100+ datasets found
  1. Comparison of population in Brazil and the U.S. 1500-2050

    • statista.com
    Updated Aug 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Comparison of population in Brazil and the U.S. 1500-2050 [Dataset]. https://www.statista.com/statistics/1283654/brazil-us-population-comparison-historical/
    Explore at:
    Dataset updated
    Aug 7, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States, Brazil
    Description

    Brazil and the United States are the two most populous countries in the Americas today. In 1500, the year that Pedro Álvares Cabral made landfall in present-day Brazil and claimed it for the Portuguese crown, it is estimated that there were roughly one million people living in the region. Some estimates for the present-day United States give a population of two million in the year 1500, although estimates vary greatly. By 1820, the population of the U.S. was still roughly double that of Brazil, but rapid growth in the 19th century would see it grow 4.5 times larger by 1890, before the difference shrunk during the 20th century. In 2024, the U.S. has a population over 340 million people, making it the third most populous country in the world, while Brazil has a population of almost 218 million and is the sixth most populous. Looking to the future, population growth is expected to be lower in Brazil than in the U.S. in the coming decades, as Brazil's fertility rates are already lower, and migration rates into the United States will be much higher. Historical development The indigenous peoples of present-day Brazil and the U.S. were highly susceptible to diseases brought from the Old World; combined with mass displacement and violence, their population growth rates were generally low, therefore migration from Europe and the import of enslaved Africans drove population growth in both regions. In absolute numbers, more Europeans migrated to North America than Brazil, whereas more slaves were transported to Brazil than the U.S., but European migration to Brazil increased significantly in the early 1900s. The U.S. also underwent its demographic transition much earlier than in Brazil, therefore its peak period of population growth was almost a century earlier than Brazil. Impact of ethnicity The demographics of these countries are often compared, not only because of their size, location, and historical development, but also due to the role played by ethnicity. In the mid-1800s, these countries had the largest slave societies in the world, but a major difference between the two was the attitude towards interracial procreation. In Brazil, relationships between people of different ethnic groups were more common and less stigmatized than in the U.S., where anti-miscegenation laws prohibited interracial relationships in many states until the 1960s. Racial classification was also more rigid in the U.S., and those of mixed ethnicity were usually classified by their non-white background. In contrast, as Brazil has a higher degree of mixing between those of ethnic African, American, and European heritage, classification is less obvious, and factors such as physical appearance or societal background were often used to determine racial standing. For most of the 20th century, Brazil's government promoted the idea that race was a non-issue and that Brazil was racially harmonious, but most now acknowledge that this actually ignored inequality and hindered progress. Racial inequality has been a prevalent problem in both countries since their founding, and today, whites generally fare better in terms of education, income, political representation, and even life expectancy. Despite this adversity, significant progress has been made in recent decades, as public awareness of inequality has increased, and authorities in both countries have made steps to tackle disparities in areas such as education, housing, and employment.

  2. a

    U.S. Population Change 2000 to 2010

    • hub.arcgis.com
    Updated Nov 10, 2011
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArcGIS Maps for the Nation (2011). U.S. Population Change 2000 to 2010 [Dataset]. https://hub.arcgis.com/maps/af5b01111fd14cf19c1ff9ece7a22adc
    Explore at:
    Dataset updated
    Nov 10, 2011
    Dataset authored and provided by
    ArcGIS Maps for the Nation
    Area covered
    Description

    This web map indicates the annual compound rate of total population change in the United States from 2000 to 2010. Total Population is the total number of residents in an area. Residence refers to the "usual place" where a person lives. Total Population for 2000 is from the U.S. Census 2000. The 2010 Total Population variable is estimated by Esri's proven annual demographic update methodology that blends GIS with statistical technology and a unique combination of data sources.The map is symbolized so that you can easily distinguish areas of population growth (i.e. shades of green) from areas of population decline (i.e. shades of red). It uses a 3 D effect to further emphasize those trends. The map reveals interesting patterns of recent population change in various regions and communities across the United States.The map shows population change at the County and Census Tract levels. The geography depicts Counties at 25m to 750k scale, Census Tracts at 750k to 100k scale.Esri's Updated Demographics (2010/2015) – Population, age, income, sex, race, marital status and other variables are among the variables included in the database. Each year, Esri's data development team employs its proven methodologies to update more than 2,000 demographic variables for a variety of geographies. See Updated Demographics for more information.

  3. Global population 1800-2100, by continent

    • statista.com
    • ai-chatbox.pro
    Updated Jul 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Global population 1800-2100, by continent [Dataset]. https://www.statista.com/statistics/997040/world-population-by-continent-1950-2020/
    Explore at:
    Dataset updated
    Jul 4, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    The world's population first reached one billion people in 1803, and reach eight billion in 2023, and will peak at almost 11 billion by the end of the century. Although it took thousands of years to reach one billion people, it did so at the beginning of a phenomenon known as the demographic transition; from this point onwards, population growth has skyrocketed, and since the 1960s the population has increased by one billion people every 12 to 15 years. The demographic transition sees a sharp drop in mortality due to factors such as vaccination, sanitation, and improved food supply; the population boom that follows is due to increased survival rates among children and higher life expectancy among the general population; and fertility then drops in response to this population growth. Regional differences The demographic transition is a global phenomenon, but it has taken place at different times across the world. The industrialized countries of Europe and North America were the first to go through this process, followed by some states in the Western Pacific. Latin America's population then began growing at the turn of the 20th century, but the most significant period of global population growth occurred as Asia progressed in the late-1900s. As of the early 21st century, almost two thirds of the world's population live in Asia, although this is set to change significantly in the coming decades. Future growth The growth of Africa's population, particularly in Sub-Saharan Africa, will have the largest impact on global demographics in this century. From 2000 to 2100, it is expected that Africa's population will have increased by a factor of almost five. It overtook Europe in size in the late 1990s, and overtook the Americas a decade later. In contrast to Africa, Europe's population is now in decline, as birth rates are consistently below death rates in many countries, especially in the south and east, resulting in natural population decline. Similarly, the population of the Americas and Asia are expected to go into decline in the second half of this century, and only Oceania's population will still be growing alongside Africa. By 2100, the world's population will have over three billion more than today, with the vast majority of this concentrated in Africa. Demographers predict that climate change is exacerbating many of the challenges that currently hinder progress in Africa, such as political and food instability; if Africa's transition is prolonged, then it may result in further population growth that would place a strain on the region's resources, however, curbing this growth earlier would alleviate some of the pressure created by climate change.

  4. N

    Index, WA Annual Population and Growth Analysis Dataset: A Comprehensive...

    • neilsberg.com
    csv, json
    Updated Jul 30, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Index, WA Annual Population and Growth Analysis Dataset: A Comprehensive Overview of Population Changes and Yearly Growth Rates in Index from 2000 to 2023 // 2024 Edition [Dataset]. https://www.neilsberg.com/insights/index-wa-population-by-year/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Jul 30, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Index, Washington
    Variables measured
    Annual Population Growth Rate, Population Between 2000 and 2023, Annual Population Growth Rate Percent
    Measurement technique
    The data presented in this dataset is derived from the 20 years data of U.S. Census Bureau Population Estimates Program (PEP) 2000 - 2023. To measure the variables, namely (a) population and (b) population change in ( absolute and as a percentage ), we initially analyzed and tabulated the data for each of the years between 2000 and 2023. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Index population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Index across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.

    Key observations

    In 2023, the population of Index was 157, a 1.29% increase year-by-year from 2022. Previously, in 2022, Index population was 155, an increase of 1.31% compared to a population of 153 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Index decreased by 3. In this period, the peak population was 211 in the year 2019. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).

    Content

    When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).

    Data Coverage:

    • From 2000 to 2023

    Variables / Data Columns

    • Year: This column displays the data year (Measured annually and for years 2000 to 2023)
    • Population: The population for the specific year for the Index is shown in this column.
    • Year on Year Change: This column displays the change in Index population for each year compared to the previous year.
    • Change in Percent: This column displays the year on year change as a percentage. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Index Population by Year. You can refer the same here

  5. Vintage 2014 Population Estimates: US, State, and PR Population Age 18+

    • catalog.data.gov
    Updated Jul 19, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Census Bureau (2023). Vintage 2014 Population Estimates: US, State, and PR Population Age 18+ [Dataset]. https://catalog.data.gov/dataset/vintage-2014-population-estimates-us-state-and-pr-population-age-18
    Explore at:
    Dataset updated
    Jul 19, 2023
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Area covered
    United States
    Description

    Annual Population Estimates, Estimated Components of Resident Population Change, and Rates of the Components of Resident Population Change for the United States, States, and Puerto Rico // Source: U.S. Census Bureau, Population Division // Note: Total population change includes a residual. This residual represents the change in population that cannot be attributed to any specific demographic component. See Population Estimates Terms and Definitions at http://www.census.gov/popest/about/terms.html. // Net international migration (except for Puerto Rico) includes the international migration of both native and foreign-born populations. Specifically, it includes: (a) the net international migration of the foreign born, (b) the net migration between the United States and Puerto Rico, (c) the net migration of natives to and from the United States, and (d) the net movement of the Armed Forces population between the United States and overseas. Net international migration for Puerto Rico includes the migration of native and foreign-born populations between the United States and Puerto Rico. // The estimates are based on the 2010 Census and reflect changes to the April 1, 2010 population due to the Count Question Resolution program and geographic program revisions. See Geographic Terms and Definitions at http://www.census.gov/popest/about/geo/terms.html for a list of the states that are included in each region and division. // For detailed information about the methods used to create the population estimates, see http://www.census.gov/popest/methodology/index.html. // Each year, the Census Bureaus Population Estimates Program (PEP) utilizes current data on births, deaths, and migration to calculate population change since the most recent decennial census, and produces a time series of estimates of population. The annual time series of estimates begins with the most recent decennial census data and extends to the vintage year. The vintage year (e.g., V2014) refers to the final year of the time series. The reference date for all estimates is July 1, unless otherwise specified. With each new issue of estimates, the Census Bureau revises estimates for years back to the last census. As each vintage of estimates includes all years since the most recent decennial census, the latest vintage of data available supersedes all previously produced estimates for those dates. The Population Estimates Program provides additional information including historical and intercensal estimates, evaluation estimates, demographic analysis, and research papers on its website: http://www.census.gov/popest/index.html.

  6. Population growth in the U.S. 2023

    • statista.com
    Updated Jun 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Population growth in the U.S. 2023 [Dataset]. https://www.statista.com/statistics/269940/population-growth-in-the-usa/
    Explore at:
    Dataset updated
    Jun 4, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    The annual population growth in the United States increased by 0.1 percentage points (+27.03 percent) in 2023. In total, the population growth amounted to 0.49 percent in 2023. Population growth deals with the annual change in total population, and is affected by factors such as fertility, mortality, and migration.Find more key insights for the annual population growth in countries like Mexico and Canada.

  7. a

    Demographic change 2010 - 2023 (all geographies, statewide)

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • gisdata.fultoncountyga.gov
    Updated Feb 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2025). Demographic change 2010 - 2023 (all geographies, statewide) [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/maps/f70f4d7defb94a20987e59061b012bbe
    Explore at:
    Dataset updated
    Feb 21, 2025
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    These data were developed by the Research & Analytics Department at the Atlanta Regional Commission using data from the U.S. Census Bureau across all standard and custom geographies at statewide summary level where applicable.For a deep dive into the data model including every specific metric, see the ACS 2019-2023. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics. Find naming convention prefixes/suffixes, geography definitions and user notes below.Prefixes:NoneCountpPercentrRatemMedianaMean (average)tAggregate (total)chChange in absolute terms (value in t2 - value in t1)pchPercent change ((value in t2 - value in t1) / value in t1)chpChange in percent (percent in t2 - percent in t1)sSignificance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computedSuffixes:_e23Estimate from 2019-23 ACS_m23Margin of Error from 2019-23 ACS_e102006-10 ACS, re-estimated to 2020 geography_m10Margin of Error from 2006-10 ACS, re-estimated to 2020 geography_e10_23Change, 2010-23 (holding constant at 2020 geography)GeographiesAAA = Area Agency on Aging (12 geographic units formed from counties providing statewide coverage)ARC21 = Atlanta Regional Commission modeling area (21 counties merged to a single geographic unit)ARWDB7 = Atlanta Regional Workforce Development Board (7 counties merged to a single geographic unit)BeltLineStatistical (buffer)BeltLineStatisticalSub (subareas)Census Tract (statewide)CFGA23 = Community Foundation for Greater Atlanta (23 counties merged to a single geographic unit)City (statewide)City of Atlanta Council Districts (City of Atlanta)City of Atlanta Neighborhood Planning Unit (City of Atlanta)City of Atlanta Neighborhood Statistical Areas (City of Atlanta)County (statewide)CCDIST = County Commission Districts (statewide where applicable)CCSUPERDIST = County Commission Superdistricts (DeKalb)Georgia House (statewide)Georgia Senate (statewide)HSSA = High School Statistical Area (11 county region)MetroWater15 = Atlanta Metropolitan Water District (15 counties merged to a single geographic unit)Regional Commissions (statewide)State of Georgia (single geographic unit)Superdistrict (ARC region)US Congress (statewide)UWGA13 = United Way of Greater Atlanta (13 counties merged to a single geographic unit)ZIP Code Tabulation Areas (statewide)The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2019-2023). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2019-2023Open Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the data manifest: https://opendata.atlantaregional.com/documents/182e6fcf8201449086b95adf39471831/about

  8. N

    United States Population Dataset: Yearly Figures, Population Change, and...

    • neilsberg.com
    csv, json
    Updated Sep 18, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2023). United States Population Dataset: Yearly Figures, Population Change, and Percent Change Analysis [Dataset]. https://www.neilsberg.com/research/datasets/6f93a357-3d85-11ee-9abe-0aa64bf2eeb2/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Sep 18, 2023
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Variables measured
    Annual Population Growth Rate, Population Between 2000 and 2022, Annual Population Growth Rate Percent
    Measurement technique
    The data presented in this dataset is derived from the 20 years data of U.S. Census Bureau Population Estimates Program (PEP) 2000 - 2022. To measure the variables, namely (a) population and (b) population change in ( absolute and as a percentage ), we initially analyzed and tabulated the data for each of the years between 2000 and 2022. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the United States population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of United States across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.

    Key observations

    In 2022, the population of United States was 333,287,557, a 0.38% increase year-by-year from 2021. Previously, in 2021, United States population was 332,031,554, an increase of 0.16% compared to a population of 331,511,512 in 2020. Over the last 20 plus years, between 2000 and 2022, population of United States increased by 51,125,146. In this period, the peak population was 333,287,557 in the year 2022. The numbers suggest that the population has not reached its peak yet and is showing a trend of further growth. Source: U.S. Census Bureau Population Estimates Program (PEP).

    Content

    When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).

    Data Coverage:

    • From 2000 to 2022

    Variables / Data Columns

    • Year: This column displays the data year (Measured annually and for years 2000 to 2022)
    • Population: The population for the specific year for the United States is shown in this column.
    • Year on Year Change: This column displays the change in United States population for each year compared to the previous year.
    • Change in Percent: This column displays the year on year change as a percentage. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for United States Population by Year. You can refer the same here

  9. d

    Demography of American black bears (Ursus americanus) in a semiarid...

    • search.dataone.org
    • data.niaid.nih.gov
    • +1more
    Updated Jan 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Brenden M. Orocu; Cambria Armstrong; Janene Auger; Hal L. Black; Randy T. Larsen; Brock R. McMillan; Mark C. Belk (2025). Demography of American black bears (Ursus americanus) in a semiarid environment [Dataset]. http://doi.org/10.5061/dryad.98sf7m0t8
    Explore at:
    Dataset updated
    Jan 3, 2025
    Dataset provided by
    Dryad Digital Repository
    Authors
    Brenden M. Orocu; Cambria Armstrong; Janene Auger; Hal L. Black; Randy T. Larsen; Brock R. McMillan; Mark C. Belk
    Area covered
    United States
    Description

    The American black bear (Ursus americanus) has one of the broadest geographic distributions of any mammalian carnivore in North America. Populations occur from high to low elevations and from mesic to arid environments, and their demographic traits have been documented in a wide variety of environments. However, the demography of American black bears in semiarid environments, which comprise a significant portion of the geographic range, is poorly documented. To fill this gap in understanding, we used data from a long-term mark-recapture study of black bears in the semiarid environment of eastern Utah, USA. Cub and yearling survival were low and adult survival was high relative to other populations. Adult life stages had the highest reproductive value, comprised the largest proportion of the population, and exhibited the highest elasticity contribution to the population growth rate (i.e., λ). Vital rates of black bears in this semiarid environment are skewed toward higher survival of adu..., Mark-Recapture study We estimated survival rates from long-term mark-recapture data gathered as part of a 27-year study on American black bears of the East Tavaputs Plateau. During the first 12 years of the study (June to August 1991-2003) female bears were captured and radio-collared, and all bears were tagged in the ear, except for cubs and yearlings. For the entire study (1992 – 2019), collared females were visited in their dens annually during their winter hibernation to count newborn cubs and surviving yearlings. Age of individual bears was determined by 2 methods: (1) direct observation of cubs or yearlings (i.e., year of birth was known) or (2) cementum annuli analysis of a cross-section of the root of an extracted premolar (Palochak, 2004; Willey, 1974). The data we used to derive survival and fecundity rates consisted of the ID_number, cohort (cub, yearling, subadult, prime-aged adult, and old adult), age in years, sex (female, male, unknown), number of cubs, number of yearling..., , # Demography of American black bears (Ursus americanus) in a semiarid environment

    https://doi.org/10.5061/dryad.98sf7m0t8

    Description of the data and file structure

    Files and variables

    File: Age-Specific_Survivorship.csv

    Description:Â

    This CSV file contains data collected from a mark-recapture study during 1991 - 2019. We calculated the age-specific average survival rate for each cohort. The average survival rate of each cohort was later used in the matrix transition model as matrix elements to retrieve important demographic information about this population of North American black bears (Ursus americanus) found in a semiarid environment.Â

    Variables
    • Cohort:Â Yearling = 1 year to 2 years;Â Subadult = 2 years to 4 years;Â Prime-aged Adult = 4 years to 14 years;Â Old Adult = 15 years and older.
    • Sex:Â M = male; F = female; U = unknown
    • Cubs and Yearlings:Â NV = not visited; number = number of cubs or yearlings presen...
  10. f

    Data Sheet 1_Understanding how population change is associated with...

    • frontiersin.figshare.com
    docx
    Updated Dec 11, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jasmina M. Buresch; Danielle Medgyesi; Jeremy R. Porter; Zachary M. Hirsch (2024). Data Sheet 1_Understanding how population change is associated with community sociodemographics and economic outcomes across the United States.docx [Dataset]. http://doi.org/10.3389/fhumd.2024.1465218.s001
    Explore at:
    docxAvailable download formats
    Dataset updated
    Dec 11, 2024
    Dataset provided by
    Frontiers
    Authors
    Jasmina M. Buresch; Danielle Medgyesi; Jeremy R. Porter; Zachary M. Hirsch
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    This study examines how population change is associated with changes in sociodemographics and economic outcomes across diverse geographic contexts in the United States from 2000 to 2020. Using Census Tract-level data and generalized additive models (GAMs), we found that communities experiencing population growth showed significant improvements in socioeconomic indicators: for example, a 50% population increase in Northeast metropolitan non-coastal areas was associated with a $10,062 rise [95% confidence interval (CI) = $9,181, $10,944] in median household income. Conversely, areas with population decline faced increasing challenges to community composition: communities experiencing a 50% population decline in West coastal metropolitan areas saw their median age increase by 2.556 years (95% CI = 2.23, 2.89 years), indicating an accelerated aging population. We observed a positive relationship between population growth and local economic growth, with areas experiencing population decline or slow growth showing below-average economic growth. While population change alone explained 10.1% of the variance in county-level GDP growth, incorporating sociodemographic shifts alongside population change using a partial least squares regression (PLSR) more than doubled the explanatory power to 21.4%. Overall, we often found the strength of relationships and sometimes the direction varied by geographic context: coastal areas showed distinct patterns from inland regions, and metropolitan areas responded differently than rural ones. For instance, the percentage of owner-occupied housing was negatively associated with population growth in metropolitan areas, but positively associated in non-metropolitan areas. Our research provides valuable insights for policymakers and planners working to address community changes, particularly in the context of anticipated climate-induced migration. The results suggest that strategies for maintaining economic vitality need to consider not just population retention, but also demographic profiles and socioeconomic opportunities across different geographic contexts.

  11. Data from: United States annual state-level population estimates from...

    • catalog.data.gov
    • cloud.csiss.gmu.edu
    • +4more
    Updated Apr 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2025). United States annual state-level population estimates from colonization to 1999 [Dataset]. https://catalog.data.gov/dataset/united-states-annual-state-level-population-estimates-from-colonization-to-1999-2f176
    Explore at:
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    U.S. Department of Agriculture Forest Servicehttp://fs.fed.us/
    Area covered
    United States
    Description

    The U.S. landscape has undergone substantial changes since Europeans first arrived. Many land use changes are attributable to human activity. Historical data concerning these changes are frequently limited and often difficult to develop. Modeling historical land use changes may be necessary. We develop annual population series from first European settlement to 1999 for all 50 states and Washington D.C. for use in modeling land use trends. Extensive research went into developing the historical data. Linear interpolation was used to complete the series after critically evaluating the appropriateness of linear interpolation versus exponential interpolation.

  12. n

    Data from: Georeferenced U.S. County-Level Population Projections, Total and...

    • earthdata.nasa.gov
    • s.cnmilf.com
    • +1more
    Updated Jun 17, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ESDIS (2025). Georeferenced U.S. County-Level Population Projections, Total and by Sex, Race and Age, Based on the SSPs, 2020-2100 [Dataset]. http://doi.org/10.7927/dv72-s254
    Explore at:
    Dataset updated
    Jun 17, 2025
    Dataset authored and provided by
    ESDIS
    Area covered
    United States
    Description

    The Georeferenced U.S. County-Level Population Projections, Total and by Sex, Race and Age, Based on the SSPs, 2020-2100 consists of county-level population projection scenarios of total population, and by age, sex, and race in five-year intervals for all U.S. counties for the period 2020 - 2100. These data have numerous potential uses and can serve as inputs for addressing questions involving sub-national demographic change in the United States in the near, middle- and long-term.

  13. Fertility rate of the world and continents 1950-2050

    • statista.com
    • ai-chatbox.pro
    Updated Apr 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Fertility rate of the world and continents 1950-2050 [Dataset]. https://www.statista.com/statistics/1034075/fertility-rate-world-continents-1950-2020/
    Explore at:
    Dataset updated
    Apr 3, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    The total fertility rate of the world has dropped from around five children per woman in 1950, to 2.2 children per woman in 2025, which means that women today are having fewer than half the number of children that women did 75 years ago. Replacement level fertility This change has come as a result of the global demographic transition, and is influenced by factors such as the significant reduction in infant and child mortality, reduced number of child marriages, increased educational and vocational opportunities for women, and the increased efficacy and availability of contraception. While this change has become synonymous with societal progress, it does have wide-reaching demographic impact - if the global average falls below replacement level (roughly 2.1 children per woman), as is expected to happen in the 2050s, then this will lead to long-term population decline on a global scale. Regional variations When broken down by continent, Africa is the only region with a fertility rate above the global average, and, alongside Oceania, it is the only region with a fertility rate above replacement level. Until the 1980s, the average woman in Africa could expect to have 6-7 children over the course of their lifetime, and there are still several countries in Africa where women can still expect to have five or more children in 2025. Historically, Europe has had the lowest fertility rates in the world over the past century, falling below replacement level in 1975. Europe's population has grown through a combination of migration and increasing life expectancy, however even high immigration rates could not prevent its population from going into decline in 2021.

  14. w

    IDPH Population Projections For Illinois Counties 2010 To 2025

    • data.wu.ac.at
    • datadiscoverystudio.org
    • +1more
    csv, json, rdf, xml
    Updated Jun 29, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of Illinois (2015). IDPH Population Projections For Illinois Counties 2010 To 2025 [Dataset]. https://data.wu.ac.at/odso/data_gov/ZTQwM2EyNWItZWY3Zi00M2FhLTgwM2YtYjczMzE2YmY5ZTEz
    Explore at:
    rdf, xml, json, csvAvailable download formats
    Dataset updated
    Jun 29, 2015
    Dataset provided by
    State of Illinois
    Area covered
    Illinois
    Description

    Introduction This report presents projections of population from 2015 to 2025 by age and sex for Illinois, Chicago and Illinois counties produced for the Certificate of Need (CON) Program. As actual future population trends are unknown, the projected numbers should not be considered a precise prediction of the future population; rather, these projections, calculated under a specific set of assumptions, indicate the levels of population that would result if our assumptions about each population component (births, deaths and net migration) hold true. The assumptions used in this report, and the details presented below, generally assume a continuation of current trends. Methodology These projections were produced using a demographic cohort-component projection model. In this model, each component of population change – birth, death and net migration – is projected separately for each five-year birth cohort and sex. The cohort – component method employs the following basic demographic balancing equation: P1 = P0 + B – D + NM Where: P1 = Population at the end of the period; P0 = Population at the beginning of the period; B = Resident births during the period; D = Resident deaths during the period; and NM = Net migration (Inmigration – Outmigration) during the period. The model roughly works as follows: for every five-year projection period, the base population, disaggregated by five-year age groups and sex, is “survived” to the next five-year period by applying the appropriate survival rates for each age and sex group; next, net migrants by age and sex are added to the survived population. The population under 5 years of age is generated by applying age specific birth rates to the survived females in childbearing age (15 to 49 years). Base Population These projections began with the July 1, 2010 population estimates by age and sex produced by the U.S. Census Bureau. The most recent census population of April 1, 2010 was the base for July 1, 2010 population estimates. Special Populations In 19 counties, the college dormitory population or adult inmates in correctional facilities accounted for 5 percent or more of the total population of the county; these counties were considered as special counties. There were six college dorm counties (Champaign, Coles, DeKalb, Jackson, McDonough and McLean) and 13 correctional facilities counties (Bond, Brown, Crawford, Fayette, Fulton, Jefferson, Johnson, Lawrence, Lee, Logan, Montgomery, Perry and Randolph) that qualified as special counties. When projecting the population, these special populations were first subtracted from the base populations for each special county; then they were added back to the projected population to produce the total population projections by age and sex. The base special population by age and sex from the 2010 population census was used for this purpose with the assumption that this population will remain the same throughout each projection period. Mortality Future deaths were projected by applying age and sex specific survival rates to each age and sex specific base population. The assumptions on survival rates were developed on the basis of trends of mortality rates in the individual life tables constructed for each level of geography for 1989-1991, 1999-2001 and 2009-2011. The application of five-year survival rates provides a projection of the number of persons from the initial population expected to be alive in five years. Resident deaths data by age and sex from 1989 to 2011 were provided by the Illinois Center for Health Statistics (ICHS), Illinois Department of Public Health. Fertility Total fertility rates (TFRs) were first computed for each county. For most counties, the projected 2015 TFRs were computed as the average of the 2000 and 2010 TFRs. 2010 or 2015 rates were retained for 2020 projections, depending on the birth trend of each county. The age-specific birth rates (ASBR) were next computed for each county by multiplying the 2010 ASBR by each projected TFR. Total births were then projected for each county by applying age-specific birth rates to the projected female population of reproductive ages (15 to 49 years). The total births were broken down by sex, using an assumed sex-ratio at birth. These births were survived five years applying assumed survival ratios to get the projected population for the age group 0-4. For the special counties, special populations by age and sex were taken out before computing age-specific birth rates. The resident birth data used to compute age-specific birth rates for 1989-1991, 1999-2001 and 2009-2011 came from ICHS. Births to females younger than 15 years of age were added to those of the 15-19 age group and births to women older than 49 years of age were added to the 45-49 age group. Net Migration Migration is the major component of population change in Illinois, Chicago and Illinois counties. The state is experiencing a significant loss of population through internal (domestic migration within the U.S.) net migration. Unlike data on births and deaths, migration data based on administrative records are not available on a regular basis. Most data on migration are collected through surveys or indirectly from administrative records (IRS individual tax returns). For this report, net migration trends have been reviewed using data from different sources and methods (such as residual method) from the University of Wisconsin, Madison, Illinois Department of Public Health, individual exemptions data from the Internal Revenue Service, and survey data from the U.S. Census Bureau. On the basis of knowledge gained through this review and of levels of net migration from different sources, assumptions have been made that Illinois will have annual net migrants of -40, 000, -35,000 and -30,000 during 2010-2015, 2015-2020 and 2020-2025, respectively. These figures have been distributed among the counties, using age and sex distribution of net migrants during 1995-2000. The 2000 population census was the last decennial census, which included the question “Where did you live five years ago?” The age and sex distribution of the net migrants was derived, using answers to this question. The net migration for Chicago has been derived independently, using census survival method for 1990-2000 and 2000-2010 under the assumption that the annual net migration for Chicago will be -40,000, -30,000 and -25,000 for 2010-2015, 2015-2020 and 2020-2025, respectively. The age and sex distribution from the 2000-2010 net migration was used to distribute the net migrants for the projection periods. Conclusion These projections were prepared for use by the Certificate of Need (CON) Program; they are produced using evidence-based techniques, reasonable assumptions and the best available input data. However, as assumptions of future demographic trends may contain errors, the resulting projections are unlikely to be free of errors. In general, projections of small areas are less reliable than those for larger areas, and the farther in the future projections are made, the less reliable they may become. When possible, these projections should be regularly reviewed and updated, using more recent birth, death and migration data.

  15. f

    Demographic Amplification of Climate Change Experienced by the Contiguous...

    • plos.figshare.com
    • figshare.com
    docx
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jason Samson; Dominique Berteaux; Brian J. McGill; Murray M. Humphries (2023). Demographic Amplification of Climate Change Experienced by the Contiguous United States Population during the 20th Century [Dataset]. http://doi.org/10.1371/journal.pone.0045683
    Explore at:
    docxAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Jason Samson; Dominique Berteaux; Brian J. McGill; Murray M. Humphries
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Contiguous United States, United States
    Description

    Better understanding of the changing relationship between human populations and climate is a global research priority. The 20th century in the contiguous United States offers a particularly well-documented example of human demographic expansion during a period of radical socioeconomic and environmental change. One would expect that as human society has been transformed by technology, we would become increasingly decoupled from climate and more dependent on social infrastructure. Here we use spatially-explicit models to evaluate climatic, socio-economic and biophysical correlates of demographic change in the contiguous United States between 1900 and 2000. Climate-correlated variation in population growth has caused the U.S. population to shift its realized climate niche from cool, seasonal climates to warm, aseasonal climates. As a result, the average annual temperature experienced by U.S. citizens between 1920 and 2000 has increased by more than 1.5°C and the temperature seasonality has decreased by 1.1°C during a century when climate change accounted for only a 0.24°C increase in average annual temperature and a 0.15°C decrease in temperature seasonality. Thus, despite advancing technology, climate-correlated demographics continue to be a major feature of contemporary U.S. society. Unfortunately, these demographic patterns are contributing to a substantial warming of the climate niche during a period of rapid environmental warming, making an already bad situation worse.

  16. United States UCB Projection: Population: % Change

    • ceicdata.com
    Updated Nov 22, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2021). United States UCB Projection: Population: % Change [Dataset]. https://www.ceicdata.com/en/united-states/population-projection-us-census-bureau/ucb-projection-population--change
    Explore at:
    Dataset updated
    Nov 22, 2021
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jun 1, 2049 - Jun 1, 2060
    Area covered
    United States
    Description

    United States UCB Projection: Population: % Change data was reported at 0.400 % in 2060. This stayed constant from the previous number of 0.400 % for 2059. United States UCB Projection: Population: % Change data is updated yearly, averaging 0.465 % from Jun 2017 (Median) to 2060, with 44 observations. The data reached an all-time high of 0.740 % in 2017 and a record low of 0.390 % in 2056. United States UCB Projection: Population: % Change data remains active status in CEIC and is reported by US Census Bureau. The data is categorized under Global Database’s United States – Table US.G006: Population: Projection: US Census Bureau.

  17. N

    American Falls, ID Population Dataset: Yearly Figures, Population Change,...

    • neilsberg.com
    csv, json
    Updated Sep 18, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2023). American Falls, ID Population Dataset: Yearly Figures, Population Change, and Percent Change Analysis [Dataset]. https://www.neilsberg.com/research/datasets/6c39f7f5-3d85-11ee-9abe-0aa64bf2eeb2/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Sep 18, 2023
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Idaho, American Falls
    Variables measured
    Annual Population Growth Rate, Population Between 2000 and 2022, Annual Population Growth Rate Percent
    Measurement technique
    The data presented in this dataset is derived from the 20 years data of U.S. Census Bureau Population Estimates Program (PEP) 2000 - 2022. To measure the variables, namely (a) population and (b) population change in ( absolute and as a percentage ), we initially analyzed and tabulated the data for each of the years between 2000 and 2022. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the American Falls population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of American Falls across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.

    Key observations

    In 2022, the population of American Falls was 4,660, a 0.91% increase year-by-year from 2021. Previously, in 2021, American Falls population was 4,618, an increase of 1.25% compared to a population of 4,561 in 2020. Over the last 20 plus years, between 2000 and 2022, population of American Falls increased by 598. In this period, the peak population was 4,660 in the year 2022. The numbers suggest that the population has not reached its peak yet and is showing a trend of further growth. Source: U.S. Census Bureau Population Estimates Program (PEP).

    Content

    When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).

    Data Coverage:

    • From 2000 to 2022

    Variables / Data Columns

    • Year: This column displays the data year (Measured annually and for years 2000 to 2022)
    • Population: The population for the specific year for the American Falls is shown in this column.
    • Year on Year Change: This column displays the change in American Falls population for each year compared to the previous year.
    • Change in Percent: This column displays the year on year change as a percentage. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for American Falls Population by Year. You can refer the same here

  18. c

    The relationship between demographic change and skilled labor shortages: A...

    • datacatalogue.cessda.eu
    • doi.org
    • +1more
    Updated Apr 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wunsch (2025). The relationship between demographic change and skilled labor shortages: A firm survey [Dataset]. http://doi.org/10.23662/FORS-DS-1215-1
    Explore at:
    Dataset updated
    Apr 22, 2025
    Dataset provided by
    Conny
    Authors
    Wunsch
    Area covered
    Western Europe, Switzerland, Europe
    Description

    According to the most recent population forecasts for Switzerland (Bundesamt für Statistik 2015), the share of old-age dependants (older than 65 years) relative to the working age population (20-64) is going to increase from 29.1% in 2015 to 48.1% in 2045. In the same time span, total population is expected to grow from 8.3 million to 10.2 million while the potential workforce is growing from 4.8 million to 5.3 million. As a result, potential labour supply per capita is decreasing and at the same time the share of old-age dependants as well as the average age of the population are increasing rapidly. Among other problems, this is going to lead to significant distortions on labour markets; such as labour shortages or shifts in the structure of labour demand due to shifts in final goods demand. Furthermore, the current political climate in Switzerland tends towards restricting immigration. Since the Swiss economy already relies heavily on foreign workers, a restriction of immigration might aggravate the predicted labour supply shortages even further.

    The goal of this research project is to evaluate the consequences of population ageing for the Swiss labour market. A special focus lies on the labour demand side, specifically on medium and long term sectoral and occupational shifts caused by a decrease in (skilled) labour supply and a change in consumer demand structure due to the demographic change. Moreover, the general equilibrium effects of different policy reforms will be evaluated and compared. To achieve this goal we construct a dynamic overlapping generations (OLG) computable general equilibrium (CGE) model of Switzerland and calibrate it with current Swiss data. Models of this type are the conventional approach to evaluating inter- and intra-generational effects of population ageing. However, only few studies focus on the labour market and even fewer emphasise the demand side. The evidence is particularly scarce for Switzerland, where only a handful of general equilibrium analyses relating to population ageing have been conducted.

    In order to facilitate estimating realistic parameters of the model as well as calibrating the model to expected short and medium term industry-specific developments we conduct a customised firm level survey, which, on its own, already constitutes a significant contribution to the relevant literature. The finalised model does not only allow us to predict transitional and long-term effects of the demographic change on the economy and the industry structure. It also provides us with the ability to evaluate and compare different reform proposals, such as an increase in the retirement age, reforms of the pension and healthcare systems and different immigration scenarios. As such, we will be able to give recommendations for optimal policy choice and provide valuable inputs to the political debate.

  19. Vintage 2018 Population Estimates: Demographic Characteristics Estimates by...

    • catalog.data.gov
    Updated Jul 19, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Census Bureau (2023). Vintage 2018 Population Estimates: Demographic Characteristics Estimates by Age Groups [Dataset]. https://catalog.data.gov/dataset/vintage-2018-population-estimates-demographic-characteristics-estimates-by-age-groups
    Explore at:
    Dataset updated
    Jul 19, 2023
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Description

    Annual Resident Population Estimates by Age Group, Sex, Race, and Hispanic Origin: April 1, 2010 to July 1, 2018 // Source: U.S. Census Bureau, Population Division // The contents of this file are released on a rolling basis from December through June. // Note: 'In combination' means in combination with one or more other races. The sum of the five race-in-combination groups adds to more than the total population because individuals may report more than one race. Hispanic origin is considered an ethnicity, not a race. Hispanics may be of any race. Responses of 'Some Other Race' from the 2010 Census are modified. This results in differences between the population for specific race categories shown for the 2010 Census population in this file versus those in the original 2010 Census data. For more information, see https://www2.census.gov/programs-surveys/popest/technical-documentation/methodology/modified-race-summary-file-method/mrsf2010.pdf. // The estimates are based on the 2010 Census and reflect changes to the April 1, 2010 population due to the Count Question Resolution program and geographic program revisions. // For detailed information about the methods used to create the population estimates, see https://www.census.gov/programs-surveys/popest/technical-documentation/methodology.html. // Each year, the Census Bureau's Population Estimates Program (PEP) utilizes current data on births, deaths, and migration to calculate population change since the most recent decennial census, and produces a time series of estimates of population. The annual time series of estimates begins with the most recent decennial census data and extends to the vintage year. The vintage year (e.g., V2017) refers to the final year of the time series. The reference date for all estimates is July 1, unless otherwise specified. With each new issue of estimates, the Census Bureau revises estimates for years back to the last census. As each vintage of estimates includes all years since the most recent decennial census, the latest vintage of data available supersedes all previously produced estimates for those dates. The Population Estimates Program provides additional information including historical and intercensal estimates, evaluation estimates, demographic analysis, and research papers on its website: https://www.census.gov/programs-surveys/popest.html.

  20. U.S. seniors as a percentage of the total population 1950-2050

    • statista.com
    • ai-chatbox.pro
    Updated Apr 19, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2023). U.S. seniors as a percentage of the total population 1950-2050 [Dataset]. https://www.statista.com/statistics/457822/share-of-old-age-population-in-the-total-us-population/
    Explore at:
    Dataset updated
    Apr 19, 2023
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In 2023, about 17.7 percent of the American population was 65 years old or over; an increase from the last few years and a figure which is expected to reach 22.8 percent by 2050. This is a significant increase from 1950, when only eight percent of the population was 65 or over. A rapidly aging population In recent years, the aging population of the United States has come into focus as a cause for concern, as the nature of work and retirement is expected to change to keep up. If a population is expected to live longer than the generations before, the economy will have to change as well to fulfill the needs of the citizens. In addition, the birth rate in the U.S. has been falling over the last 20 years, meaning that there are not as many young people to replace the individuals leaving the workforce. The future population It’s not only the American population that is aging -- the global population is, too. By 2025, the median age of the global workforce is expected to be 39.6 years, up from 33.8 years in 1990. Additionally, it is projected that there will be over three million people worldwide aged 100 years and over by 2050.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2024). Comparison of population in Brazil and the U.S. 1500-2050 [Dataset]. https://www.statista.com/statistics/1283654/brazil-us-population-comparison-historical/
Organization logo

Comparison of population in Brazil and the U.S. 1500-2050

Explore at:
Dataset updated
Aug 7, 2024
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
United States, Brazil
Description

Brazil and the United States are the two most populous countries in the Americas today. In 1500, the year that Pedro Álvares Cabral made landfall in present-day Brazil and claimed it for the Portuguese crown, it is estimated that there were roughly one million people living in the region. Some estimates for the present-day United States give a population of two million in the year 1500, although estimates vary greatly. By 1820, the population of the U.S. was still roughly double that of Brazil, but rapid growth in the 19th century would see it grow 4.5 times larger by 1890, before the difference shrunk during the 20th century. In 2024, the U.S. has a population over 340 million people, making it the third most populous country in the world, while Brazil has a population of almost 218 million and is the sixth most populous. Looking to the future, population growth is expected to be lower in Brazil than in the U.S. in the coming decades, as Brazil's fertility rates are already lower, and migration rates into the United States will be much higher. Historical development The indigenous peoples of present-day Brazil and the U.S. were highly susceptible to diseases brought from the Old World; combined with mass displacement and violence, their population growth rates were generally low, therefore migration from Europe and the import of enslaved Africans drove population growth in both regions. In absolute numbers, more Europeans migrated to North America than Brazil, whereas more slaves were transported to Brazil than the U.S., but European migration to Brazil increased significantly in the early 1900s. The U.S. also underwent its demographic transition much earlier than in Brazil, therefore its peak period of population growth was almost a century earlier than Brazil. Impact of ethnicity The demographics of these countries are often compared, not only because of their size, location, and historical development, but also due to the role played by ethnicity. In the mid-1800s, these countries had the largest slave societies in the world, but a major difference between the two was the attitude towards interracial procreation. In Brazil, relationships between people of different ethnic groups were more common and less stigmatized than in the U.S., where anti-miscegenation laws prohibited interracial relationships in many states until the 1960s. Racial classification was also more rigid in the U.S., and those of mixed ethnicity were usually classified by their non-white background. In contrast, as Brazil has a higher degree of mixing between those of ethnic African, American, and European heritage, classification is less obvious, and factors such as physical appearance or societal background were often used to determine racial standing. For most of the 20th century, Brazil's government promoted the idea that race was a non-issue and that Brazil was racially harmonious, but most now acknowledge that this actually ignored inequality and hindered progress. Racial inequality has been a prevalent problem in both countries since their founding, and today, whites generally fare better in terms of education, income, political representation, and even life expectancy. Despite this adversity, significant progress has been made in recent decades, as public awareness of inequality has increased, and authorities in both countries have made steps to tackle disparities in areas such as education, housing, and employment.

Search
Clear search
Close search
Google apps
Main menu