55 datasets found
  1. U.S. Pandemic Mental Health Care

    • kaggle.com
    zip
    Updated Jan 21, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). U.S. Pandemic Mental Health Care [Dataset]. https://www.kaggle.com/datasets/thedevastator/u-s-pandemic-mental-health-care
    Explore at:
    zip(75773 bytes)Available download formats
    Dataset updated
    Jan 21, 2023
    Authors
    The Devastator
    Area covered
    United States
    Description

    U.S. Pandemic Mental Health Care

    Impact on Households in Previous 4 Weeks

    By US Open Data Portal, data.gov [source]

    About this dataset

    This U.S. Household Pandemic Impacts dataset assesses the mental health care that households in America have been receiving over the past four weeks during the Covid-19 pandemic. Produced by a collaboration between the U.S. Census Bureau, and five other federal agencies, this survey was designed to measure both social and economic impacts of Covid-19 on American households, such as employment status, consumer spending trends, food security levels and housing disruptions among other important factors. The data collected was based on an internet questionnaire which was conducted through emails and text messages sent to randomly selected housing units from across America linked with email addresses or cell phone numbers from the Census Bureau Master Address File Data; all estimates comply with NCHS Data Presentation Standards for Proportions. Be sure to check out more about how U.S Government Works for further details!

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    This dataset can be useful to examine the impact of the Covid-19 pandemic on access to and utilization of mental health care by U.S. households in the last 4 weeks.

    By studying this dataset, you can gain insight into how people’s mental health has been affected by the pandemic and identify trends based on population subgroups, states, phases of the survey and more.

    Instructions for Use: - To get started, open up ‘csv-1’ found in this dataset. This file contains information on access to and utilization of mental health care by U.S households in the last 4 weeks, broken down into 14 different columns (e.g., Indicator, Group, State).
    - Familiarize yourself with each column label (e.g., Time Period Start Date), data type (e

    Research Ideas

    • Analyzing the impact of pandemic-induced stress on different demographic groups, such as age and race/ethnicity.
    • Comparing the mental health care services received in different states over time.
    • Investigating the correlation between socio-economic status and access to mental health care services during Covid-19 pandemic

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. Data Source

    License

    License: Dataset copyright by authors - You are free to: - Share - copy and redistribute the material in any medium or format for any purpose, even commercially. - Adapt - remix, transform, and build upon the material for any purpose, even commercially. - You must: - Give appropriate credit - Provide a link to the license, and indicate if changes were made. - ShareAlike - You must distribute your contributions under the same license as the original. - Keep intact - all notices that refer to this license, including copyright notices.

    Columns

    File: csv-1.csv | Column name | Description | |:---------------------------|:-------------------------------------------------------------------| | Indicator | The type of indicator being measured. (String) | | Group | The group (by age, gender or race) being measured. (String) | | State | The state where the data was collected. (String) | | Subgroup | A narrower level categorization within Group. (String) | | Phase | Phase number reflective of survey iteration. (Integer) | | Time Period | A label indicating duration captured by survey period. (String) | | Time Period Label | A label indicating duration captured by survey period. (String) | | Time Period Start Date | Beginning date for surveyed period. (DateFormat ‘YYYY-MM-DD’) | | Time Period End Date | End date for surveyed period. (DateFormat ‘YYYY-MM-DD’) | | Value | The value of the indicator being measured. (Float) | | LowCI | The lower confidence interval of the value. (Float) | | HighCI | The higher confidence interval of the value. (Float) | | Quartile Range | The quartile range of the value. (String) | | Suppression Flag | A f...

  2. Demand for hospital resources during COVID19

    • kaggle.com
    zip
    Updated Apr 14, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sharon Lawrence (2020). Demand for hospital resources during COVID19 [Dataset]. https://www.kaggle.com/najoel/hospital-resources-during-covid19-pandemic
    Explore at:
    zip(943900 bytes)Available download formats
    Dataset updated
    Apr 14, 2020
    Authors
    Sharon Lawrence
    Description

    Context

      Coronaviruses are a large family of viruses which may cause illness in animals or humans. In humans, several coronaviruses are known to cause respiratory infections ranging from the common cold to more severe diseases such as Middle East Respiratory Syndrome (MERS) and Severe Acute Respiratory Syndrome (SARS). The most recently discovered coronavirus causes coronavirus disease COVID-19 - World Health Organization
      This visualization addresses the question of how the hospital resources needed for COVID-19 patients have varied across the 5 different US States (New York, California, Louisiana, Washington & Alabama) during the Coronavirus pandemic. 
     The hospital resource taken into consideration are:
    

    a)The total no of beds b)The total no of ICU beds c)The total no of Invasive ventilators.

    Content

     Data for this analysis is obtained from Institute for Health Metrics and Evaluation. Sincere thanks to them for making it available to the public. A time period of 6 months ranging from February to August was analysed and plotted to help the reader identify when the hospital resource needed for COVID-19 patients will attain its peak!
    

    Acknowledgements

     Sincere thanks to Institute for Health Metrics and Evaluation (https://covid19.healthdata.org/united-states-of-america) from whom the data is acquired.
    

    Inspiration

  3. Weekly United States COVID-19 Hospitalization Metrics by County (Historical)...

    • data.virginia.gov
    • healthdata.gov
    • +1more
    csv, json, rdf, xsl
    Updated Feb 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). Weekly United States COVID-19 Hospitalization Metrics by County (Historical) – ARCHIVED [Dataset]. https://data.virginia.gov/dataset/weekly-united-states-covid-19-hospitalization-metrics-by-county-historical-archived
    Explore at:
    rdf, json, xsl, csvAvailable download formats
    Dataset updated
    Feb 23, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Area covered
    United States
    Description

    Note: After May 3, 2024, this dataset will no longer be updated because hospitals are no longer required to report data on COVID-19 hospital admissions, hospital capacity, or occupancy data to HHS through CDC’s National Healthcare Safety Network (NHSN). The related CDC COVID Data Tracker site was revised or retired on May 10, 2023.

    Note: May 3,2024: Due to incomplete or missing hospital data received for the April 21,2024 through April 27, 2024 reporting period, the COVID-19 Hospital Admissions Level could not be calculated for CNMI and will be reported as “NA” or “Not Available” in the COVID-19 Hospital Admissions Level data released on May 3, 2024.

    This dataset represents COVID-19 hospitalization data and metrics aggregated to county or county-equivalent, for all counties or county-equivalents (including territories) in the United States as of the initial date of reporting for each weekly metric. COVID-19 hospitalization data are reported to CDC’s National Healthcare Safety Network, which monitors national and local trends in healthcare system stress, capacity, and community disease levels for approximately 6,000 hospitals in the United States. Data reported by hospitals to NHSN and included in this dataset represent aggregated counts and include metrics capturing information specific to COVID-19 hospital admissions, and inpatient and ICU bed capacity occupancy.

    Reporting information:

    • As of December 15, 2022, COVID-19 hospital data are required to be reported to NHSN, which monitors national and local trends in healthcare system stress, capacity, and community disease levels for approximately 6,000 hospitals in the United States. Data reported by hospitals to NHSN represent aggregated counts and include metrics capturing information specific to hospital capacity, occupancy, hospitalizations, and admissions. Prior to December 15, 2022, hospitals reported data directly to the U.S. Department of Health and Human Services (HHS) or via a state submission for collection in the HHS Unified Hospital Data Surveillance System (UHDSS).
    • While CDC reviews these data for errors and corrects those found, some reporting errors might still exist within the data. To minimize errors and inconsistencies in data reported, CDC removes outliers before calculating the metrics. CDC and partners work with reporters to correct these errors and update the data in subsequent weeks.
    • Many hospital subtypes, including acute care and critical access hospitals, as well as Veterans Administration, Defense Health Agency, and Indian Health Service hospitals, are included in the metric calculations provided in this report. Psychiatric, rehabilitation, and religious non-medical hospital types are excluded from calculations.
    • Data are aggregated and displayed for hospitals with the same Centers for Medicare and Medicaid Services (CMS) Certification Number (CCN), which are assigned by CMS to counties based on the CMS Provider of Services files.
    • Full details on COVID-19 hospital data reporting guidance can be found here: https://www.hhs.gov/sites/default/files/covid-19-faqs-hospitals-hospital-laboratory-acute-care-facility-data-reporting.pdf
    Calculation of county-level hospital metrics:
    • County-level hospital data are derived using calculations performed at the Health Service Area (HSA) level. An HSA is defined by CDC’s National Center for Health Statistics as a geographic area containing at least one county which is self-contained with respect to the population’s provision of routine hospital care. Every county in the United States is assigned to an HSA, and each HSA must contain at least one hospital. Therefore, use of HSAs in the calculation of local hospital metrics allows for more accurate characterization of the relationship between health care utilization and health status at the local level.
    • Data presented at the county-level represent admissions, hosp

  4. Weekly United States COVID-19 Hospitalization Metrics by County – ARCHIVED

    • data.virginia.gov
    • healthdata.gov
    • +1more
    csv, json, rdf, xsl
    Updated Feb 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). Weekly United States COVID-19 Hospitalization Metrics by County – ARCHIVED [Dataset]. https://data.virginia.gov/dataset/weekly-united-states-covid-19-hospitalization-metrics-by-county-archived
    Explore at:
    xsl, json, csv, rdfAvailable download formats
    Dataset updated
    Feb 23, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Area covered
    United States
    Description

    Note: After May 3, 2024, this dataset will no longer be updated because hospitals are no longer required to report data on COVID-19 hospital admissions, hospital capacity, or occupancy data to HHS through CDC’s National Healthcare Safety Network (NHSN). The related CDC COVID Data Tracker site was revised or retired on May 10, 2023.

    Note: May 3,2024: Due to incomplete or missing hospital data received for the April 21,2024 through April 27, 2024 reporting period, the COVID-19 Hospital Admissions Level could not be calculated for CNMI and will be reported as “NA” or “Not Available” in the COVID-19 Hospital Admissions Level data released on May 3, 2024.

    This dataset represents COVID-19 hospitalization data and metrics aggregated to county or county-equivalent, for all counties or county-equivalents (including territories) in the United States. COVID-19 hospitalization data are reported to CDC’s National Healthcare Safety Network, which monitors national and local trends in healthcare system stress, capacity, and community disease levels for approximately 6,000 hospitals in the United States. Data reported by hospitals to NHSN and included in this dataset represent aggregated counts and include metrics capturing information specific to COVID-19 hospital admissions, and inpatient and ICU bed capacity occupancy.

    Reporting information:

    • As of December 15, 2022, COVID-19 hospital data are required to be reported to NHSN, which monitors national and local trends in healthcare system stress, capacity, and community disease levels for approximately 6,000 hospitals in the United States. Data reported by hospitals to NHSN represent aggregated counts and include metrics capturing information specific to hospital capacity, occupancy, hospitalizations, and admissions. Prior to December 15, 2022, hospitals reported data directly to the U.S. Department of Health and Human Services (HHS) or via a state submission for collection in the HHS Unified Hospital Data Surveillance System (UHDSS).
    • While CDC reviews these data for errors and corrects those found, some reporting errors might still exist within the data. To minimize errors and inconsistencies in data reported, CDC removes outliers before calculating the metrics. CDC and partners work with reporters to correct these errors and update the data in subsequent weeks.
    • Many hospital subtypes, including acute care and critical access hospitals, as well as Veterans Administration, Defense Health Agency, and Indian Health Service hospitals, are included in the metric calculations provided in this report. Psychiatric, rehabilitation, and religious non-medical hospital types are excluded from calculations.
    • Data are aggregated and displayed for hospitals with the same Centers for Medicare and Medicaid Services (CMS) Certification Number (CCN), which are assigned by CMS to counties based on the CMS Provider of Services files.
    • Full details on COVID-19 hospital data reporting guidance can be found here: https://www.hhs.gov/sites/default/files/covid-19-faqs-hospitals-hospital-laboratory-acute-care-facility-data-reporting.pdf
    Calculation of county-level hospital metrics:
    • County-level hospital data are derived using calculations performed at the Health Service Area (HSA) level. An HSA is defined by CDC’s National Center for Health Statistics as a geographic area containing at least one county which is self-contained with respect to the population’s provision of routine hospital care. Every county in the United States is assigned to an HSA, and each HSA must contain at least one hospital. Therefore, use of HSAs in the calculation of local hospital metrics allows for more accurate characterization of the relationship between health care utilization and health status at the local level.
    • Data presented at the county-level represent admissions, hospital inpatient and ICU bed capacity and occupancy among hosp

  5. Weekly United States COVID-19 Hospitalization Metrics by Jurisdiction –...

    • data.virginia.gov
    • healthdata.gov
    • +1more
    csv, json, rdf, xsl
    Updated Feb 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). Weekly United States COVID-19 Hospitalization Metrics by Jurisdiction – ARCHIVED [Dataset]. https://data.virginia.gov/dataset/weekly-united-states-covid-19-hospitalization-metrics-by-jurisdiction-archived
    Explore at:
    rdf, json, csv, xslAvailable download formats
    Dataset updated
    Feb 23, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Area covered
    United States
    Description

    Note: After May 3, 2024, this dataset will no longer be updated because hospitals are no longer required to report data on COVID-19 hospital admissions, hospital capacity, or occupancy data to HHS through CDC’s National Healthcare Safety Network (NHSN). The related CDC COVID Data Tracker site was revised or retired on May 10, 2023.

    This dataset represents weekly COVID-19 hospitalization data and metrics aggregated to national, state/territory, and regional levels. COVID-19 hospitalization data are reported to CDC’s National Healthcare Safety Network, which monitors national and local trends in healthcare system stress, capacity, and community disease levels for approximately 6,000 hospitals in the United States. Data reported by hospitals to NHSN and included in this dataset represent aggregated counts and include metrics capturing information specific to COVID-19 hospital admissions, and inpatient and ICU bed capacity occupancy.

    Reporting information:

    • As of December 15, 2022, COVID-19 hospital data are required to be reported to NHSN, which monitors national and local trends in healthcare system stress, capacity, and community disease levels for approximately 6,000 hospitals in the United States. Data reported by hospitals to NHSN represent aggregated counts and include metrics capturing information specific to hospital capacity, occupancy, hospitalizations, and admissions. Prior to December 15, 2022, hospitals reported data directly to the U.S. Department of Health and Human Services (HHS) or via a state submission for collection in the HHS Unified Hospital Data Surveillance System (UHDSS).
    • While CDC reviews these data for errors and corrects those found, some reporting errors might still exist within the data. To minimize errors and inconsistencies in data reported, CDC removes outliers before calculating the metrics. CDC and partners work with reporters to correct these errors and update the data in subsequent weeks.
    • Many hospital subtypes, including acute care and critical access hospitals, as well as Veterans Administration, Defense Health Agency, and Indian Health Service hospitals, are included in the metric calculations provided in this report. Psychiatric, rehabilitation, and religious non-medical hospital types are excluded from calculations.
    • Data are aggregated and displayed for hospitals with the same Centers for Medicare and Medicaid Services (CMS) Certification Number (CCN), which are assigned by CMS to counties based on the CMS Provider of Services files.
    • Full details on COVID-19 hospital data reporting guidance can be found here: https://www.hhs.gov/sites/default/files/covid-19-faqs-hospitals-hospital-laboratory-acute-care-facility-data-reporting.pdf

    Metric details:

    • Time Period: timeseries data will update weekly on Mondays as soon as they are reviewed and verified, usually before 8 pm ET. Updates will occur the following day when reporting coincides with a federal holiday. Note: Weekly updates might be delayed due to delays in reporting. All data are provisional. Because these provisional counts are subject to change, including updates to data reported previously, adjustments can occur. Data may be updated since original publication due to delays in reporting (to account for data received after a given Thursday publication) or data quality corrections.
    • New COVID-19 Hospital Admissions (count): Number of new admissions of patients with laboratory-confirmed COVID-19 in the previous week (including both adult and pediatric admissions) in the entire jurisdiction.
    • New COVID-19 Hospital Admissions (7-Day Average): 7-day average of new admissions of patients with laboratory-confirmed COVID-19 in the previous week (including both adult and pediatric admissions) in the entire jurisdiction.
    • Cumulative COVID-19 Hospital Admissions: Cumulative total number of admissions of patients with labo

  6. COVID-19 Reported Patient Impact and Hospital Capacity by State Timeseries...

    • catalog.data.gov
    • data.virginia.gov
    • +3more
    Updated Jul 4, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Health and Human Services (2025). COVID-19 Reported Patient Impact and Hospital Capacity by State Timeseries (RAW) [Dataset]. https://catalog.data.gov/dataset/covid-19-reported-patient-impact-and-hospital-capacity-by-state-timeseries-cf58c
    Explore at:
    Dataset updated
    Jul 4, 2025
    Dataset provided by
    United States Department of Health and Human Serviceshttp://www.hhs.gov/
    Description

    After May 3, 2024, this dataset and webpage will no longer be updated because hospitals are no longer required to report data on COVID-19 hospital admissions, and hospital capacity and occupancy data, to HHS through CDC’s National Healthcare Safety Network. Data voluntarily reported to NHSN after May 1, 2024, will be available starting May 10, 2024, at COVID Data Tracker Hospitalizations. The following dataset provides state-aggregated data for hospital utilization in a timeseries format dating back to January 1, 2020. These are derived from reports with facility-level granularity across three main sources: (1) HHS TeleTracking, (2) reporting provided directly to HHS Protect by state/territorial health departments on behalf of their healthcare facilities and (3) National Healthcare Safety Network (before July 15). The file will be updated regularly and provides the latest values reported by each facility within the last four days for all time. This allows for a more comprehensive picture of the hospital utilization within a state by ensuring a hospital is represented, even if they miss a single day of reporting. No statistical analysis is applied to account for non-response and/or to account for missing data. The below table displays one value for each field (i.e., column). Sometimes, reports for a given facility will be provided to more than one reporting source: HHS TeleTracking, NHSN, and HHS Protect. When this occurs, to ensure that there are not duplicate reports, prioritization is applied to the numbers for each facility. On April 27, 2022 the following pediatric fields were added: all_pediatric_inpatient_bed_occupied all_pediatric_inpatient_bed_occupied_coverage all_pediatric_inpatient_beds all_pediatric_inpatient_beds_coverage previous_day_admission_pediatric_covid_confirmed_0_4 previous_day_admission_pediatric_covid_confirmed_0_4_coverage previous_day_admission_pediatric_covid_confirmed_12_17 previous_day_admission_pediatric_covid_confirmed_12_17_coverage previous_day_admission_pediatric_covid_confirmed_5_11 previous_day_admission_pediatric_covid_confirmed_5_11_coverage previous_day_admission_pediatric_covid_confirmed_unknown previous_day_admission_pediatric_covid_confirmed_unknown_coverage staffed_icu_pediatric_patients_confirmed_covid staffed_icu_pediatric_patients_confirmed_covid_coverage staffed_pediatric_icu_bed_occupancy staffed_pediatric_icu_bed_occupancy_coverage total_staffed_pediatric_icu_beds total_staffed_pediatric_icu_beds_coverage On January 19, 2022, the following fields have been added to this dataset: inpatient_beds_used_covid inpatient_beds_used_covid_coverage On September 17, 2021, this data set has had the following fields added: icu_patients_confirmed_influenza, icu_patients_confirmed_influenza_coverage, previous_day_admission_influenza_confirmed, previous_day_admission_influenza_confirmed_coverage, previous_day_deaths_covid_and_influenza, previous_day_deaths_covid_and_influenza_coverage, previous_day_deaths_influenza, previous_day_deaths_influenza_coverage, total_patients_hospitalized_confirmed_influenza, total_patients_hospitalized_confirmed_influenza_and_covid, total_patients_hospitalized_confirmed_influenza_and_covid_coverage, total_patients_hospitalized_confirmed_influenza_coverage On September 13, 2021, this data set has had the following fields added: on_hand_supply_therapeutic_a_casirivimab_imdevimab_courses, on_hand_supply_therapeutic_b_bamlanivimab_courses, on_hand_supply_therapeutic_c_bamlanivimab_etesevimab_courses, previous_week_therapeutic_a_casirivimab_imdevimab_courses_used, previous_week_therapeutic_b_bamlanivimab_courses_used, previous_week_therapeutic_c_bamlanivima

  7. COVID-19 Estimated ICU Beds Occupied by State Timeseries

    • catalog.data.gov
    • data.virginia.gov
    • +2more
    Updated Jul 4, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Health and Human Services (2025). COVID-19 Estimated ICU Beds Occupied by State Timeseries [Dataset]. https://catalog.data.gov/dataset/covid-19-estimated-icu-beds-occupied-by-state-timeseries
    Explore at:
    Dataset updated
    Jul 4, 2025
    Dataset provided by
    United States Department of Health and Human Serviceshttp://www.hhs.gov/
    Description

    Deprecated report. This report was created early in the response to the COVID-19 pandemic. Increased reporting and quality in hospital data have rendered the estimated datasets obsolete. Updates to this report will be discontinued on July 29, 2021. The following dataset provides state-aggregated data for estimated patient impact and hospital utilization. The source data for estimation is derived from reports with facility-level granularity across two main sources: (1) HHS TeleTracking, and (2) reporting provided directly to HHS Protect by state/territorial health departments on behalf of their healthcare facilities. Estimates Basis: These files are representative estimates for each state and are updated weekly. These projections are based on the information we have from those who reported. As more hospitals report more frequently our projections become more accurate. The actual data for these data points are updated every day, once a day on healthdata.gov and these are the downloadable data sets.

  8. d

    SPRC19: State Policy Responses to COVID-19 Database

    • dataone.org
    • search.dataone.org
    Updated Oct 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Frederick J. Boehmke; Bruce Desmarais; Jeffrey Harden J.; Abbie Eastman; Samuel Harper; Hyein Ko; Tracee M. Saunders (2025). SPRC19: State Policy Responses to COVID-19 Database [Dataset]. http://doi.org/10.7910/DVN/GJAUGE
    Explore at:
    Dataset updated
    Oct 29, 2025
    Dataset provided by
    Harvard Dataverse
    Authors
    Frederick J. Boehmke; Bruce Desmarais; Jeffrey Harden J.; Abbie Eastman; Samuel Harper; Hyein Ko; Tracee M. Saunders
    Time period covered
    Jan 1, 2020 - Dec 31, 2020
    Description

    SPRC19 seeks to document as completely as possible all U.S. state policy responses to the COVID-19 pandemic. This includes all policy actions originating from the executive (governor’s office as well as executive agencies), legislative, and judicial branches. An action represents any change in current COVID-19 policy set at the state level. Actions are identified by reading through source documents collected from state websites and other sources according to their effects on any of over two hundred different policy areas. Each action is coded on a variety of features. These include its policy topic area, the branch that made the action, the announcement date, the effective date, an expiration date (if given), and the relationship to prior actions in the same policy area. To access the data and documentation quickly, search the Table view for "SPRC19" or switch to the Tree view. SPRC19 contains over 40,000 policy actions covering over 200 different policy areas. The current version is completed through December 31, 2020. We are currently in the process of updating through March 2021. The current release extends the previous release by adding actions from September through December 2020. The SPRC19 database was assembled with the support of the National Science Foundation through the following grants (grants #1558509, #1637095, #1558661, #1558781, #1558561, #2028724, #2028675, and #2028674, #2148216) and the NIH (grant #1R21AI164391-01).

  9. Most trusted sources of coronavirus news U.S. 2020

    • statista.com
    Updated Mar 13, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2020). Most trusted sources of coronavirus news U.S. 2020 [Dataset]. https://www.statista.com/statistics/1104557/coronavirus-trusted-news-sources-by-us/
    Explore at:
    Dataset updated
    Mar 13, 2020
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Mar 13, 2020 - Mar 16, 2020
    Area covered
    United States
    Description

    As the United States battles the coronavirus, news consumers across the country have been attempting to keep themselves updated with how the pandemic is progressing, and a survey held in March 2020 revealed that the most trusted news source for details on COVID-19 was the CDC, with ** percent of respondents saying that they trusted the centers to provide accurate information on the topic. Following closely behind was the World Health Organization and then the state government, but just ** percent of consumers said that they trusted social media sites to publish reliable and accurate news about the coronavirus outbreak.

  10. COVID-19 Reported Patient Impact and Hospital Capacity by Facility US...

    • data.pa.gov
    • splitgraph.com
    Updated Dec 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States Department of Health and Human Services (HHS) (2025). COVID-19 Reported Patient Impact and Hospital Capacity by Facility US Federal Health and Human Services (HHS) [Dataset]. https://data.pa.gov/Covid-19/COVID-19-Reported-Patient-Impact-and-Hospital-Capa/c7w7-maff
    Explore at:
    xlsx, xml, application/geo+json, csv, kml, kmzAvailable download formats
    Dataset updated
    Dec 1, 2025
    Dataset provided by
    United States Department of Health and Human Serviceshttp://www.hhs.gov/
    Authors
    United States Department of Health and Human Services (HHS)
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Area covered
    United States
    Description

    The following dataset provides facility-level data for hospital utilization aggregated on a weekly basis (Friday to Thursday). These are derived from reports with facility-level granularity across two main sources: (1) HHS TeleTracking, and (2) reporting provided directly to HHS Protect by state/territorial health departments on behalf of their healthcare facilities.

    The hospital population includes all hospitals registered with Centers for Medicare & Medicaid Services (CMS) as of June 1, 2020. It includes non-CMS hospitals that have reported since July 15, 2020. It does not include psychiatric, rehabilitation, Indian Health Service (IHS) facilities, U.S. Department of Veterans Affairs (VA) facilities, Defense Health Agency (DHA) facilities, and religious non-medical facilities.

    For a given entry, the term “collection_week” signifies the start of the period that is aggregated. For example, a “collection_week” of 2020-11-20 means the average/sum/coverage of the elements captured from that given facility starting and including Friday, November 20, 2020, and ending and including reports for Thursday, November 26, 2020.

    Reported elements include an append of either “_coverage”, “_sum”, or “_avg”.

    A “_coverage” append denotes how many times the facility reported that element during that collection week. A “_sum” append denotes the sum of the reports provided for that facility for that element during that collection week. A “_avg” append is the average of the reports provided for that facility for that element during that collection week. The file will be updated weekly. No statistical analysis is applied to impute non-response. For averages, calculations are based on the number of values collected for a given hospital in that collection week. Suppression is applied to the file for sums and averages less than four (4). In these cases, the field will be replaced with “-999,999”.

    This data is preliminary and subject to change as more data become available. Data is available starting on July 31, 2020.

    Sometimes, reports for a given facility will be provided to both HHS TeleTracking and HHS Protect. When this occurs, to ensure that there are not duplicate reports, deduplication is applied according to prioritization rules within HHS Protect.

    For influenza fields listed in the file, the current HHS guidance marks these fields as optional. As a result, coverage of these elements are varied.

  11. weekly-united-states-covid-19-hospitalization-metr

    • huggingface.co
    Updated May 10, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Health and Human Services (2023). weekly-united-states-covid-19-hospitalization-metr [Dataset]. https://huggingface.co/datasets/HHS-Official/weekly-united-states-covid-19-hospitalization-metr
    Explore at:
    Dataset updated
    May 10, 2023
    Dataset provided by
    United States Department of Health and Human Serviceshttp://www.hhs.gov/
    Authors
    Department of Health and Human Services
    Area covered
    United States
    Description

    Weekly United States COVID-19 Hospitalization Metrics by Jurisdiction – ARCHIVED

      Description
    

    Note: After May 3, 2024, this dataset will no longer be updated because hospitals are no longer required to report data on COVID-19 hospital admissions, hospital capacity, or occupancy data to HHS through CDC’s National Healthcare Safety Network (NHSN). The related CDC COVID Data Tracker site was revised or retired on May 10, 2023. This dataset represents weekly COVID-19… See the full description on the dataset page: https://huggingface.co/datasets/HHS-Official/weekly-united-states-covid-19-hospitalization-metr.

  12. United States COVID-19 Cases

    • kaggle.com
    zip
    Updated Jun 7, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sanjana chaudhari☑️ (2023). United States COVID-19 Cases [Dataset]. https://www.kaggle.com/datasets/sanjanchaudhari/united-states-covid-19-cases-and-d
    Explore at:
    zip(1641630 bytes)Available download formats
    Dataset updated
    Jun 7, 2023
    Authors
    Sanjana chaudhari☑️
    License

    ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
    License information was derived automatically

    Area covered
    United States
    Description

    COVID-19 pandemic had a significant impact on the United States. Since the first cases were reported in early 2020, the country experienced waves of infections, resulting in millions of confirmed cases and hundreds of thousands of deaths.

    Various factors influenced the spread of the virus across different states, including public health measures, vaccination efforts, population density, and regional demographics. At times, some states faced surges in cases and overwhelmed healthcare systems, while others managed to control the spread more effectively.

    Throughout the pandemic, health authorities and the government implemented measures such as social distancing, mask mandates, business restrictions, and vaccination campaigns to mitigate the virus's impact and protect public health.

    It's important to note that the COVID-19 situation may have evolved significantly beyond my last update, and I recommend referring to current and reputable sources for the latest developments and statistics on COVID-19 cases in the United States.

  13. Determinants of COVID-19 mortality in the United States dataset(BrainX)

    • figshare.com
    txt
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Piyush Mathur; Anya Mathur; Tavpritesh Sethi; Simran Dua; Jacek B Cywinkski; Ashish K Khanna; Frank Papay; Kamal Maheswari (2023). Determinants of COVID-19 mortality in the United States dataset(BrainX) [Dataset]. http://doi.org/10.6084/m9.figshare.12780872.v4
    Explore at:
    txtAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    Figsharehttp://figshare.com/
    figshare
    Authors
    Piyush Mathur; Anya Mathur; Tavpritesh Sethi; Simran Dua; Jacek B Cywinkski; Ashish K Khanna; Frank Papay; Kamal Maheswari
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    With the current COVID-19 pandemic, there have been various principal questions left unanswered. In response to these vital questions, many leading health professionals and researchers have brought forward new datasets. This data set uses several trusted sources to provide reliable information relating to the socioeconomic, racial, weather, healthcare resource utilization and travel data from all of the 50 states of the United States of America including District of Columbia in one dataset. The dataset includes numerous possible determinants of COVID-19 spread and mortality, all organized in a simple spreadsheet.COVID-19 positive rates and mortality in the dataset were obtained from https://covidtracking.com/data. All the data is accurate as of April 30,2020, reported through the sources.Two researchers collected data from available resources which include governmental and non-governmental sources.(See article and source table references below).With this dataset, explainable machine learning models showing relationship of these determinants with COVID-19 mortality in the United States cases were created.Reference: Mathur P, Sethi T, Mathur A, et al. Explainable machine learning models to understand determinants of COVID-19 mortality in the United States. medRxiv. 2020:2020.2005.2023.20110189.(Source table for the dataset is available as supplemental to this article.)This particular dataset was created for the purpose of continuing research into COVID-19. However, there are many other uses for this large dataset. With information from all 50 states and the District of Columbia, many US statistics can be compared.The data from this dataset can also be used to make new datasets with different purposes.

  14. Centers for Disease Control and Prevention, Division of Healthcare Quality...

    • opendata.ramseycountymn.gov
    csv, xlsx, xml
    Updated Nov 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CDC Division of Healthcare Quality Promotion (DHQP) Surveillance Branch, National Healthcare Safety Network (NHSN) (2025). Centers for Disease Control and Prevention, Division of Healthcare Quality Promotion, National Healthcare Safety Network, Weekly United States COVID-19 Hospitalization Metrics - Ramsey County [Dataset]. https://opendata.ramseycountymn.gov/w/5mvu-4mt4/cjij-g4h4?cur=wCPAmhgX7ip
    Explore at:
    csv, xml, xlsxAvailable download formats
    Dataset updated
    Nov 20, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Authors
    CDC Division of Healthcare Quality Promotion (DHQP) Surveillance Branch, National Healthcare Safety Network (NHSN)
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Area covered
    Ramsey County, United States
    Description

    Note: This dataset has been limited to show metrics for Ramsey County, Minnesota.

    This dataset represents COVID-19 hospitalization data and metrics aggregated to county or county-equivalent, for all counties or county-equivalents (including territories) in the United States. COVID-19 hospitalization data are reported to CDC’s National Healthcare Safety Network, which monitors national and local trends in healthcare system stress, capacity, and community disease levels for approximately 6,000 hospitals in the United States. Data reported by hospitals to NHSN and included in this dataset represent aggregated counts and include metrics capturing information specific to COVID-19 hospital admissions, and inpatient and ICU bed capacity occupancy.

    Reporting information: As of December 15, 2022, COVID-19 hospital data are required to be reported to NHSN, which monitors national and local trends in healthcare system stress, capacity, and community disease levels for approximately 6,000 hospitals in the United States. Data reported by hospitals to NHSN represent aggregated counts and include metrics capturing information specific to hospital capacity, occupancy, hospitalizations, and admissions. Prior to December 15, 2022, hospitals reported data directly to the U.S. Department of Health and Human Services (HHS) or via a state submission for collection in the HHS Unified Hospital Data Surveillance System (UHDSS). While CDC reviews these data for errors and corrects those found, some reporting errors might still exist within the data. To minimize errors and inconsistencies in data reported, CDC removes outliers before calculating the metrics. CDC and partners work with reporters to correct these errors and update the data in subsequent weeks. Many hospital subtypes, including acute care and critical access hospitals, as well as Veterans Administration, Defense Health Agency, and Indian Health Service hospitals, are included in the metric calculations provided in this report. Psychiatric, rehabilitation, and religious non-medical hospital types are excluded from calculations. Data are aggregated and displayed for hospitals with the same Centers for Medicare and Medicaid Services (CMS) Certification Number (CCN), which are assigned by CMS to counties based on the CMS Provider of Services files. Full details on COVID-19 hospital data reporting guidance can be found here: https://www.hhs.gov/sites/default/files/covid-19-faqs-hospitals-hospital-laboratory-acute-care-facility-data-reporting.pdf

    Calculation of county-level hospital metrics: County-level hospital data are derived using calculations performed at the Health Service Area (HSA) level. An HSA is defined by CDC’s National Center for Health Statistics as a geographic area containing at least one county which is self-contained with respect to the population’s provision of routine hospital care. Every county in the United States is assigned to an HSA, and each HSA must contain at least one hospital. Therefore, use of HSAs in the calculation of local hospital metrics allows for more accurate characterization of the relationship between health care utilization and health status at the local level. Data presented at the county-level represent admissions, hospital inpatient and ICU bed capacity and occupancy among hospitals within the selected HSA. Therefore, admissions, capacity, and occupancy are not limited to residents of the selected HSA. For all county-level hospital metrics listed below the values are calculated first for the entire HSA, and then the HSA-level value is then applied to each county within the HSA. For all county-level hospital metrics listed below the values are calculated first for the entire HSA, and then the HSA-level value is then applied to each county within the HSA.

    Metric details: Time period: data for the previous MMWR week (Sunday-Saturday) will update weekly on Thursdays as soon as they are reviewed and verified, usually before 8 pm ET. Updates will occur the following day when reporting coincides with a federal holiday. Note: Weekly updates might be delayed due to delays in reporting. All data are provisional. Because these provisional counts are subject to change, including updates to data reported previously, adjustments can occur. Data may be updated since original publication due to delays in reporting (to account for data received after a given Thursday publication) or data quality corrections. New hospital admissions (count): Total number of admissions of patients with laboratory-confirmed COVID-19 in the previous week (including both adult and pediatric admissions) in the entire jurisdiction New Hospital Admissions Rate Value (Admissions per 100k): Total number of new admissions of patients with laboratory-confirmed COVID-19 in the past week (including both adult and pediatric admissions) for the entire jurisdiction divided by 2019 intercensal population estimate for that jurisdiction multiplied by 100,000. (Note: This metric is used to determine each county’s COVID-19 Hospital Admissions Level for a given week). New COVID-19 Hospital Admissions Rate Level: qualitative value of new COVID-19 hospital admissions rate level [Low, Medium, High, Insufficient Data] New hospital admissions percent change from prior week: Percent change in the current weekly total new admissions of patients with laboratory-confirmed COVID-19 per 100,000 population compared with the prior week. New hospital admissions percent change from prior week level: Qualitative value of percent change in hospital admissions rate from prior week [Substantial decrease, Moderate decrease, Stable, Moderate increase, Substantial increase, Insufficient data] COVID-19 Inpatient Bed Occupancy Value: Percentage of all staffed inpatient beds occupied by patients with laboratory-confirmed COVID-19 (including both adult and pediatric patients) within the in the entire jurisdiction is calculated as an average of valid daily values within the past week (e.g., if only three valid values, the average of those three is taken). Averages are separately calculated for the daily numerators (patients hospitalized with confirmed COVID-19) and denominators (staffed inpatient beds). The average percentage can then be taken as the ratio of these two values for the entire jurisdiction. COVID-19 Inpatient Bed Occupancy Level: Qualitative value of inpatient beds occupied by COVID-19 patients level [Minimal, Low, Moderate, Substantial, High, Insufficient data] COVID-19 Inpatient Bed Occupancy percent change from prior week: The absolute change in the percent of staffed inpatient beds occupied by patients with laboratory-confirmed COVID-19 represents the week-over-week absolute difference between the average occupancy of patients with confirmed COVID-19 in staffed inpatient beds in the past week, compared with the prior week, in the entire jurisdiction. COVID-19 ICU Bed Occupancy Value: Percentage of all staffed inpatient beds occupied by adult patients with confirmed COVID-19 within the entire jurisdiction is calculated as an average of valid daily values within the past week (e.g., if only three valid values, the average of those three is taken). Averages are separately calculated for the daily numerators (adult patients hospitalized with confirmed COVID-19) and denominators (staffed adult ICU beds). The average percentage can then be taken as the ratio of these two values for the entire jurisdiction. COVID-19 ICU Bed Occupancy Level: Qualitative value of ICU beds occupied by COVID-19 patients level [Minimal, Low, Moderate, Substantial, High, Insufficient data] COVID-19 ICU Bed Occupancy percent change from prior week: The absolute change in the percent of staffed ICU beds occupied by patients with laboratory-confirmed COVID-19 represents the week-over-week absolute difference between the average occupancy of patients with confirmed COVID-19 in staffed adult ICU beds for the past week, compared with the prior week, in the in the entire jurisdiction. For all metrics, if there are no data in the specified locality for a given week, the metric value is displayed as “insufficient data”.

  15. Q

    Data for: COVID Diaries, Part I: State Response to COVID Vaccination...

    • data.qdr.syr.edu
    Updated Jul 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Avalon S. Moore; Avalon S. Moore; Vitu Bridget; Felicia Fraizer-Bisner; Peter J. Williams; Lucy Van Der Merwe; Abdelrhman Gouda; Abdelrhman Gouda; Christopher Pittenger; Christopher Pittenger; Helen Pushkarskaya; Helen Pushkarskaya; Vitu Bridget; Felicia Fraizer-Bisner; Peter J. Williams; Lucy Van Der Merwe (2025). Data for: COVID Diaries, Part I: State Response to COVID Vaccination Program, December 2020 to September 2021 [Dataset]. http://doi.org/10.5064/F6G2PETF
    Explore at:
    Dataset updated
    Jul 22, 2025
    Dataset provided by
    Qualitative Data Repository
    Authors
    Avalon S. Moore; Avalon S. Moore; Vitu Bridget; Felicia Fraizer-Bisner; Peter J. Williams; Lucy Van Der Merwe; Abdelrhman Gouda; Abdelrhman Gouda; Christopher Pittenger; Christopher Pittenger; Helen Pushkarskaya; Helen Pushkarskaya; Vitu Bridget; Felicia Fraizer-Bisner; Peter J. Williams; Lucy Van Der Merwe
    License

    https://qdr.syr.edu/policies/qdr-standard-access-conditionshttps://qdr.syr.edu/policies/qdr-standard-access-conditions

    Area covered
    United States
    Description

    Project Overview This dataset comprises 5,223 unique documents published online on the official websites of governors’ or health departments’ offices across all U.S. states in relation to the COVID-19 vaccination program. The dataset covers the timeframe from December 2020, when states began preparing for Phase 1a of the COVID-19 vaccination allocation program, to September 2021, when COVID-19 vaccines were widely available to all adults and frequently mandated. It is a collaborative effort between the Yale School of Medicine and Yale's Tobin Center for Economic Policy. Our aim is to archive publications from State Governors and Departments of Health across 50 U.S. states and the District of Columbia, which researchers can utilize to assess the efficacy of communication strategies employed during this period. Ultimately, we aim to support policymakers in making more informed decisions. Data and Data Collection Overview This collection comprises 5,223 unique publications from the governors’ office and the State Department of Health from 50 states and the District of Columbia, released during the period from December 1, 2020 to September 30, 2021, and collected by the research team (specifically AM) between September 2021 and July 2024. Data were collected from the respective states’ Governor’s and Department of Health websites, using search with a custom data range, in week-long increments (e.g., 12/01/2020-12/07/2020), and key words . Search results were reviewed to satisfy the following inclusion/exclusion criteria: Inclusion criteria: Publications from state-run websites ending in .gov that relate to the COVID-19 vaccination program (except New Mexico’s Department of Health which ends in .org and Minnesota’s Department of Health which ends in .us). Exclusion criteria: Publications from county-level organizations, universities, and other organizations not related to state government branches or health sectors (e.g., .org, .com); videos with no transcription posted by the source; publications with no text; publications that refer to other than COVID-19 vaccines; publications not in the English language. The included publications are organized by sources → month → week of the publication. Next, the publications were organized by the publication type (classification done by BV, FFB, PW, LVDM, AG, and AM): information from the Governor and other state officials, policy from the Governor or other state officials, information from the State Department of Health or other state health officials, policy from the State Department of Health or other state health officials, flyers (1-2 pages with primarily visual information), and milestones (publications of quantitative patterns in the form of tables or graphs only). AM and HP conducted the final quality control. The number of publications from each state’s officials, by type and by month from December 2020 to September 2021 are also listed as documentation (see file named Number_of_publications_by_state_by_month_December_2020_September_2021.csv). Selection and Organization of Shared Data The top-level-organization of all 10,446 primary files is by state, using conventional two-letter acronyms. Additionally, each item is classified both by time of publication (in folders labeled “raw”) and by type (in folders with self-explanatory labels, “Policy”, “Flyer”, “Info” and “Milestones”). Thus, each unique item appears more than once in the full deposit. A full inventory of the items is also shared in both Excel and CSV formats, containing a full list of publications with their upload dates, as well as the number of publications by state and by type, organized by month from December 2020 to September 2021. Additionally, the documentation includes this Data Narrative and an administrative README file.

  16. covid-19-state-tribal-local-and-territorial-fundin

    • huggingface.co
    Updated Sep 5, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Health and Human Services (2023). covid-19-state-tribal-local-and-territorial-fundin [Dataset]. https://huggingface.co/datasets/HHS-Official/covid-19-state-tribal-local-and-territorial-fundin
    Explore at:
    Dataset updated
    Sep 5, 2023
    Dataset provided by
    United States Department of Health and Human Serviceshttp://www.hhs.gov/
    Authors
    Department of Health and Human Services
    License

    https://choosealicense.com/licenses/odbl/https://choosealicense.com/licenses/odbl/

    Description

    COVID-19 State, Tribal, Local, and Territorial Funding

      Description
    

    The U.S. government has taken unprecedented action to address the public health threat posed by this new coronavirus. To accelerate response efforts, CDC received supplemental funds through five congressional acts: the Coronavirus Preparedness and Response Supplemental Appropriations Act, 2020; Coronavirus Aid, Relief, and Economic Security Act; Paycheck Protection Program and Health Care Enhancement Act;… See the full description on the dataset page: https://huggingface.co/datasets/HHS-Official/covid-19-state-tribal-local-and-territorial-fundin.

  17. COVID-19 Estimated Inpatient Beds Occupied by COVID-19 Patients by State...

    • datahub.hhs.gov
    • healthdata.gov
    • +3more
    Updated Jul 30, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Health & Human Services (2021). COVID-19 Estimated Inpatient Beds Occupied by COVID-19 Patients by State Timeseries [Dataset]. https://datahub.hhs.gov/dataset/COVID-19-Estimated-Inpatient-Beds-Occupied-by-COVI/py8k-j5rq
    Explore at:
    csv, application/geo+json, kml, xlsx, kmz, xmlAvailable download formats
    Dataset updated
    Jul 30, 2021
    Dataset provided by
    United States Department of Health and Human Serviceshttp://www.hhs.gov/
    Authors
    U.S. Department of Health & Human Services
    License

    Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
    License information was derived automatically

    Description

    Deprecated report. This report was created early in the response to the COVID-19 pandemic. Increased reporting and quality in hospital data have rendered the estimated datasets obsolete. Updates to this report will be discontinued on July 29, 2021.

    The following dataset provides state-aggregated data for estimated patient impact and hospital utilization.

    The source data for estimation is derived from reports with facility-level granularity across two main sources: (1) HHS TeleTracking, and (2) reporting provided directly to HHS Protect by state/territorial health departments on behalf of their healthcare facilities.

    Estimates Basis: These files are representative estimates for each state and are updated weekly. These projections are based on the information we have from those who reported. As more hospitals report more frequently our projections become more accurate. The actual data for these data points are updated every day, once a day on healthdata.gov and these are the downloadable data sets.

  18. n

    Data from: Pediatric intensive care unit admissions for COVID-19: insights...

    • data.niaid.nih.gov
    • data-staging.niaid.nih.gov
    • +4more
    zip
    Updated Jul 26, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Enrique G. Villarreal; Rohit S. Loomba; Saul Flores; Juan S. Farias; Ron A. Bronicki (2020). Pediatric intensive care unit admissions for COVID-19: insights using state-level data [Dataset]. http://doi.org/10.5061/dryad.q2bvq83gv
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jul 26, 2020
    Dataset provided by
    Tecnológico de Monterrey
    Baylor College of Medicine
    Advocate Children's Hospital
    Authors
    Enrique G. Villarreal; Rohit S. Loomba; Saul Flores; Juan S. Farias; Ron A. Bronicki
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description

    Introduction

    Intensive care has played a pivotal role during the COVID-19 pandemic as many patients developed severe pulmonary complications. The availability of information in pediatric intensive care (PICUs) remains limited. The purpose of this study is to characterize COVID-19 positive admissions (CPAs) in the United States and to determine factors that may impact those admissions.

    Materials and Methods

    This is a retrospective cohort study using data from the COVID-19 dashboard virtual pediatric system) containing information regarding respiratory support and comorbidities for all CPAs between March and April 2020. The state level data contained 13 different factors from population density, comorbid conditions and social distancing score. The absolute CPAs count was converted to frequency using the state’s population. Univariate and multivariate regression analyses were performed to assess the association between CPAs frequency and endpoints.

    Results

    A total of 205 CPAs were reported by 167 PICUs across 48 states. The estimated CPAs frequency was 2.8 per million children. A total of 3,235 tests were conducted with 6.3% positive tests. Children above 11 years of age comprised 69.7% of the total cohort and 35.1% had moderated or severe comorbidities. The median duration of a CPA was 4.9 days [1.25-12.00 days]. Out of the 1,132 total CPA days, 592 [52.2%] were for mechanical ventilation. The inpatient mortalities were 3 [1.4%]. Multivariate analyses demonstrated an association between CPAs with greater population density [beta-coefficient 0.01, p<0.01] and increased percent of children receiving the influenza vaccination [beta-coefficient 0.17, p=0.01].

    Conclusions

    Inpatient mortality during PICU CPAs is relatively low at 1.4%. CPA frequency seems to be impacted by population density while characteristics of illness severity appear to be associated with ultraviolet index, temperature, and comorbidities such as Type 1 diabetes. These factors should be included in future studies using patient-level data.

    Methods This study utilized only publicly available, deidentified, state-level data. As such, no institutional review board review or approval was sought.

    Endpoint identification and data collection

    The following data was identified for collection regarding the CPAs themselves: number, duration, need for various ventilatory support measures, severity of comorbidities, and the total number of COVID-19 tests conducted. The following data was collected regarding US states: pediatric population, state population (pediatric and adult) density, air and drinking water quality, average temperature, average ultraviolet index, prevalence of pediatric obesity, type 1 diabetes mellitus (DM) and asthma, the proportion of children who smoke cigarettes, received the influenza vaccine, had health insurance, and received home health care, race, percent of households with children below the poverty line, highest education level of adults in homes with children, and the social distancing score by global positional satellite data (Supplementary Table 1).

    The data regarding the CPAs themselves was collected from the publicly available COVID-19 dashboard provided by the Virtual Pediatric System (VPS), which collects data from several PICUs in the US. COVID-19 data was collected from March 14th through April 14th, 2020, in order to represent one full month of data. Data regarding number of centers, number of tests, and number of CPAs was captured in absolute counts. Data regarding CPAs duration was collected in days. The respiratory support modalities for which data was available were room air (RA), nasal cannula (NC) and for the advanced respiratory support modalities (i.e. other than RA and NC) there was available data for high flow nasal cannula (HFNC), non-invasive positive pressure ventilation (NIPPV), conventional mechanical ventilation (MCV), high frequency oscillatory ventilation (HFOV), and extracorporeal membrane oxygenation (ECMO), and was captured in duration (days) of their use. Data regarding severity of comorbidities is reported in the VPS dashboard and the percentage of CPAs with moderate or severe degree of comorbidities was collected.

    State-wide data for the analyses were collected from a variety of sources with the complete list of sources provided as Supplementary Material 1. Children’s population data and pediatric comorbidity data was obtained from 2018, as these were the most recent and comprehensive data available. The sources for these other data points were generally US government-based efforts to capture state-level data on various medical issues, however, not all states reported data for all the endpoints (Supplementary Table 2).

    Endpoints were assigned to the authors for collection. One author was responsible for collecting data for each state for the variables assigned. Once these data were collected a different author, who did not primarily collect data for that specific endpoint, verified the numbers for accuracy. Finally, values in the top and bottom 10th percentile were identified and verified by a third author.

    Statistical analyses

    As the data was collected for each state and intended for state-level analyses, and each state has a different pediatric population, the absolute numbers of CPAs for each state were not directly comparable. Thus, the absolute CPAs count for each state was first converted to a frequency of CPAs per 1,000,000 children using the specific state’s population. This CPAs frequency was then used as the dependent variable in a series of single-independent variable linear regressions to determine the univariate association between CPAs frequency and the other endpoints. Multivariate regression was conducted with CPAs frequency as the dependent variable and with other variables entered as independent variables. Forward stepwise regression was utilized with the model with greatest R-squared value being used for the analyses.

    Next, a composite endpoint called “percent of PICUs days requiring advanced respiratory support” was created. This consisted of the total duration of HFNC, NIPPV, MCV, HFOV, and ECMO divided by the total PICUs admission duration. This was then modeled similarly to CPAs frequency. Next, a composite outcome called “percent of PICU days requiring intubation” was created. This consisted of the total duration of MCV and HFOV divided by the total PICU admission duration. This, too, was then modeled similarly as CPA frequency. Lastly, an endpoint called “PICUs duration per admission” was created for each state and consisted of the total CPAs PICUs duration for that specific state divided by the number of CPAs reported by that state. This was also then modeled similarly to CPA frequency.

    All statistical analyses were done using the user-coded, syntax-based interface of SPSS Version 23.0. A p-value of 0.05 was considered statistically significant. All statistical analyses were done at the state-level with state-level data. Analyses were not conducted at a patient-level with patient-level data. Any use of the word significant here-on in the manuscript refers to “statistically significant” unless explicitly specified otherwise.

  19. d

    Johns Hopkins COVID-19 Case Tracker

    • data.world
    • kaggle.com
    csv, zip
    Updated Dec 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Associated Press (2025). Johns Hopkins COVID-19 Case Tracker [Dataset]. https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    Dec 3, 2025
    Authors
    The Associated Press
    Time period covered
    Jan 22, 2020 - Mar 9, 2023
    Area covered
    Description

    Updates

    • Notice of data discontinuation: Since the start of the pandemic, AP has reported case and death counts from data provided by Johns Hopkins University. Johns Hopkins University has announced that they will stop their daily data collection efforts after March 10. As Johns Hopkins stops providing data, the AP will also stop collecting daily numbers for COVID cases and deaths. The HHS and CDC now collect and visualize key metrics for the pandemic. AP advises using those resources when reporting on the pandemic going forward.

    • April 9, 2020

      • The population estimate data for New York County, NY has been updated to include all five New York City counties (Kings County, Queens County, Bronx County, Richmond County and New York County). This has been done to match the Johns Hopkins COVID-19 data, which aggregates counts for the five New York City counties to New York County.
    • April 20, 2020

      • Johns Hopkins death totals in the US now include confirmed and probable deaths in accordance with CDC guidelines as of April 14. One significant result of this change was an increase of more than 3,700 deaths in the New York City count. This change will likely result in increases for death counts elsewhere as well. The AP does not alter the Johns Hopkins source data, so probable deaths are included in this dataset as well.
    • April 29, 2020

      • The AP is now providing timeseries data for counts of COVID-19 cases and deaths. The raw counts are provided here unaltered, along with a population column with Census ACS-5 estimates and calculated daily case and death rates per 100,000 people. Please read the updated caveats section for more information.
    • September 1st, 2020

      • Johns Hopkins is now providing counts for the five New York City counties individually.
    • February 12, 2021

      • The Ohio Department of Health recently announced that as many as 4,000 COVID-19 deaths may have been underreported through the state’s reporting system, and that the "daily reported death counts will be high for a two to three-day period."
      • Because deaths data will be anomalous for consecutive days, we have chosen to freeze Ohio's rolling average for daily deaths at the last valid measure until Johns Hopkins is able to back-distribute the data. The raw daily death counts, as reported by Johns Hopkins and including the backlogged death data, will still be present in the new_deaths column.
    • February 16, 2021

      - Johns Hopkins has reconciled Ohio's historical deaths data with the state.

      Overview

    The AP is using data collected by the Johns Hopkins University Center for Systems Science and Engineering as our source for outbreak caseloads and death counts for the United States and globally.

    The Hopkins data is available at the county level in the United States. The AP has paired this data with population figures and county rural/urban designations, and has calculated caseload and death rates per 100,000 people. Be aware that caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.

    This data is from the Hopkins dashboard that is updated regularly throughout the day. Like all organizations dealing with data, Hopkins is constantly refining and cleaning up their feed, so there may be brief moments where data does not appear correctly. At this link, you’ll find the Hopkins daily data reports, and a clean version of their feed.

    The AP is updating this dataset hourly at 45 minutes past the hour.

    To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.

    Queries

    Use AP's queries to filter the data or to join to other datasets we've made available to help cover the coronavirus pandemic

    Interactive

    The AP has designed an interactive map to track COVID-19 cases reported by Johns Hopkins.

    @(https://datawrapper.dwcdn.net/nRyaf/15/)

    Interactive Embed Code

    <iframe title="USA counties (2018) choropleth map Mapping COVID-19 cases by county" aria-describedby="" id="datawrapper-chart-nRyaf" src="https://datawrapper.dwcdn.net/nRyaf/10/" scrolling="no" frameborder="0" style="width: 0; min-width: 100% !important;" height="400"></iframe><script type="text/javascript">(function() {'use strict';window.addEventListener('message', function(event) {if (typeof event.data['datawrapper-height'] !== 'undefined') {for (var chartId in event.data['datawrapper-height']) {var iframe = document.getElementById('datawrapper-chart-' + chartId) || document.querySelector("iframe[src*='" + chartId + "']");if (!iframe) {continue;}iframe.style.height = event.data['datawrapper-height'][chartId] + 'px';}}});})();</script>
    

    Caveats

    • This data represents the number of cases and deaths reported by each state and has been collected by Johns Hopkins from a number of sources cited on their website.
    • In some cases, deaths or cases of people who've crossed state lines -- either to receive treatment or because they became sick and couldn't return home while traveling -- are reported in a state they aren't currently in, because of state reporting rules.
    • In some states, there are a number of cases not assigned to a specific county -- for those cases, the county name is "unassigned to a single county"
    • This data should be credited to Johns Hopkins University's COVID-19 tracking project. The AP is simply making it available here for ease of use for reporters and members.
    • Caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.
    • Population estimates at the county level are drawn from 2014-18 5-year estimates from the American Community Survey.
    • The Urban/Rural classification scheme is from the Center for Disease Control and Preventions's National Center for Health Statistics. It puts each county into one of six categories -- from Large Central Metro to Non-Core -- according to population and other characteristics. More details about the classifications can be found here.

    Johns Hopkins timeseries data - Johns Hopkins pulls data regularly to update their dashboard. Once a day, around 8pm EDT, Johns Hopkins adds the counts for all areas they cover to the timeseries file. These counts are snapshots of the latest cumulative counts provided by the source on that day. This can lead to inconsistencies if a source updates their historical data for accuracy, either increasing or decreasing the latest cumulative count. - Johns Hopkins periodically edits their historical timeseries data for accuracy. They provide a file documenting all errors in their timeseries files that they have identified and fixed here

    Attribution

    This data should be credited to Johns Hopkins University COVID-19 tracking project

  20. c

    The COVID Tracking Project

    • covidtracking.com
    google sheets
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The COVID Tracking Project [Dataset]. https://covidtracking.com/
    Explore at:
    google sheetsAvailable download formats
    Description

    The COVID Tracking Project collects information from 50 US states, the District of Columbia, and 5 other US territories to provide the most comprehensive testing data we can collect for the novel coronavirus, SARS-CoV-2. We attempt to include positive and negative results, pending tests, and total people tested for each state or district currently reporting that data.

    Testing is a crucial part of any public health response, and sharing test data is essential to understanding this outbreak. The CDC is currently not publishing complete testing data, so we’re doing our best to collect it from each state and provide it to the public. The information is patchy and inconsistent, so we’re being transparent about what we find and how we handle it—the spreadsheet includes our live comments about changing data and how we’re working with incomplete information.

    From here, you can also learn about our methodology, see who makes this, and find out what information states provide and how we handle it.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
The Devastator (2023). U.S. Pandemic Mental Health Care [Dataset]. https://www.kaggle.com/datasets/thedevastator/u-s-pandemic-mental-health-care
Organization logo

U.S. Pandemic Mental Health Care

Impact on Households in Previous 4 Weeks

Explore at:
zip(75773 bytes)Available download formats
Dataset updated
Jan 21, 2023
Authors
The Devastator
Area covered
United States
Description

U.S. Pandemic Mental Health Care

Impact on Households in Previous 4 Weeks

By US Open Data Portal, data.gov [source]

About this dataset

This U.S. Household Pandemic Impacts dataset assesses the mental health care that households in America have been receiving over the past four weeks during the Covid-19 pandemic. Produced by a collaboration between the U.S. Census Bureau, and five other federal agencies, this survey was designed to measure both social and economic impacts of Covid-19 on American households, such as employment status, consumer spending trends, food security levels and housing disruptions among other important factors. The data collected was based on an internet questionnaire which was conducted through emails and text messages sent to randomly selected housing units from across America linked with email addresses or cell phone numbers from the Census Bureau Master Address File Data; all estimates comply with NCHS Data Presentation Standards for Proportions. Be sure to check out more about how U.S Government Works for further details!

More Datasets

For more datasets, click here.

Featured Notebooks

  • 🚨 Your notebook can be here! 🚨!

How to use the dataset

This dataset can be useful to examine the impact of the Covid-19 pandemic on access to and utilization of mental health care by U.S. households in the last 4 weeks.

By studying this dataset, you can gain insight into how people’s mental health has been affected by the pandemic and identify trends based on population subgroups, states, phases of the survey and more.

Instructions for Use: - To get started, open up ‘csv-1’ found in this dataset. This file contains information on access to and utilization of mental health care by U.S households in the last 4 weeks, broken down into 14 different columns (e.g., Indicator, Group, State).
- Familiarize yourself with each column label (e.g., Time Period Start Date), data type (e

Research Ideas

  • Analyzing the impact of pandemic-induced stress on different demographic groups, such as age and race/ethnicity.
  • Comparing the mental health care services received in different states over time.
  • Investigating the correlation between socio-economic status and access to mental health care services during Covid-19 pandemic

Acknowledgements

If you use this dataset in your research, please credit the original authors. Data Source

License

License: Dataset copyright by authors - You are free to: - Share - copy and redistribute the material in any medium or format for any purpose, even commercially. - Adapt - remix, transform, and build upon the material for any purpose, even commercially. - You must: - Give appropriate credit - Provide a link to the license, and indicate if changes were made. - ShareAlike - You must distribute your contributions under the same license as the original. - Keep intact - all notices that refer to this license, including copyright notices.

Columns

File: csv-1.csv | Column name | Description | |:---------------------------|:-------------------------------------------------------------------| | Indicator | The type of indicator being measured. (String) | | Group | The group (by age, gender or race) being measured. (String) | | State | The state where the data was collected. (String) | | Subgroup | A narrower level categorization within Group. (String) | | Phase | Phase number reflective of survey iteration. (Integer) | | Time Period | A label indicating duration captured by survey period. (String) | | Time Period Label | A label indicating duration captured by survey period. (String) | | Time Period Start Date | Beginning date for surveyed period. (DateFormat ‘YYYY-MM-DD’) | | Time Period End Date | End date for surveyed period. (DateFormat ‘YYYY-MM-DD’) | | Value | The value of the indicator being measured. (Float) | | LowCI | The lower confidence interval of the value. (Float) | | HighCI | The higher confidence interval of the value. (Float) | | Quartile Range | The quartile range of the value. (String) | | Suppression Flag | A f...

Search
Clear search
Close search
Google apps
Main menu