Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Prices for DXY Dollar Index including live quotes, historical charts and news. DXY Dollar Index was last updated by Trading Economics this June 27 of 2025.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Interactive chart of historical data showing the broad price-adjusted U.S. dollar index published by the Federal Reserve. The index is adjusted for the aggregated home inflation rates of all included currencies. The price adjustment is especially important with our Asian and South American trading partners due to their significant inflation episodes of the 80s and 90s.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Nominal Broad U.S. Dollar Index (DTWEXBGS) from 2006-01-02 to 2025-06-20 about trade-weighted, broad, exchange rate, currency, goods, services, rate, indexes, and USA.
https://www.ademcetinkaya.com/p/legal-disclaimer.htmlhttps://www.ademcetinkaya.com/p/legal-disclaimer.html
USD index is expected to strengthen in the near term due to persistent safe-haven demand amid global economic uncertainties. The risk associated with this prediction is the potential for a correction if risk appetite improves or the Federal Reserve signals a dovish pivot.
The US dollar index of February 2025 was higher than it was in 2024, although below the peak in late 2022. This reveals itself in a historical graphic on the past 50 years, measuring the relative strength of the U.S. dollar. This metric is different from other FX graphics that compare the U.S. dollar against other currencies. The history of the DXY Index The index shown here – often referred to with the code DXY, or USDX – measures the value of the U.S. dollar compared to a basket of six other foreign currencies. This basket includes the euro, the Swiss franc, the Japanese yen, the Canadian dollar, the British pound, and the Swedish króna. The index was created in 1973, after the arrival of the petrodollar and the dissolution of the Bretton Woods Agreement. Today, most of these currencies remain connected to the United States' largest trade partners. The relevance of the DXY Index The index focuses on trade and the strength of the U.S. dollar against specific currencies. It less on inflation or devaluation, which is measured in alternative metrics like the Big Mac Index. Indeed, as the methodology behind the DXY Index has only been updated once – when the euro arrived in 1999 – some argue this composition is not accurate to the current state of the world. The price development of the U.S. dollar affects many things, including commodity prices in general.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The DXY exchange rate rose to 97.2687 on June 27, 2025, up 0.13% from the previous session. Over the past month, the United States Dollar has weakened 2.61%, and is down by 8.10% over the last 12 months. United States Dollar - values, historical data, forecasts and news - updated on June of 2025.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Prices for USDUST US Dollar Tether including live quotes, historical charts and news. USDUST US Dollar Tether was last updated by Trading Economics this June 28 of 2025.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Prices for USDSDG US Dollar Sudanese Pound including live quotes, historical charts and news. USDSDG US Dollar Sudanese Pound was last updated by Trading Economics this June 28 of 2025.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Prices for TRYUSD Turkish Lira US Dollar including live quotes, historical charts and news. TRYUSD Turkish Lira US Dollar was last updated by Trading Economics this June 29 of 2025.
The price of Alphabet C shares traded on the Nasdaq stock exchange increased continuously during the period between January 2010 and October 2021, when the share price peaked at 148.27 U.S. dollars. Since then, the price of Alphabet C fluctuated and peaked again at 205.6 dollars as of the end of January 2025.
The price of Intel shares traded on the Nasdaq stock exchange fluctuated significantly during the period between January 2010 and December 2024. The price of Intel share stood at 20.05 U.S. dollar as of the end of December 2024, significantly lower than the previous month.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Prices for CLPUSD Chilean Peso US Dollar including live quotes, historical charts and news. CLPUSD Chilean Peso US Dollar was last updated by Trading Economics this June 24 of 2025.
The price of Tesla shares traded on the Nasdaq stock exchange remained rather stable between July 2010 and January 2020. With the beginning of 2020, the price of Tesla share increased dramatically and stood at ****** U.S. dollars per share in November 2021. Since then, the price of Tesla share fluctuated significantly and reached its peak at ****** U.S. dollars per share in December 2024, before falling dramatically in February 2025. Why did Tesla's stock value go up in 2020? Despite the effects of the pandemic, Tesla share prices experienced a massive increase in 2020. Tesla kept increasing its output levels throughout the year, except for the second quarter, and released its new vehicle Tesla Model Y. Additionally, when the company was added to the S&P 500 index in August 2020, it instilled further trust in investors. In 2020, Tesla was the top-performing stock on the S&P 500 index, and two years later, in 2024, it ranked among the ten largest companies on the index by market capitalization. Steady growth in the last decade Founded in 2003, Tesla primarily focuses on designing and producing electric vehicles, as well as energy generation and storage systems. Since then, Tesla's revenue has steadily increased, reaching nearly ** million U.S. dollars in 2024. Most of the revenue came from automotive sales in 2024. Tesla's first electric car, the Roadster, was sold between 2008 and 2012. Currently, the company offers four primary electric vehicles: Model 3, Model Y, Model S, and Model X.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Historical price and volatility data for THE TICKER IS in US Dollar across different time periods.
The price of JPMorgan Chase shares traded on the New York Stock Exchange (NYSE) saw some fluctuations, but increased overall since 2010. The price of JPMorgan Chase shares stood at 267.3 U.S. dollars as of the end of January 2025, the highest value recorded during this period.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Prices for DXY Dollar Index including live quotes, historical charts and news. DXY Dollar Index was last updated by Trading Economics this June 27 of 2025.