - Give appropriate credit - Provide a link to the license, and indicate if changes were made. - ShareAlike - You must distribute your contributions under the same license as the original. - Keep intact - all notices that refer to this license, including copyright notices.
File: csv-1.csv | Column name | Description | |:---------------------------|:-------------------------------------------------------------------| | Indicator | The type of indicator being measured. (String) | | Group | The group (by age, gender or race) being measured. (String) | | State | The state where the data was collected. (String) | | Subgroup | A narrower level categorization within Group. (String) | | Phase | Phase number reflective of survey iteration. (Integer) | | Time Period | A label indicating duration captured by survey period. (String) | | Time Period Label | A label indicating duration captured by survey period. (String) | | Time Period Start Date | Beginning date for surveyed period. (DateFormat ‘YYYY-MM-DD’) | | Time Period End Date | End date for surveyed period. (DateFormat ‘YYYY-MM-DD’) | | Value | The value of the indicator being measured. (Float) | | LowCI | The lower confidence interval of the value. (Float) | | HighCI | The higher confidence interval of the value. (Float) | | Quartile Range | The quartile range of the value. (String) | | Suppression Flag | A f...