This map is designed to work in the new ArcGIS Online Map Viewer. Open in Map Viewer to view map. What does this map show?This map shows the population in the US by race. The map shows this pattern nationwide for states, counties, and tracts. Open the map in the new ArcGIS Online Map Viewer Beta to see the dot density pattern. What is dot density?The density is visualized by randomly placing one dot per a given value for the desired attribute. Unlike choropleth visualizations, dot density can be mapped using total counts since the size of the polygon plays a significant role in the perceived density of the attribute.Where is the data from?The data in this map comes from the most current American Community Survey (ACS) from the U.S. Census Bureau. Table B03002. The layer being used if updated with the most current data each year when the Census releases new estimates. The layer can be found in ArcGIS Living Atlas of the World: ACS Race and Hispanic Origin Variables - Boundaries.What questions does this map answer?Where do people of different races live?Do people of a similar race live close to people of their own race?Which cities have a diverse range of different races? Less diverse?
This map service summarizes racial and ethnic diversity in the United States in 2012.
The Diversity Index shows the likelihood that two persons chosen at random from the same area, belong to different race or ethnic groups. The index ranges from 0 (no diversity) to 100 (complete diversity). Diversity in the U.S. population is increasing. The diversity score for the entire United States in 2012 is 61.
The data shown is from Esri's 2012 Updated Demographics. The map adds increasing level of detail as you zoom in, from state, to county, to ZIP Code, to tract, to block group data. This map shows Esri's 2012 estimates using Census 2010 geographies.
The percent chance that two people picked at random within an area will be of a different race/ethnicity. This number does not reflect which race/ethnicity is predominant within an area. The higher the value, the more racially and ethnically diverse an area. Source: U.S. Bureau of the Census, American Community Survey Years Available: 2010, 2011-2015, 2012-2016, 2013-2017, 2014-2018, 2015-2019, 2017-2021, 2018-2022
This map shows a comparison of diversity and median household income in the US by tract. Esri's Diversity Index measures the likelihood that two persons, chosen at random from the same area, belong to different races or ethnic groups. In theory, the index ranges from 0 (no diversity) to 100 (complete diversity). If an area's entire population is divided evenly into two race groups and one ethnic group, then the diversity index equals 50. As more race groups are evenly represented in the population, the diversity index increases. Minorities accounted for 30.9 percent of the population in 2000 and are expected to make up 42.3 percent of the population by 2023. Vintage of data: 2023Areas in a darker orange are less diverse than light blue areas with higher diversity. Median household income is symbolized by size. The national median household income is $58,100 and any household below the national value has the smallest symbol size. The largest size has a median household income over $100,000 per year. Esri Updated Demographics represent the suite of annually updated U.S. demographic data that provides current-year and five-year forecasts for more than two thousand demographic and socioeconomic characteristics, a subset of which is included in this layer. Included are a host of tables covering key characteristics of the population, households, housing, age, race, income, and much more. Esri's Updated Demographics data consists of point estimates, representing July 1 of the current and forecast years.Esri Updated Demographics DocumentationMethodologyUnderstanding Esri’s Updated Demographics portfolioEssential Esri Demographics vocabularyThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. This layer requires an ArcGIS Online subscription and does not consume credits. Please cite Esri when using this data.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Users can obtain descriptions, maps, profiles, and ranks of U.S. metropolitan areas pertaining to quality of life, diversity, and opportunities for racial and ethnic groups in the U.S. BackgroundThe Diversity Data project operates a website for users to explore how U.S. metropolitan areas perform on evidence-based social measures affecting quality of life, diversity and opportunity for racial and ethnic groups in the United States. These indicators capture a broad definition of quality of life and health, including opportunities for good schools, housing, jobs, wages, health and social services, and safe neighborhoods. This is a useful resource for people inter ested in advocating for policy and social change regarding neighborhood integration, residential mobility, anti-discrimination in housing, urban renewal, school quality and economic opportunities. The Diversity Data project is an ongoing project of the Harvard School of Public Health (Department of Society, Human Development and Health). User FunctionalityUsers can obtain a description, profile and rank of U.S. metropolitan areas and compare ranks across metropolitan areas. Users can also generate maps which demonstrate the distribution of these measures across the United States. Demographic information is available by race/ethnicity. Data NotesData are derived from multiple sources including: the U.S. Census Bureau; National Center for Health Statistics' Vital Statistics Natality Birth Data; Natio nal Center for Education Statistics; Union CPS Utilities Data CD; National Low Income Housing Coalition; Freddie Mac Conventional Mortgage Home Price Index; Neighborhood Change Database; Joint Center for Housing Studies of Harvard University; Federal Financial Institutions Examination Council Home Mortgage Disclosure Act (HMD); Dr. Russ Lopez, Boston University School of Public Health, Department of Environmental Health; HUD State of the Cities Data Systems; Agency for Healthcare Research and Quality; and Texas Transportation Institute. Years in which the data were collected are indicated with the measure. Information is available for metropolitan areas. The website does not indicate when the data are updated.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Availability of grid population data.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
These geospatial data resources and the linked mapping tool below reflect currently available data on three categories of potentially qualifying Low-Income communities:
Note that Category 2 - Indian Lands are not shown on this map. Note that Persistent Poverty is not calculated for US Territories. Note that CEJST Energy disadvantage is not calculated for US Territories besides Puerto Rico.
The excel tool provides the land area percentage of each 2023 census tract meeting each of the above categories. To examine geographic eligibility for a specific address or latitude and longitude, visit the program's mapping tool.
Additional information on this tax credit program can be found on the DOE Landing Page for the 48e program at https://www.energy.gov/diversity/low-income-communities-bonus-credit-program or the IRS Landing Page at https://www.irs.gov/credits-deductions/low-income-communities-bonus-credit.
Maps last updated: September 1st, 2024
Next map update expected: December 7th, 2024
Disclaimer: The spatial data and mapping tool is intended for geolocation purposes. It should not be relied upon by taxpayers to determine eligibility for the Low-Income Communities Bonus Credit Program.
Source Acknowledgements:
GIS Web Map Application of the 10 City Council Voter Districts
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Community level metrics for the Chicago site.
NOTE: A more current version of the Protected Areas Database of the United States (PAD-US) is available: PAD-US 3.0 https://doi.org/10.5066/P9Q9LQ4B. The USGS Protected Areas Database of the United States (PAD-US) is the nation's inventory of protected areas, including public land and voluntarily provided private protected areas, identified as an A-16 National Geospatial Data Asset in the Cadastre Theme (https://communities.geoplatform.gov/ngda-cadastre/). The PAD-US is an ongoing project with several published versions of a spatial database including areas dedicated to the preservation of biological diversity, and other natural (including extraction), recreational, or cultural uses, managed for these purposes through legal or other effective means. The database was originally designed to support biodiversity assessments; however, its scope expanded in recent years to include all public and nonprofit lands and waters. Most are public lands owned in fee (the owner of the property has full and irrevocable ownership of the land); however, long-term easements, leases, agreements, Congressional (e.g. 'Wilderness Area'), Executive (e.g. 'National Monument'), and administrative designations (e.g. 'Area of Critical Environmental Concern') documented in agency management plans are also included. The PAD-US strives to be a complete inventory of public land and other protected areas, compiling “best available” data provided by managing agencies and organizations. The PAD-US geodatabase maps and describes areas using over twenty-five attributes and five feature classes representing the U.S. protected areas network in separate feature classes: Fee (ownership parcels), Designation, Easement, Marine, Proclamation and Other Planning Boundaries. Five additional feature classes include various combinations of the primary layers (for example, Combined_Fee_Easement) to support data management, queries, web mapping services, and analyses. This PAD-US Version 2.1 dataset includes a variety of updates and new data from the previous Version 2.0 dataset (USGS, 2018 https://doi.org/10.5066/P955KPLE ), achieving the primary goal to "Complete the PAD-US Inventory by 2020" (https://www.usgs.gov/core-science-systems/science-analytics-and-synthesis/gap/science/pad-us-vision) by addressing known data gaps with newly available data. The following list summarizes the integration of "best available" spatial data to ensure public lands and other protected areas from all jurisdictions are represented in PAD-US, along with continued improvements and regular maintenance of the federal theme. Completing the PAD-US Inventory: 1) Integration of over 75,000 city parks in all 50 States (and the District of Columbia) from The Trust for Public Land's (TPL) ParkServe data development initiative (https://parkserve.tpl.org/) added nearly 2.7 million acres of protected area and significantly reduced the primary known data gap in previous PAD-US versions (local government lands). 2) First-time integration of the Census American Indian/Alaskan Native Areas (AIA) dataset (https://www2.census.gov/geo/tiger/TIGER2019/AIANNH) representing the boundaries for federally recognized American Indian reservations and off-reservation trust lands across the nation (as of January 1, 2020, as reported by the federally recognized tribal governments through the Census Bureau's Boundary and Annexation Survey) addressed another major PAD-US data gap. 3) Aggregation of nearly 5,000 protected areas owned by local land trusts in 13 states, aggregated by Ducks Unlimited through data calls for easements to update the National Conservation Easement Database (https://www.conservationeasement.us/), increased PAD-US protected areas by over 350,000 acres. Maintaining regular Federal updates: 1) Major update of the Federal estate (fee ownership parcels, easement interest, and management designations), including authoritative data from 8 agencies: Bureau of Land Management (BLM), U.S. Census Bureau (Census), Department of Defense (DOD), U.S. Fish and Wildlife Service (FWS), National Park Service (NPS), Natural Resources Conservation Service (NRCS), U.S. Forest Service (USFS), National Oceanic and Atmospheric Administration (NOAA). The federal theme in PAD-US is developed in close collaboration with the Federal Geographic Data Committee (FGDC) Federal Lands Working Group (FLWG, https://communities.geoplatform.gov/ngda-govunits/federal-lands-workgroup/); 2) Complete National Marine Protected Areas (MPA) update: from the National Oceanic and Atmospheric Administration (NOAA) MPA Inventory, including conservation measure ('GAP Status Code', 'IUCN Category') review by NOAA; Other changes: 1) PAD-US field name change - The "Public Access" field name changed from 'Access' to 'Pub_Access' to avoid unintended scripting errors associated with the script command 'access'. 2) Additional field - The "Feature Class" (FeatClass) field was added to all layers within PAD-US 2.1 (only included in the "Combined" layers of PAD-US 2.0 to describe which feature class data originated from). 3) Categorical GAP Status Code default changes - National Monuments are categorically assigned GAP Status Code = 2 (previously GAP 3), in the absence of other information, to better represent biodiversity protection restrictions associated with the designation. The Bureau of Land Management Areas of Environmental Concern (ACECs) are categorically assigned GAP Status Code = 3 (previously GAP 2) as the areas are administratively protected, not permanent. More information is available upon request. 4) Agency Name (FWS) geodatabase domain description changed to U.S. Fish and Wildlife Service (previously U.S. Fish & Wildlife Service). 5) Select areas in the provisional PAD-US 2.1 Proclamation feature class were removed following a consultation with the data-steward (Census Bureau). Tribal designated statistical areas are purely a geographic area for providing Census statistics with no land base. Most affected areas are relatively small; however, 4,341,120 acres and 37 records were removed in total. Contact Mason Croft (masoncroft@boisestate) for more information about how to identify these records. For more information regarding the PAD-US dataset please visit, https://usgs.gov/gapanalysis/PAD-US/. For more information about data aggregation please review the Online PAD-US Data Manual available at https://www.usgs.gov/core-science-systems/science-analytics-and-synthesis/gap/pad-us-data-manual .
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Summary of landscape metrics.
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Aim
To understand the representativeness and accuracy of expert range maps, and explore alternate methods for accurately mapping species distributions.
Location
Global
Time period
Contemporary
Major taxa studied
Terrestrial vertebrates, and Odonata
Methods
We analyzed the biases in 50,768 animal IUCN, GARD and BirdLife species maps, assessed the links between these maps and existing political and various non-ecological boundaries to assess their accuracy for certain types of analysis. We cross-referenced each species map with data from GBIF to assess if maps captured the whole range of a species, and what percentage of occurrence points fall within the species’ assessed ranges. In addition, we use a number of alternate methods to map diversity patterns and compare these to high resolution models of distribution patterns.
Results
On average 20-30% of species’ non-coastal range boundaries overlapped with administrative national boundaries. In total, 60% of areas with the highest spatial turnover in species (high densities of species range boundaries marking high levels of shift in the community of species present) occurred at political boundaries, especially commonly in Southeast Asia. Different biases existed for different taxa, with gridded analysis in reptiles, river-basins in Odonata (except the Americas) and county-boundaries for Amphibians in the US. On average, up to half (25-46%) species recorded range points fall outside their mapped distributions. Filtered Minimum-convex polygons performed better than expert range maps in reproducing modeled diversity patterns.
Main conclusions
Expert range maps showed high bias at administrative borders in all taxa, but this was highest at the transition from tropical to subtropical regions. Methods used were inconsistent across space, time and taxa, and ranges mapped did not match species distribution data. Alternate approaches can better reconstruct patterns of distribution than expert maps, and data driven approaches are needed to provide reliable alternatives to better understand species distributions.
Methods Materials and methods
We use a combination of approaches to explore the relationship between species range maps and geopolitical boundaries and a subset of geographic features. In some cases we used the density of species range boundaries to explore the relationship between these and various features (i.e. administrative boundaries, river basin boundaries etc.). Additionally, species richness and spatial turnover are used to explore changes in richness over short geographic distances. Analyses were conducted in R statistical software unless noted otherwise. All code scripts are available at https://github.com/qiaohj/iucn_fix. Workflows are shown in Figure S1a-c with associated scripts listed.
Species ranges and boundary density maps
ERMs (Expert range maps) were downloaded from the IUCN RedList website for mammals (5,709 species), odonates (2,239 species) and amphibians (6,684 species; https://www.iucnredlist.org/resources/grid/spatial-data). Shapefile maps for birds were downloaded from BirdLife (10,423 species, http://datazone.birdlife.org/species/requestdis), and for reptiles from the Global Assessment of Reptile Distributions (GARD) (10,064 species; Roll et al., 2017). Each species’ polygon boundaries were converted to a polylines to show the boundary of each species range (Figure S1a-II; codes are lines 7 – 18 in line2raster_xxxx.r ; xxxx varies based on the taxa). The associated shapefile was then split to produce independent polyline files for each species within each taxon (see Figure S1a-I, codes are lines 29 to 83 in the same file above.).
To generate species boundary density maps, species range boundaries were rasterized at 1km spatial resolution with an equal area projection (Eckert-IV), and stacked to form a single raster for each taxon (at the level of amphibians, odonates, etc.). This represented the number of species in each group and their overlapping range boundaries (Figure S1b-II, codes are in line2raster_all.r). Each cell value indicated the number of species whose distribution boundaries overlapped with each cell, enabling us to overlay this rasterized information with other features (i.e. administrative boundaries) so that the overlaps between them can be calculated in R. These species boundary density maps underlie most subsequent analyses. R code and caveats are given in the supplements, links are provided in text and Figure S1.
Geographic boundaries
Spatial exploration of species range boundaries in ArcGIS suggested that numerous geographic datasets (i.e. political and in few cases geographic features such as river basins) were used to delineate the species ranges for different regions and taxa (this is sometimes part of the methodology in developing ERMs as detailed by Ficetola et al., 2014). Thus in addition to analyzing the administrative bias and the percentage of occurrence records within each species’ ERM for all taxa, additional analyses were conducted when other biases were evident in any given taxa or region (detailed later in methods on a case-by-case basis).
For all taxa, we assessed the percentage of overlap between species range boundaries and national and provincial boundaries by digitizing each to 1km (equivalent to buffering thie polyline by 500m), both with and without coastal boundaries. An international map was used because international (Western) assessors use them, and does not necessarily denote agreed country boundaries (https://gadm.org/). The different buffers (500m, 1000m, 2500m, 5000m) were added to these administrative boundaries in ArcMap to account for potential, insignificant deviations from political boundaries (Figure S1b). An R script for the same function is provided in “country_line_buffer.r”.
To establish where multiple species shared range boundaries we reclassified the species range boundary density rasters for each taxa into richness classes using the ArcMap quartile function (Figure S1). From these ten classes the percentage of the top-two, and top-three quartiles of range densities within different buffers (500m, 1000m, 2500m, 5000m) was calculated per country to determine what percentage of highest range boundary density approximately followed administrative borders. This was done because people drawing ERMs may use detailed administrative maps or generalize near political borders, or may use political shapefiles that deviate slightly. It is consequently useful to include varying distances from administrative features to assess how range boundary densities vary in relation to administrative boundaries. Analyses of relationships between individual species range boundaries and administrative boundaries (coastal, non-coastal) were made in R and scripts provided (quantile_country_buffer_overlap.r).
Spatial turnover and administrative boundaries
Heatmaps of species richness were generated by summing entire sets of compiled species ranges for each taxon in polygonal form (Figure 1; Figure S1b-I). To assess abrupt diversity changes, standard deviations for 10km blocks were calculated using the block statistics function in ArcMap. Abrupt changes in diversity were signified by high standard deviations based on the cell statistics function in ArcGIS, which represented rapid changes in the number of species present. Maps were then classified into ten categories using the quartile function. Given the high variation in maximum diversity and taxonomic representation, only the top two –three richness categories were retained per taxon. This was then extracted using 1km buffers of national administrative boundaries to assess percentages of administrative boundaries overlapping turnover hotspots by assessing what proportion of political boundaries were covered by these turnover hotspots.
Taxon-specific analyses
Data exploration and mapping exposed taxon and regional-specific biases requiring additional analysis. Where other biases and irregularities were clear from visual inspection of the range boundary density maps for each taxa, the possible causes of biases were assessed by comparing range boundary density maps to high-resolution imagery and administrative maps via the ArcGIS server (AGOL). Standardized overlay of the taxon boundary sets with administrative or geophysical features from the image-server revealed three types of bias which were either spatially or taxonomically limited between: 1) amphibians with county borders in the United States, 2) dragonflies and river basins globally and 3) gridding of distributions of reptiles. In these cases, species boundary density maps were used as a basis to identify potential biases which were then explored empirically using appropriate methods.
For amphibians, counties in the United States (US) were digitized using a county map from the US (https://gadm.org/), then buffered by with 2.5km either side. Amphibian species range boundary density maps were reclassified showing where species range boundaries existed (with other non-range boundary areas reclassified as “no data,”) and all species boundaries numerically indicated (i.e. values of 1 indicates one species range boundary, values of 10 indicates ten species range boundaries). Percentages of species boundary areas falling on county and in the buffers, in addition to species range boundaries which did not overlap with county boundaries were calculated to give measures of what percentage of the species boundaries fell within 2.5km of county boundaries.
For Odonata, many species were mapped to river basin borders. We used river basins of levels 6-8 (sub-basin to basin) in the river hierarchy (https://hydrosheds.org) to assess the relationship between Odonata boundaries and river boundaries. Two IUCN datasets exist for Odonata; the IUCN Odonata specialist group spatial dataset
This dataset provides maps of the distribution of ecosystem functional types (EFTs) and the interannual variability of EFTs at 0.05 degree resolution across the conterminous United States (CONUS) for 2001 to 2014. EFTs are groupings of ecosystems based on their similar ecosystem functioning that are used to represent the spatial patterns and temporal variability of key ecosystem functional traits without prior knowledge of vegetation type or canopy architecture. Sixty-four EFTs were derived from the metrics of a 2001-2014 time-series of satellite images of the Enhanced Vegetation Index (EVI) from the Moderate Resolution Imaging Spectroradiometer (MODIS) product MOD13C2. EFT diversity was calculated as the modal (most repeated) EFT and interannual variability was calculated as the number of unique EFTs for each pixel.
This imagery layer shows national riparian areas for the conterminous United States. Riparian areas are an important natural resource with high biological diversity. These ecosystems contain specific vegetation and soil characteristics which support irreplaceable values and multiple ecosystem functions and are very responsive to changes in land management activities. Delineating and quantifying riparian areas is an essential step in riparian monitoring, planning, management, and policy decisions. USDA Forest Service supports the development and implementation of a national context framework with a multi-scale approach to define riparian areas utilizing free available national geospatial datasets. Why was this layer created? To estimate 50-year flood height riparian areas to support statistical analysis, map display, and model parameterization.Provide a framework and an end product to stakeholders and apply the information into management actions and strategies.Multi-scale approach to provide a national and regional report map. Create a product for managers to easily understand where to apply the information at various scales.Develop a national context inventory of riparian areas and their condition within national forests and rangelands.How was this layer created? Using freely available data.Develop cost effective modeling approach & technique.Multi-scale (national, regional, & local).Promote technology transfer to train/reach out to our partners.Fifty-year flood heights were estimated using U.S. Geological Survey (USGS) stream gage information. NHDPlus version 2.1 was used as the hydrologic framework to delineate riparian areas. The U.S. Fish and Wildlife Service's National Wetland Inventory and USGS 10-meter digital elevation models were also used in processing these data.The data are '1' if in the riparian zone and 'NoData' if outside the riparian zone. When displayed on a map, riparian zone cells are color-coded 'blue' with 25% transparency.For additional information regarding methodologies for modeling and processing these data, see Abood et al. (2012) and the National Riparian Areas Base Map StoryMapData Download: https://www.fs.usda.gov/rds/archive/catalog/RDS-2019-0030
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This EnviroAtlas web service includes maps that illustrate job activity in each census block group. Employment diversity, employment density, and proximity of employment to housing can affect commuting patterns. Having plentiful and diverse jobs located near housing can reduce commute time and allow for a greater variety of commute modes. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).
📊 Google Data for Market Intelligence, Business Validation & Lead Enrichment Google Data is one of the most valuable sources of location-based business intelligence available today. At Canaria, we’ve built a robust, scalable system for extracting, enriching, and delivering verified business data from Google Maps—turning raw location profiles into high-resolution, actionable insights.
Our Google Maps Company Profile Data includes structured metadata on businesses across the U.S., such as company names, standardized addresses, geographic coordinates, phone numbers, websites, business categories, open hours, diversity and ownership tags, star ratings, and detailed review distributions. Whether you're modeling a market, identifying leads, enriching a CRM, or evaluating risk, our Google Data gives your team an accurate, up-to-date view of business activity at the local level.
This dataset is updated weekly, and is fully customizable—allowing you to pull exactly what you need, whether you're targeting a specific geography, industry segment, review range, or open-hour window.
🌎 What Makes Canaria’s Google Data Unique? • Location Precision – Every business record is enriched with latitude/longitude, ZIP code, and Google Plus Code to ensure exact geolocation • Reputation Signals – Review tags, star ratings, and review counts are included to allow brand sentiment scoring and risk monitoring • Diversity & Ownership Tags – Capture public-facing declarations such as “women-owned” or “Asian-owned” for DEI, ESG, and compliance applications • Contact Readiness – Clean, standardized phone numbers and domains help teams route leads to sales, support, or customer success • Operational Visibility – Up-to-date open hours, categories, and branch information help validate which locations are active and when
Our data is built to be matched, integrated, and analyzed—and is trusted by clients in financial services, go-to-market strategy, HR tech, and analytics platforms.
🧠 What This Google Data Solves Canaria Google Data answers critical operational, market, and GTM questions like:
• Which businesses are actively operating in my target region or category? • Which leads are real, verified, and tied to an actual physical branch? • How can I detect underperforming companies based on review sentiment? • Where should I expand, prospect, or invest based on geographic presence? • How can I enhance my CRM, enrichment model, or targeting strategy using location-based data?
✅ Key Use Cases for Google Maps Business Data Our clients leverage Google Data across a wide spectrum of industries and functions. Here are the top use cases:
🔍 Lead Scoring & Business Validation • Confirm the legitimacy and physical presence of potential customers, partners, or competitors using verified Google Data • Rank leads based on proximity, star ratings, review volume, or completeness of listing • Filter spammy or low-quality leads using negative review keywords and tag summaries • Validate ABM targets before outreach using enriched business details like phone, website, and hours
📍 Location Intelligence & Market Mapping • Visualize company distributions across geographies using Google Maps coordinates and ZIPs • Understand market saturation, density, and white space across business categories • Identify underserved ZIP codes or local business deserts • Track presence and expansion across regional clusters and industry corridors
⚠️ Company Risk & Brand Reputation Scoring • Monitor Google Maps reviews for sentiment signals such as “scam”, “spam”, “calls”, or service complaints • Detect risk-prone or underperforming locations using star rating distributions and review counts • Evaluate consistency of open hours, contact numbers, and categories for signs of listing accuracy or abandonment • Integrate risk flags into investment models, KYC/KYB platforms, or internal alerting systems
🗃️ CRM & RevOps Enrichment • Enrich CRM or lead databases with phone numbers, web domains, physical addresses, and geolocation from Google Data • Use business category classification for segmentation and routing • Detect duplicates or outdated data by matching your records with the most current Google listing • Enable advanced workflows like field-based rep routing, localized campaign assignment, or automated ABM triggers
📈 Business Intelligence & Strategic Planning • Build dashboards powered by Google Maps data, including business counts, category distributions, and review activity • Overlay business presence with population, workforce, or customer base for location planning • Benchmark performance across cities, regions, or market verticals • Track mobility and change by comparing past and current Google Maps metadata
💼 DEI, ESG & Ownership Profiling • Identify minority-owned, women-owned, or other diversity-flagged companies using Google Data ownership attributes • Build datasets aligned with supplier diversity mandates or ESG investment strategies • Segment location insi...
This map
serves as the baseline for the green infrastructure apps that visualize areas that are relatively undisturbed by development or
agriculture.
The habitat cores shown were derived using a model built by the Green Infrastructure Center Inc. and adapted by Esri.
The Intact Habitat Near Me app uses this web map as its basis.
The methodology identified, using nationally available datasets, intact or minimally disturbed areas at least 100 acres in size and with a minimum width of 200 meters.
The identification of intact areas relied upon the 2011 National Land Cover Database. Potential cores areas were selected from land cover categories not containing the word “developed” or those categories associated with agriculture uses (crop, hay and pasture lands). The resulting areas were tested for size and width requirements, and then converted into unique polygons.
These polygons were then overlaid with a diverse assortment of physiographic, biologic and hydrographic layers to use in computing a “core quality index”.
These layers included:
Number of endemic species (Mammals, Fish, Reptiles, Amphibians, Trees) (Jenkins, Clinton N., et. al, (April 21, 2015) US protected lands mismatch biodiversity priorities, PNAS vol.112, no. 16, www.pnas.org/cgi/doi/10.1073/pnas.1418034112)
Priority Index areas: Endemic species, small home range size and low protection status. (Jenkins, Clinton N., et. al, (April 21, 2015) US protected lands mismatch biodiversity priorities, PNAS vol.112, no. 16, www.pnas.org/cgi/doi/10.1073/pnas.1418034112)
Unique ecological systems (based upon work by Aycrig, Jocelyn L, et. al. (2013) Representation of Ecological Systems within the Protected Areas Network of the Continental United States. PLos One 8(1):e54689). New data constructed by Esri staff, using TNC Ecological Regions as summary areas.
Ecologically relevant landforms (Theobald DM, Harrison-Atlas D, Monahan WB, Albano CM (2015) Ecologically-Relevant Maps of Landforms and Physiographic Diversity for Climate Adaptation Planning. PLoS ONE 10(12): e0143619. doi:10.1371/journal.pone.0143619 ,http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0143619
Local Landforms (produced 3/2016) by Deniz Basaran and Charlie Frye, Esri, 30 m* resolution.
"Improved Hammond’s Landform Classification and Method for Global 250-m Elevation Data" by Karagulle, Deniz; Frye, Charlie; Sayre, Roger; Breyer, Sean; Aniello, Peter; Vaughan, Randy; Wright, Dawn, has been successfully submitted online and is presently being given consideration for publication in Transactions in GIS.
*we scaled the neighborhood windows from the 250-meter method described in the paper, and then applied that to 30-meter data in the U.S.
National Elevation Dataset, USGS, 30 m resolution, http://viewer.nationalmap.gov/launch/
NWI – National Wetlands Inventory “ Classification of Wetlands and Deepwater Habitats of the United States”. U.S. Department of the Interior, Fish and Wildlife Service, Washington, DC. FWS/OBS-79/31 , U.S. Fish and Wildlife Service, Division of Habitat and Resouce Conservation (prepared 10/2015)
NLCD 2011 – National LandCover Database 2011http://www.mrlc.gov/nlcd2011.php (downloaded 1/2016) Homer, C.G., et. al. 2015,Completion of the 2011 National Land Cover Database for the conterminous United States-Representing a decade of land cover change information. Photogrammetric Engineering and Remote Sensing, v. 81, no. 5, p. 345-354
NHDPlusV2 –https://www.epa.gov/waterdata/nhdplus-national-hydrography-dataset-plus
Received from Charlie Frye, ESRI 3/2016. Produced by the EPA with support from the USGS.
gSSURGO –Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture. Web Soil Survey. Available online at http://websoilsurvey.nrcs.usda.gov/. Accessed 3/2016, 30 m resolution
GAP Level 3 Ecological System Boundaries (downloaded 4/ 2016)
http://gapanalysis.usgs.gov/gaplandcover/data/download/
NOAA CCAP Coastal Change Analysis Program Regional Land Cover and Change–
downloaded by state (3/2016) from: https://coast.noaa.gov/ccapftp/#/
Description: https://coast.noaa.gov/dataregistry/search/collection/info/ccapregional
30 m resolution, 2010 edition of data
NHD USGS National Hydrography Dataset http://nhd.usgs.gov/data.html
TNC Terrestrial Ecoregionshttp://maps.tnc.org/gis_data.html#TNClands (downloaded 3/2016)
2015 LCC Network Areashttps://www.sciencebase.gov/catalog/item/55b943ade4b09a3b01b65d78
Evaluation:
The creation of a national core quality index is a very ambitious objective, given the extreme variability in ecosystem conditions across the United States. The additional attributes were intended to provide flexibility in accommodating regional or local environmental differences across the U.S.
Scripts for constructing local cores and scoring them using the Green Infrastructure Center’s methodology are available on esri.com/greeninfrastructure
Two general approaches were used in the developing core quality index values. The first (default) follows the guidance of the Green Infrastructure Center’s scoring approach developed for the southeastern US where size of the core is the primary determinant of quality. The second; Bio-Weights puts more emphasis on bio-diversity and uniqueness ecosystem type and de-emphasizes slightly the importance of core size. This is to compensate for the very large intact core habitat areas in the west and southwest which also have comparatively low biodiversity values.
Scoring values:
Default Weights
0.4, # Acres0.1, # THICKNESS0.05, # TOPOGRAPHIC DIVERSITY (Standard Deviation)0.1, # Biodiversity Priority Index (SPECIES RICHNESS in GIC original version)0.05, # PERCENTAGE WETLAND COVER0.03, # Ecological Land Unit – Shannon-Weaver Index (SOIL VARIETY in GIC original version)0.02, # COMPACTNESS RATIO (AREA RELATIVE TO THE AREA OF A CIRCLE WITH THE SAME PERIMETER LENGTH)0.1, # STREAM DENSITY (LINEAR FEET/ACRE)0.05, # Ecological System Redundancy (RARE/THREATENED/ENDANGERED SPECIES ABUNDANCE (Number of occurrences) in GIC original version) 0.1, # Endemic Species Max (RARE/THREATENED/ENDANGERED SPECIES DIVERSITY (Number of unique species in a core) in GIC original version)
Bio-Weights
0.2, # Acres0.1, # THICKNESS0.05, # TOPOGRAPHIC DIVERSITY (Standard Deviation)0.25, # Biodiversity Priority Index (SPECIES RICHNESS in GIC original version)0.05, # PERCENTAGE WETLAND COVER0.03, # Ecological Land Unit – Shannon-Weaver Index (SOIL VARIETY in GIC original version)0.02, # COMPACTNESS RATIO (AREA RELATIVE TO THE AREA OF A CIRCLE WITH THE SAME
The USGS Protected Areas Database of the United States (PAD-US) is the nation's inventory of protected areas, including public open space and voluntarily provided, private protected areas, identified as an A-16 National Geospatial Data Asset in the Cadastral Theme (http://www.fgdc.gov/ngda-reports/NGDA_Datasets.html). PAD-US is an ongoing project with several published versions of a spatial database of areas dedicated to the preservation of biological diversity, and other natural, recreational or cultural uses, managed for these purposes through legal or other effective means. The geodatabase maps and describes public open space and other protected areas. Most areas are public lands owned in fee; however, long-term easements, leases, and agreements or administrative designations documented in agency management plans may be included. The PAD-US database strives to be a complete “best available” inventory of protected areas (lands and waters) including data provided by managing agencies and organizations. The dataset is built in collaboration with several partners and data providers (http://gapanalysis.usgs.gov/padus/stewards/). See Supplemental Information Section of this metadata record for more information on partnerships and links to major partner organizations. As this dataset is a compilation of many data sets; data completeness, accuracy, and scale may vary. Federal and state data are generally complete, while local government and private protected area coverage is about 50% complete, and depends on data management capacity in the state. For completeness estimates by state: http://www.protectedlands.net/partners. As the federal and state data are reasonably complete; focus is shifting to completing the inventory of local gov and voluntarily provided, private protected areas. The PAD-US geodatabase contains over twenty-five attributes and four feature classes to support data management, queries, web mapping services and analyses: Marine Protected Areas (MPA), Fee, Easements and Combined. The data contained in the MPA Feature class are provided directly by the National Oceanic and Atmospheric Administration (NOAA) Marine Protected Areas Center (MPA, http://marineprotectedareas.noaa.gov ) tracking the National Marine Protected Areas System. The Easements feature class contains data provided directly from the National Conservation Easement Database (NCED, http://conservationeasement.us ) The MPA and Easement feature classes contain some attributes unique to the sole source databases tracking them (e.g. Easement Holder Name from NCED, Protection Level from NOAA MPA Inventory). The "Combined" feature class integrates all fee, easement and MPA features as the best available national inventory of protected areas in the standard PAD-US framework. In addition to geographic boundaries, PAD-US describes the protection mechanism category (e.g. fee, easement, designation, other), owner and managing agency, designation type, unit name, area, public access and state name in a suite of standardized fields. An informative set of references (i.e. Aggregator Source, GIS Source, GIS Source Date) and "local" or source data fields provide a transparent link between standardized PAD-US fields and information from authoritative data sources. The areas in PAD-US are also assigned conservation measures that assess management intent to permanently protect biological diversity: the nationally relevant "GAP Status Code" and global "IUCN Category" standard. A wealth of attributes facilitates a wide variety of data analyses and creates a context for data to be used at local, regional, state, national and international scales. More information about specific updates and changes to this PAD-US version can be found in the Data Quality Information section of this metadata record as well as on the PAD-US website, http://gapanalysis.usgs.gov/padus/data/history/.) Due to the completeness and complexity of these data, it is highly recommended to review the Supplemental Information Section of the metadata record as well as the Data Use Constraints, to better understand data partnerships as well as see tips and ideas of appropriate uses of the data and how to parse out the data that you are looking for. For more information regarding the PAD-US dataset please visit, http://gapanalysis.usgs.gov/padus/. To find more data resources as well as view example analysis performed using PAD-US data visit, http://gapanalysis.usgs.gov/padus/resources/. The PAD-US dataset and data standard are compiled and maintained by the USGS Gap Analysis Program, http://gapanalysis.usgs.gov/ . For more information about data standards and how the data are aggregated please review the “Standards and Methods Manual for PAD-US,” http://gapanalysis.usgs.gov/padus/data/standards/ .
This layer is no longer being actively maintained. Please see the Esri Updated Demographics Variables 2023 layer for more recent data and additional variables.This feature layer provides Esri 2018 demographic estimates for popular variables including: 2018 Total Population, 2018 Household Population, 2018 Median Age, 2018 Median Household Income, 2018 Per Capita Income, 2018 Diversity Index and many more. Data is available from country, state, county, ZIP Code, tract, and block group level with adjustable scale visibility. It is intended as a sample feature service to demonstrate smart mapping capabilities with Esri's Demographic data. Example feature views and web maps built from this layer include:Predominant Generations in the United StatesUnemployment in the United StatesMedian Home Value and IncomePopulation Growth or Decline?For more information, visit the Updated Demographics documentation. For a full list of variables, click the Data tab. Note: This layer is not being continuously updated or maintained.
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Biodiversity-ecosystem functioning (BEF) experiments have established generally positive species richness-productivity relationships in plots of single ecosystem types. Here, we analyzed effects of landscape-level diversity, measured as the number of land-cover types (different ecosystems) per 250 × 250 m, across all of North America. We find that this metric is positively related to landscape-wide remotely-sensed primary production, and that a higher number of land-cover types also is associated with greater temporal stability of productivity, and with accelerated 20-year greening trends, in particular at high latitudes. Species diversity was correlated with landscape-level productivity, but the effect of species diversity and landscape diversity were independent. This indicates that diversity-functioning patterns resembling the ones at smaller scales also exist at higher levels of biological organization. Methods Data was collected by processing satellite-remote sensing products collected with the MODIS instrument, at 250m pixel resolution. Land-cover type information was extracted at 30-m spatial resolution from the Commission for Environmental Cooperation’s North American Land Monitoring System’s map (CEC map, based on Landsat-7 satellite imagery), and from the global GlobeLand30 map (GLC map, based on Landsat-5 and China Environmental Disaster Alleviation Satellite (HJ-1) imagery). We focused on the land covers forest, grassland, shrubland, agriculture, wetland and urban, combining the different forest types distinguished in the CEC map. Study plots were selected across North America to form a quasi-experimental study design with 3x6° latutude x longitude tiles that were further divided into 16 ecoregions. Within each tile x ecoregion combination, parallel experimental sub-designs spanning gradients in land-cover type richness were formed. Plots were selected so that land-cover type richness was orthogonal with the average area fraction of each land-cover type found at each richness level, and so that the richness gradient was orthogonal with important environmental factors such as altitude. As productivity metric, we used MODIS EVI indices from the Terra satellite (years 2000-2019) and fitted harmonic time series to the data based on Fourier synthesis to model annual phenology curves.
This map is designed to work in the new ArcGIS Online Map Viewer. Open in Map Viewer to view map. What does this map show?This map shows the population in the US by race. The map shows this pattern nationwide for states, counties, and tracts. Open the map in the new ArcGIS Online Map Viewer Beta to see the dot density pattern. What is dot density?The density is visualized by randomly placing one dot per a given value for the desired attribute. Unlike choropleth visualizations, dot density can be mapped using total counts since the size of the polygon plays a significant role in the perceived density of the attribute.Where is the data from?The data in this map comes from the most current American Community Survey (ACS) from the U.S. Census Bureau. Table B03002. The layer being used if updated with the most current data each year when the Census releases new estimates. The layer can be found in ArcGIS Living Atlas of the World: ACS Race and Hispanic Origin Variables - Boundaries.What questions does this map answer?Where do people of different races live?Do people of a similar race live close to people of their own race?Which cities have a diverse range of different races? Less diverse?