As a first step in understanding law enforcement agencies' use and knowledge of crime mapping, the Crime Mapping Research Center (CMRC) of the National Institute of Justice conducted a nationwide survey to determine which agencies were using geographic information systems (GIS), how they were using them, and, among agencies that were not using GIS, the reasons for that choice. Data were gathered using a survey instrument developed by National Institute of Justice staff, reviewed by practitioners and researchers with crime mapping knowledge, and approved by the Office of Management and Budget. The survey was mailed in March 1997 to a sample of law enforcement agencies in the United States. Surveys were accepted until May 1, 1998. Questions asked of all respondents included type of agency, population of community, number of personnel, types of crimes for which the agency kept incident-based records, types of crime analyses conducted, and whether the agency performed computerized crime mapping. Those agencies that reported using computerized crime mapping were asked which staff conducted the mapping, types of training their staff received in mapping, types of software and computers used, whether the agency used a global positioning system, types of data geocoded and mapped, types of spatial analyses performed and how often, use of hot spot analyses, how mapping results were used, how maps were maintained, whether the department kept an archive of geocoded data, what external data sources were used, whether the agency collaborated with other departments, what types of Department of Justice training would benefit the agency, what problems the agency had encountered in implementing mapping, and which external sources had funded crime mapping at the agency. Departments that reported no use of computerized crime mapping were asked why that was the case, whether they used electronic crime data, what types of software they used, and what types of Department of Justice training would benefit their agencies.
In 2023, the District of Columbia had the highest reported violent crime rate in the United States, with 1,150.9 violent crimes per 100,000 of the population. Maine had the lowest reported violent crime rate, with 102.5 offenses per 100,000 of the population. Life in the District The District of Columbia has seen a fluctuating population over the past few decades. Its population decreased throughout the 1990s, when its crime rate was at its peak, but has been steadily recovering since then. While unemployment in the District has also been falling, it still has had a high poverty rate in recent years. The gentrification of certain areas within Washington, D.C. over the past few years has made the contrast between rich and poor even greater and is also pushing crime out into the Maryland and Virginia suburbs around the District. Law enforcement in the U.S. Crime in the U.S. is trending downwards compared to years past, despite Americans feeling that crime is a problem in their country. In addition, the number of full-time law enforcement officers in the U.S. has increased recently, who, in keeping with the lower rate of crime, have also made fewer arrests than in years past.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
An interactive public crime mapping application providing DC residents and visitors easy-to-understand data visualizations of crime locations, types and trends across all eight wards. Crime Cards was created by the DC Metropolitan Police Department (MPD) and Office of the Chief Technology Officer (OCTO). Special thanks to the community members who participated in reviews with MPD Officers and IT staff, and those who joined us for the #SaferStrongerSmarterDC roundtable design review. All statistics presented in Crime Cards are based on preliminary DC Index crime data reported from 2009 to midnight of today’s date. They are compiled based on the date the offense was reported (Report Date) to MPD. The application displays two main crime categories: Violent Crime and Property Crime. Violent Crimes include homicide, sex abuse, assault with a dangerous weapon (ADW), and robbery. Violent crimes can be further searched by the weapon used. Property Crimes include burglary, motor vehicle theft, theft from vehicle, theft (other), and arson.CrimeCards collaboration between the Metropolitan Police Department (MPD), the Office of the Chief Technology Officer (OCTO), and community members who participated at the #SafterStrongerSmarterDC roundtable design review.
In 2023, around 3,640.56 violent crimes per 100,000 residents were reported in Oakland, California. This made Oakland the most dangerous city in the United States in that year. Four categories of violent crimes were used: murder and non-negligent manslaughter; forcible rape; robbery; and aggravated assault. Only cities with a population of at least 200,000 were considered.
In 2023, the state with the highest crime rate in the United States per 100,000 inhabitants was New Mexico. That year, the crime rate was ******** crimes per 100,000 people. In comparison, New Hampshire had the lowest crime rate at ****** crimes per 100,000 people. Crime rate The crime rate in the United States has generally decreased over time. There are several factors attributed to the decrease in the crime rate across the United States. An increase in the number of police officers and an increase in income are some of the reasons for a decrease in the crime rate. Unfortunately, people of color have been disproportionately affected by crime rates, as they are more likely to be arrested for a crime versus a white person. Crime rates regionally The District of Columbia had the highest rate of reported violent crimes in the United States in 2023 per 100,000 inhabitants. The most common crime clearance type in metropolitan counties in the United States in 2020 was murder and non-negligent manslaughter. The second most dangerous city in the country in 2020 was Detroit. Detroit has faced severe levels of economic and demographic declines in the past years. Not only has the population decreased, the city has filed for bankruptcy. Despite the median household income increasing, the city still struggles financially.
Important Note: This item is in mature support as of July 2022 and will be retired in December 2025. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version. This layer uses 2010 Census geographies. This layer shows the total crime index in the U.S. in 2021 in a multi-scale map (by state, county, ZIP Code, tract, and block group). The pop-up is configured to include the following information for each geography level:Personal and Property crime indices Sub-categories of personal and property crime indicesPermitted use of this data is covered in the DATA section of the EsriMaster Agreement (E204CW) and these supplemental terms.
This map shows the total crime index in the U.S. in 2021 in a multi-scale map (by state, county, ZIP Code, tract, and block group). The pop-up is configured to include the following information for each geography level:Total crime indexPersonal and Property crime indices Sub-categories of personal and property crime indicesThe values are all referenced by an index value. The index values for the US level are 100, representing average crime for the country. A value of more than 100 represents higher crime than the national average, and a value of less than 100 represents lower crime than the national average. For example, an index of 120 implies that crime in the area is 20 percent higher than the US average; an index of 80 implies that crime is 20 percent lower than the US average.For more information about the AGS Crime Indices, click here. Additional Esri Resources:Esri DemographicsU.S. 2021/2026 Esri Updated DemographicsEssential demographic vocabularyEsri's arcgis.com demographic map layersPermitted use of this data is covered in the DATA section of the EsriMaster Agreement (E204CW) and these supplemental terms.
Serious violent crimes consist of Part 1 offenses as defined by the U.S. Department of Justice’s Uniform Reporting Statistics. These include murders, nonnegligent homicides, rapes (legacy and revised), robberies, and aggravated assaults. LAPD data were used for City of Los Angeles, LASD data were used for unincorporated areas and cities that contract with LASD for law enforcement services, and CA Attorney General data were used for all other cities with local police departments. This indicator is based on location of residence. Single-year data are only available for Los Angeles County overall, Service Planning Areas, Supervisorial Districts, City of Los Angeles overall, and City of Los Angeles Council Districts.Neighborhood violence and crime can have a harmful impact on all members of a community. Living in communities with high rates of violence and crime not only exposes residents to a greater personal risk of injury or death, but it can also render individuals more susceptible to many adverse health outcomes. People who are regularly exposed to violence and crime are more likely to suffer from chronic stress, depression, anxiety, and other mental health conditions. They are also less likely to be able to use their parks and neighborhoods for recreation and physical activity.For more information about the Community Health Profiles Data Initiative, please see the initiative homepage.
The dataset contains a subset of locations and attributes of incidents reported in the ASAP (Analytical Services Application) crime report database by the District of Columbia Metropolitan Police Department (MPD). Visit crimecards.dc.gov for more information. This data is shared via an automated process where addresses are geocoded to the District's Master Address Repository and assigned to the appropriate street block. Block locations for some crime points could not be automatically assigned resulting in 0,0 for x,y coordinates. These can be interactively assigned using the MAR Geocoder.On February 1 2020, the methodology of geography assignments of crime data was modified to increase accuracy. From January 1 2020 going forward, all crime data will have Ward, ANC, SMD, BID, Neighborhood Cluster, Voting Precinct, Block Group and Census Tract values calculated prior to, rather than after, anonymization to the block level. This change impacts approximately one percent of Ward assignments.
The police incidents will provide data on the Part I crimes of arson, motor vehicle thefts, larcenies, burglaries, aggravated assaults, robberies and homicides as well as Part II crimes of drugs, alcohol offenses, disorderly conduct, embezzlement, family offenses, forgery, fraud, simple assault, stolen property, and vandalism. Sexual assaults and crimes involving juveniles will not appear to help protect the identities of victims.
Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
All BPD data on Open Baltimore is preliminary data and subject to change. The information presented through Open Baltimore represents Part I victim based crime data. The data do not represent statistics submitted to the FBI's Uniform Crime Report (UCR); therefore any comparisons are strictly prohibited. For further clarification of UCR data, please visit http://www.fbi.gov/about-us/cjis/ucr/ucr. Please note that this data is preliminary and subject to change. Prior month data is likely to show changes when it is refreshed on a monthly basis. All data is geocoded to the approximate latitude/longitude location of the incident and excludes those records for which an address could not be geocoded. Any attempt to match the approximate location of the incident to an exact address is strictly prohibited.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This data represents crime reported to the Seattle Police Department (SPD). Each row contains the record of a unique event where at least one criminal offense was reported by a member of the community or detected by an officer in the field. This data is the same data used in meetings such as SeaStat (https://www.seattle.gov/police/information-and-data/seastat) for strategic planning, accountability and performance management.
These data contain offenses and offense categorization coded to simulate the standard reported to the FBI under the National Incident Based Reporting System (NIBRS) and used to generate Uniform Crime Report (UCR) summary statistics. As these records evolve, daily and are continually refreshed, they will not match official UCR statistics. They represent a more accurate state of the record.
Previous versions of this data set have withheld approximately 40% of crimes. This updated process includes all records of crime reports logged in the Departments Records Management System (RMS) since 2008, which are tracked as part of the SeaStat process. In an effort to safeguard the privacy of our community, offense reports will only be located to the “beat” level. Location specific coordinates will no longer be provided.
Beats are the most granular unit of management used for patrol deployment. To learn more about patrol deployment, please visit: https://www.seattle.gov/police/about-us/about-policing/precinct-and-patrol-boundaries. In addition to the Departments patrol deployment areas, these data contain the “Neighborhood” where the crime occurred, if available. This coding is used to align crime data with the Micro Community Policing Plan (MCPP). For more information see: https://www.seattle.gov/police/community-policing/about-mcpp.
As with any data, certain condition and qualifications apply: 1) These data are refreshed, daily and represent the most accurate, evolved state of the record.
2) Due to quality control processes, these data will lag between 2 and 6 weeks. Most changes will occur within that record and reports logged in the last 2 weeks should be treated as volatile. Analysts may wish to remove these records from their analysis.
3) Not all offenses are reported here, only the primary offense as determined by the “Hierarchy Rule.” For more information on NIBRS and UCR, see the FBI (https://ucr.fbi.gov/nibrs-overview).
4) This dataset contains records of offenses that occurred prior to “go-live” of the existing RMS. Records are queried based on the full population of data and are not constrained by “Occurred Date.”
We invite you to engage these data, ask questions and explore.
Important Note: This item is in mature support as of June 2023 and will be retired in December 2025.This map shows the total crime index in the U.S. in 2022 in a multi-scale map (by state, county, ZIP Code, tract, and block group). The layer uses 2020 Census boundaries.The pop-up is configured to include the following information for each geography level:Total crime indexPersonal and Property crime indices Sub-categories of personal and property crime indicesPermitted use of this data is covered in the DATA section of the EsriMaster Agreement (E204CW) and these supplemental terms.
Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
All BPD data on Open Baltimore is preliminary data and subject to change. The information presented through Open Baltimore represents Part I victim based crime data. The data do not represent statistics submitted to the FBI's Uniform Crime Report (UCR); therefore any comparisons are strictly prohibited. For further clarification of UCR data, please visit http://www.fbi.gov/about-us/cjis/ucr/ucr. Please note that this data is preliminary and subject to change. Prior month data is likely to show changes when it is refreshed on a monthly basis. All data is geocoded to the approximate latitude/longitude location of the incident and excludes those records for which an address could not be geocoded. Any attempt to match the approximate location of the incident to an exact address is strictly prohibited.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This interactive mapping tool, created for the 33N blog, displays homicides in the City of Atlanta between January 2007 and February 2017 by race/ethnicity and sex of the victim. The data for this tool was provided by the Washington Post as part of an investigative project which compiled information on 54,000 homicides in the U.S. to identify hot spots where homicides rates are high but arrests are low.
https://www.icpsr.umich.edu/web/ICPSR/studies/3372/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/3372/terms
The Regional Crime Analysis GIS (RCAGIS) is an Environmental Systems Research Institute (ESRI) MapObjects-based system that was developed by the United States Department of Justice Criminal Division Geographic Information Systems (GIS) Staff, in conjunction with the Baltimore County Police Department and the Regional Crime Analysis System (RCAS) group, to facilitate the analysis of crime on a regional basis. The RCAGIS system was designed specifically to assist in the analysis of crime incident data across jurisdictional boundaries. Features of the system include: (1) three modes, each designed for a specific level of analysis (simple queries, crime analysis, or reports), (2) wizard-driven (guided) incident database queries, (3) graphical tools for the creation, saving, and printing of map layout files, (4) an interface with CrimeStat spatial statistics software developed by Ned Levine and Associates for advanced analysis tools such as hot spot surfaces and ellipses, (5) tools for graphically viewing and analyzing historical crime trends in specific areas, and (6) linkage tools for drawing connections between vehicle theft and recovery locations, incident locations and suspects' homes, and between attributes in any two loaded shapefiles. RCAGIS also supports digital imagery, such as orthophotos and other raster data sources, and geographic source data in multiple projections. RCAGIS can be configured to support multiple incident database backends and varying database schemas using a field mapping utility.
Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
All BPD data on Open Baltimore is preliminary data and subject to change. The information presented through Open Baltimore represents Part I victim based crime data. The data do not represent statistics submitted to the FBI's Uniform Crime Report (UCR); therefore any comparisons are strictly prohibited. For further clarification of UCR data, please visit http://www.fbi.gov/about-us/cjis/ucr/ucr. Please note that this data is preliminary and subject to change. Prior month data is likely to show changes when it is refreshed on a monthly basis. All data is geocoded to the approximate latitude/longitude location of the incident and excludes those records for which an address could not be geocoded. Any attempt to match the approximate location of the incident to an exact address is strictly prohibited.
https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de436278https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de436278
Abstract (en): This research project was designed to demonstrate the contributions that Geographic Information Systems (GIS) and spatial analysis procedures can make to the study of crime patterns in a largely nonmetropolitan region of the United States. The project examined the extent to which the relationship between various structural factors and crime varied across metropolitan and nonmetropolitan locations in Appalachia over time. To investigate the spatial patterns of crime, a georeferenced dataset was compiled at the county level for each of the 399 counties comprising the Appalachian region. The data came from numerous secondary data sources, including the Federal Bureau of Investigation's Uniform Crime Reports, the Decennial Census of the United States, the Department of Agriculture, and the Appalachian Regional Commission. Data were gathered on the demographic distribution, change, and composition of each county, as well as other socioeconomic indicators. The dependent variables were index crime rates derived from the Uniform Crime Reports, with separate variables for violent and property crimes. These data were integrated into a GIS database in order to enhance the research with respect to: (1) data integration and visualization, (2) exploratory spatial analysis, and (3) confirmatory spatial analysis and statistical modeling. Part 1 contains variables for Appalachian subregions, Beale county codes, distress codes, number of families and households, population size, racial and age composition of population, dependency ratio, population growth, number of births and deaths, net migration, education, household composition, median family income, male and female employment status, and mobility. Part 2 variables include county identifiers plus numbers of total index crimes, violent index crimes, property index crimes, homicides, rapes, robberies, assaults, burglaries, larcenies, and motor vehicle thefts annually from 1977 to 1996. The spatial dynamics of crime in nonmetropolitan locations can be understood as a product of social, economic, and demographic influences that are often unique to those areas. Thus there is a need for research on nonmetropolitan crime that takes location and geographic context seriously. This research project was designed to demonstrate the contributions that Geographic Information Systems (GIS) and spatial analysis procedures can make to the study of crime patterns in a largely nonmetropolitan region of the United States. The project examined the extent to which the relationship between various structural factors and crime varied across metropolitan and nonmetropolitan locations in Appalachia over time. GIS and crime mapping technologies enabled the researcher to look more rigorously at the spatial patterns and ecological contexts of crime. To investigate the spatial patterns of crime for this project, a georeferenced dataset was compiled at the county level for each of the 399 counties comprising the Appalachian region. The data came from numerous secondary data sources, including the Federal Bureau of Investigation's Uniform Crime Reports, the Decennial Census of the United States, the Department of Agriculture, and the Appalachian Regional Commission. Data were gathered on the demographic distribution, change, and composition of each county, as well as other socioeconomic indicators. The dependent variables were index crime rates derived from the Uniform Crime Reports, with separate variables for violent and property crimes. These data were integrated into a GIS database in order to enhance the research with respect to: (1) data integration and visualization, (2) exploratory spatial analysis, and (3) confirmatory spatial analysis and statistical modeling. In order to portray the contextual diversity of crime in Appalachia, three different county classifications, each based on different criteria, were employed: (1) Appalachian subregions, consisting of North, Central, and South Appalachia, (2) Beale county codes based on metro-nonmetro designations, population size, and adjacency to metropolitan counties, and (3) distressed county codes based on measures of poverty, unemployment, and per capita income. Part 1 contains variables for Appalachian subregions, Beale county codes, distress codes, number of families and households, population size, racial and age composition of population, dependency ratio, population growth, number of births and deaths, net migration, education, household ...
Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
All BPD data on Open Baltimore is preliminary data and subject to change. The information presented through Open Baltimore represents Part I victim based crime data. The data do not represent statistics submitted to the FBI's Uniform Crime Report (UCR); therefore any comparisons are strictly prohibited. For further clarification of UCR data, please visit http://www.fbi.gov/about-us/cjis/ucr/ucr. Please note that this data is preliminary and subject to change. Prior month data is likely to show changes when it is refreshed on a monthly basis. All data is geocoded to the approximate latitude/longitude location of the incident and excludes those records for which an address could not be geocoded. Any attempt to match the approximate location of the incident to an exact address is strictly prohibited.
https://www.icpsr.umich.edu/web/ICPSR/studies/2824/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/2824/terms
CrimeStat III is a spatial statistics program for the analysis of crime incident locations, developed by Ned Levine and Associates under the direction of Ned Levine, PhD, that was funded by grants from the National Institute of Justice (grants 1997-IJ-CX-0040, 1999-IJ-CX-0044, 2002-IJ-CX-0007, and 2005-IJ-CX-K037). The program is Windows-based and interfaces with most desktop GIS programs. The purpose is to provide supplemental statistical tools to aid law enforcement agencies and criminal justice researchers in their crime mapping efforts. CrimeStat is being used by many police departments around the country as well as by criminal justice and other researchers. The program inputs incident locations (e.g., robbery locations) in 'dbf', 'shp', ASCII or ODBC-compliant formats using either spherical or projected coordinates. It calculates various spatial statistics and writes graphical objects to ArcGIS, MapInfo, Surfer for Windows, and other GIS packages. CrimeStat is organized into five sections: Data Setup Primary file - this is a file of incident or point locations with X and Y coordinates. The coordinate system can be either spherical (lat/lon) or projected. Intensity and weight values are allowed. Each incident can have an associated time value. Secondary file - this is an associated file of incident or point locations with X and Y coordinates. The coordinate system has to be the same as the primary file. Intensity and weight values are allowed. The secondary file is used for comparison with the primary file in the risk-adjusted nearest neighbor clustering routine and the duel kernel interpolation. Reference file - this is a grid file that overlays the study area. Normally, it is a regular grid though irregular ones can be imported. CrimeStat can generate the grid if given the X and Y coordinates for the lower-left and upper-right corners. Measurement parameters - This page identifies the type of distance measurement (direct, indirect or network) to be used and specifies parameters for the area of the study region and the length of the street network. CrimeStat III has the ability to utilize a network for linking points. Each segment can be weighted by travel time, travel speed, travel cost or simple distance. This allows the interaction between points to be estimated more realistically. Spatial Description Spatial distribution - statistics for describing the spatial distribution of incidents, such as the mean center, center of minimum distance, standard deviational ellipse, the convex hull, or directional mean. Spatial autocorrelation - statistics for describing the amount of spatial autocorrelation between zones, including general spatial autocorrelation indices - Moran's I , Geary's C, and the Getis-Ord General G, and correlograms that calculate spatial autocorrelation for different distance separations - the Moran, Geary, Getis-Ord correlograms. Several of these routines can simulate confidence intervals with a Monte Carlo simulation. Distance analysis I - statistics for describing properties of distances between incidents including nearest neighbor analysis, linear nearest neighbor analysis, and Ripley's K statistic. There is also a routine that assigns the primary points to the secondary points, either on the basis of nearest neighbor or point-in-polygon, and then sums the results by the secondary point values. Distance analysis II - calculates matrices representing the distance between points for the primary file, for the distance between the primary and secondary points, and for the distance between either the primary or secondary file and the grid. 'Hot spot' analysis I - routines for conducting 'hot spot' analysis including the mode, the fuzzy mode, hierarchical nearest neighbor clustering, and risk-adjusted nearest neighbor hierarchical clustering. The hierarchical nearest neighbor hot spots can be output as ellipses or convex hulls. 'Hot spot' analysis II - more routines for conducting hot spot analysis including the Spatial and Temporal Analysis of Crime (STAC), K-means clustering, Anselin's local Moran, and the Getis-Ord local G statistics. The STAC and K-means hot spots can be output as ellipses or convex hulls. All of these routines can simulate confidence intervals with a Monte Carlo simulation. Spatial Modeling Interpolation I - a single-variable kernel density estimation routine for producin
As a first step in understanding law enforcement agencies' use and knowledge of crime mapping, the Crime Mapping Research Center (CMRC) of the National Institute of Justice conducted a nationwide survey to determine which agencies were using geographic information systems (GIS), how they were using them, and, among agencies that were not using GIS, the reasons for that choice. Data were gathered using a survey instrument developed by National Institute of Justice staff, reviewed by practitioners and researchers with crime mapping knowledge, and approved by the Office of Management and Budget. The survey was mailed in March 1997 to a sample of law enforcement agencies in the United States. Surveys were accepted until May 1, 1998. Questions asked of all respondents included type of agency, population of community, number of personnel, types of crimes for which the agency kept incident-based records, types of crime analyses conducted, and whether the agency performed computerized crime mapping. Those agencies that reported using computerized crime mapping were asked which staff conducted the mapping, types of training their staff received in mapping, types of software and computers used, whether the agency used a global positioning system, types of data geocoded and mapped, types of spatial analyses performed and how often, use of hot spot analyses, how mapping results were used, how maps were maintained, whether the department kept an archive of geocoded data, what external data sources were used, whether the agency collaborated with other departments, what types of Department of Justice training would benefit the agency, what problems the agency had encountered in implementing mapping, and which external sources had funded crime mapping at the agency. Departments that reported no use of computerized crime mapping were asked why that was the case, whether they used electronic crime data, what types of software they used, and what types of Department of Justice training would benefit their agencies.