Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The DXY exchange rate fell to 98.9672 on June 9, 2025, down 0.15% from the previous session. Over the past month, the United States Dollar has weakened 1.61%, and is down by 5.87% over the last 12 months. United States Dollar - values, historical data, forecasts and news - updated on June of 2025.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains news headlines relevant to key forex pairs: AUDUSD, EURCHF, EURUSD, GBPUSD, and USDJPY. The data was extracted from reputable platforms Forex Live and FXstreet over a period of 86 days, from January to May 2023. The dataset comprises 2,291 unique news headlines. Each headline includes an associated forex pair, timestamp, source, author, URL, and the corresponding article text. Data was collected using web scraping techniques executed via a custom service on a virtual machine. This service periodically retrieves the latest news for a specified forex pair (ticker) from each platform, parsing all available information. The collected data is then processed to extract details such as the article's timestamp, author, and URL. The URL is further used to retrieve the full text of each article. This data acquisition process repeats approximately every 15 minutes.
To ensure the reliability of the dataset, we manually annotated each headline for sentiment. Instead of solely focusing on the textual content, we ascertained sentiment based on the potential short-term impact of the headline on its corresponding forex pair. This method recognizes the currency market's acute sensitivity to economic news, which significantly influences many trading strategies. As such, this dataset could serve as an invaluable resource for fine-tuning sentiment analysis models in the financial realm.
We used three categories for annotation: 'positive', 'negative', and 'neutral', which correspond to bullish, bearish, and hold sentiments, respectively, for the forex pair linked to each headline. The following Table provides examples of annotated headlines along with brief explanations of the assigned sentiment.
Examples of Annotated Headlines
Forex Pair
Headline
Sentiment
Explanation
GBPUSD
Diminishing bets for a move to 12400
Neutral
Lack of strong sentiment in either direction
GBPUSD
No reasons to dislike Cable in the very near term as long as the Dollar momentum remains soft
Positive
Positive sentiment towards GBPUSD (Cable) in the near term
GBPUSD
When are the UK jobs and how could they affect GBPUSD
Neutral
Poses a question and does not express a clear sentiment
JPYUSD
Appropriate to continue monetary easing to achieve 2% inflation target with wage growth
Positive
Monetary easing from Bank of Japan (BoJ) could lead to a weaker JPY in the short term due to increased money supply
USDJPY
Dollar rebounds despite US data. Yen gains amid lower yields
Neutral
Since both the USD and JPY are gaining, the effects on the USDJPY forex pair might offset each other
USDJPY
USDJPY to reach 124 by Q4 as the likelihood of a BoJ policy shift should accelerate Yen gains
Negative
USDJPY is expected to reach a lower value, with the USD losing value against the JPY
AUDUSD
RBA Governor Lowe’s Testimony High inflation is damaging and corrosive
Positive
Reserve Bank of Australia (RBA) expresses concerns about inflation. Typically, central banks combat high inflation with higher interest rates, which could strengthen AUD.
Moreover, the dataset includes two columns with the predicted sentiment class and score as predicted by the FinBERT model. Specifically, the FinBERT model outputs a set of probabilities for each sentiment class (positive, negative, and neutral), representing the model's confidence in associating the input headline with each sentiment category. These probabilities are used to determine the predicted class and a sentiment score for each headline. The sentiment score is computed by subtracting the negative class probability from the positive one.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Historical price and volatility data for US Dollar in Sentiment Token across different time periods.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Historical price and volatility data for US Dollar in Sentiment Token across different time periods.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Germany Exchange Rates Expectation: US Dollar: Appreciate data was reported at 19.000 % in Apr 2025. This records a decrease from the previous number of 21.200 % for Mar 2025. Germany Exchange Rates Expectation: US Dollar: Appreciate data is updated monthly, averaging 32.500 % from Dec 1991 (Median) to Apr 2025, with 401 observations. The data reached an all-time high of 87.100 % in Oct 1992 and a record low of 4.300 % in Feb 2001. Germany Exchange Rates Expectation: US Dollar: Appreciate data remains active status in CEIC and is reported by Leibniz Centre for European Economic Research. The data is categorized under Global Database’s Germany – Table DE.S001: Indicator of Economic Sentiment: ZEW.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Germany Exchange Rates Expectation: US Dollar: Number Change data was reported at 26.600 % in Apr 2025. This records a decrease from the previous number of 40.400 % for Mar 2025. Germany Exchange Rates Expectation: US Dollar: Number Change data is updated monthly, averaging 31.100 % from Dec 1991 (Median) to Apr 2025, with 401 observations. The data reached an all-time high of 54.100 % in Mar 2024 and a record low of 7.700 % in Jan 1993. Germany Exchange Rates Expectation: US Dollar: Number Change data remains active status in CEIC and is reported by Leibniz Centre for European Economic Research. The data is categorized under Global Database’s Germany – Table DE.S001: Indicator of Economic Sentiment: ZEW.
Foreign Exchange Market Size 2025-2029
The foreign exchange market size is forecast to increase by USD 582 billion at a CAGR of 10.6% between 2024 and 2029.
The market is experiencing significant growth, driven by the global trend of increasing urbanization and the 24x7 trading opportunities it affords. The digitalization of financial services has enabled seamless transactions across borders, making foreign exchange more accessible than ever before. One significant trend is the increasing use of money transfer agencies, venture capital investments, and mutual funds in foreign exchange transactions. However, this market is not without challenges. Regulatory hurdles impact adoption in some regions, with stringent regulations and compliance requirements adding complexity to market entry. Furthermore, the uncertainty of future exchange rates poses a significant risk for businesses engaging in foreign exchange transactions.
Navigating these challenges requires a deep understanding of market dynamics and a strategic approach to risk management. Companies seeking to capitalize on the opportunities in the market must stay informed of regulatory changes and adopt advanced risk management techniques to mitigate the impact of exchange rate volatility. By doing so, they can effectively capitalize on the growth potential of this dynamic market.
What will be the Size of the Foreign Exchange Market during the forecast period?
Request Free Sample
The market, also known as FX, plays a crucial role in global business operations and finance. FX market liquidity is essential for effective portfolio management, mitigating interest rate risk, and facilitating cross-border transactions. FX analysis involves various tools and techniques, including technical analysis using moving averages, chart patterns, and stochastic oscillators, as well as fundamental analysis focusing on economic indicators and sentiment. Interest rate differentials drive currency appreciation and influence FX trading, with foreign exchange swaps enabling the exchange of principal and interest between two different currencies. Market orders facilitate instant execution, while trading platforms offer advanced features such as automated trading robots and AI-driven systems.
FX market impact is a critical consideration, with operational risk and compliance essential in managing currency exposure and hedging strategies. Currency risk and FX forward rates are vital components of FX risk management, while FX trading apps and discipline help maximize profit and minimize psychological biases. FX trading systems employ various tools like FX charts, indicators, and exchange-traded derivatives to analyze trends and forecast future movements. Cryptocurrency trading has also emerged as a significant component of FX markets, adding complexity and volatility to the market structure. FX trading Blockchain Technology offers potential benefits, such as increased transparency and reduced counterparty risk.
How is this Foreign Exchange Industry segmented?
The foreign exchange industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.
Type
Reporting dealers
Financial institutions
Non-financial customers
Trade Finance Instruments
Currency swaps
Outright forward and FX swaps
FX options
Trading Platforms
Electronic Trading
Over-the-Counter (OTC)
Mobile Trading
Geography
North America
US
Canada
Europe
Germany
Switzerland
UK
Middle East and Africa
UAE
APAC
China
India
Japan
South America
Brazil
Rest of World (ROW)
By Type Insights
The reporting dealers segment is estimated to witness significant growth during the forecast period.
In het market, dealers manage risky inventory positions during the maturity period, earning returns through liquidity provision. These returns reflect the risk premium associated with non-diversifiable risks. Dealers employ trading strategies using customer trade information to generate higher-than-expected returns. Competition among liquidity providers is expected to maintain stable pricing during the forecast period. Reporting dealers offer inter-day liquidity, buying and selling foreign exchange at posted bids while providing quotes throughout the trading day. Trading in the market involves various financial instruments and tools. Market orders are executed at the prevailing market price, while limit orders are executed at a specified price.
Forex brokers facilitate transactions between buyers and sellers, providing access to various trading tools such as currency baskets and exchange-traded derivatives. Cross-currency pairs are used for hedging and speculation, with the value of one curre
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Historical price and volatility data for Sentiment Token in US Dollar across different time periods.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Germany Exchange Rates Expectation: US Dollar: Depreciate data was reported at 54.400 % in Apr 2025. This records an increase from the previous number of 38.400 % for Mar 2025. Germany Exchange Rates Expectation: US Dollar: Depreciate data is updated monthly, averaging 28.400 % from Dec 1991 (Median) to Apr 2025, with 401 observations. The data reached an all-time high of 84.200 % in Jan 2001 and a record low of 2.200 % in Mar 1993. Germany Exchange Rates Expectation: US Dollar: Depreciate data remains active status in CEIC and is reported by Leibniz Centre for European Economic Research. The data is categorized under Global Database’s Germany – Table DE.S001: Indicator of Economic Sentiment: ZEW.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Germany Exchange Rates Expectation: US Dollar: Balance data was reported at -35.400 % in Apr 2025. This records a decrease from the previous number of -17.200 % for Mar 2025. Germany Exchange Rates Expectation: US Dollar: Balance data is updated monthly, averaging 3.900 % from Dec 1991 (Median) to Apr 2025, with 401 observations. The data reached an all-time high of 84.100 % in Mar 1993 and a record low of -79.800 % in Jan 2001. Germany Exchange Rates Expectation: US Dollar: Balance data remains active status in CEIC and is reported by Leibniz Centre for European Economic Research. The data is categorized under Global Database’s Germany – Table DE.S001: Indicator of Economic Sentiment: ZEW.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Historical price and volatility data for Sentiment Token in US Dollar across different time periods.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Historical price and volatility data for Sentiment Token in US Dollar across different time periods.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States CSI: Savings: Stock Mkt Invts Current Val Inc: 25th Percentile data was reported at 26,783.000 USD in May 2018. This records a decrease from the previous number of 31,472.000 USD for Apr 2018. United States CSI: Savings: Stock Mkt Invts Current Val Inc: 25th Percentile data is updated monthly, averaging 21,013.500 USD from Jan 1990 (Median) to May 2018, with 246 observations. The data reached an all-time high of 50,275.000 USD in Aug 2012 and a record low of 3,988.000 USD in Apr 1990. United States CSI: Savings: Stock Mkt Invts Current Val Inc: 25th Percentile data remains active status in CEIC and is reported by University of Michigan. The data is categorized under Global Database’s USA – Table US.H026: Consumer Sentiment Index: Savings & Retirement. Suppose that tomorrow someone were to invest one thousand dollars in a type What do you think is the percent chance that this one thousand dollar investment will increase in value in the year ahead, so that it is worth more than one thousand dollars one year from now?
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The DXY exchange rate fell to 98.9672 on June 9, 2025, down 0.15% from the previous session. Over the past month, the United States Dollar has weakened 1.61%, and is down by 5.87% over the last 12 months. United States Dollar - values, historical data, forecasts and news - updated on June of 2025.