Facebook
TwitterThis dataset includes all individuals from the 1870 US census.
All manuscripts (and other items you'd like to publish) must be submitted to
phsdatacore@stanford.edu for approval prior to journal submission.
We will check your cell sizes and citations.
For more information about how to cite PHS and PHS datasets, please visit:
https:/phsdocs.developerhub.io/need-help/citing-phs-data-core
This dataset was developed through a collaboration between the Minnesota Population Center and the Church of Jesus Christ of Latter-Day Saints. The data contain demographic variables, economic variables, migration variables and race variables. Unlike more recent census datasets, pre-1900 census datasets only contain individual level characteristics and no household or family characteristics, but household and family identifiers do exist.
The official enumeration day of the 1870 census was 1 June 1870. The main goal of an early census like the 1870 U.S. census was to allow Congress to determine the collection of taxes and the appropriation of seats in the House of Representatives. Each district was assigned a U.S. Marshall who organized other marshals to administer the census. These enumerators visited households and recorder names of every person, along with their age, sex, color, profession, occupation, value of real estate, place of birth, parental foreign birth, marriage, literacy, and whether deaf, dumb, blind, insane or “idiotic”.
Sources: Szucs, L.D. and Hargreaves Luebking, S. (1997). Research in Census Records, The Source: A Guidebook of American Genealogy. Ancestry Incorporated, Salt Lake City, UT Dollarhide, W.(2000). The Census Book: A Genealogist’s Guide to Federal Census Facts, Schedules and Indexes. Heritage Quest, Bountiful, UT
Facebook
TwitterStarting in mid-July of 2020, despite many delays due to Covid-19, census takers began interviewing households who had not yet responded online or via the mail to the U.S. 2020 Census. The federal census, required by the United States’ Constitution, happens once every 10 years and each time, there are new variations in enumeration (counting) techniques and what statistical data to collect. There are processes around “how” to count and then also “what” to count; the data collected needs to be useful for governance and allocation yet also respectful of privacy and remain fair and impartial for the entire U.S. population. In 2019 and 2020, hundreds of thousands of temporary workers from local communities were hired to go out into the field as census takers as well as staff offices and provide supervision. This 22nd federal census count began in January 2020 with remote portions of Alaska, where the territory was still frozen and traversable. These employed citizens are just one aspect of how the census is truly a community event. Let’s dive into the history of the U.S. Census and also learn why this count is so important.
Facebook
TwitterThe Integrated Public Use Microdata Series (IPUMS) Complete Count Data include more than 650 million individual-level and 7.5 million household-level records. The microdata are the result of collaboration between IPUMS and the nation’s two largest genealogical organizations—Ancestry.com and FamilySearch—and provides the largest and richest source of individual level and household data.
All manuscripts (and other items you'd like to publish) must be submitted to
phsdatacore@stanford.edu for approval prior to journal submission.
We will check your cell sizes and citations.
For more information about how to cite PHS and PHS datasets, please visit:
https:/phsdocs.developerhub.io/need-help/citing-phs-data-core
Historic data are scarce and often only exists in aggregate tables. The key advantage of historic US census data is the availability of individual and household level characteristics that researchers can tabulate in ways that benefits their specific research questions. The data contain demographic variables, economic variables, migration variables and family variables. Within households, it is possible to create relational data as all relations between household members are known. For example, having data on the mother and her children in a household enables researchers to calculate the mother’s age at birth. Another advantage of the Complete Count data is the possibility to follow individuals over time using a historical identifier.
In sum: the historic US census data are a unique source for research on social and economic change and can provide population health researchers with information about social and economic determinants.
The historic US 1920 census data was collected in January 1920. Enumerators collected data traveling to households and counting the residents who regularly slept at the household. Individuals lacking permanent housing were counted as residents of the place where they were when the data was collected. Household members absent on the day of data collected were either listed to the household with the help of other household members or were scheduled for the last census subdivision.
Notes
We provide household and person data separately so that it is convenient to explore the descriptive statistics on each level. In order to obtain a full dataset, merge the household and person on the variables SERIAL and SERIALP. In order to create a longitudinal dataset, merge datasets on the variable HISTID.
Households with more than 60 people in the original data were broken up for processing purposes. Every person in the large households are considered to be in their own household. The original large households can be identified using the variable SPLIT, reconstructed using the variable SPLITHID, and the original count is found in the variable SPLITNUM.
Coded variables derived from string variables are still in progress. These variables include: occupation and industry.
Missing observations have been allocated and some inconsistencies have been edited for the following variables: SPEAKENG, YRIMMIG, CITIZEN, AGE, BPL, MBPL, FBPL, LIT, SCHOOL, OWNERSHP, MORTGAGE, FARM, CLASSWKR, OCC1950, IND1950, MARST, RACE, SEX, RELATE, MTONGUE. The flag variables indicating an allocated observation for the associated variables can be included in your extract by clicking the ‘Select data quality flags’ box on the extract summary page.
Most inconsistent information was not edited for this release, thus there are observations outside of the universe for some variables. In particular, the variables GQ, and GQTYPE have known inconsistencies and will be improved with the next release.
%3C!-- --%3E
This dataset was created on 2020-01-10 18:46:34.647 by merging multiple datasets together. The source datasets for this version were:
IPUMS 1920 households: This dataset includes all households from the 1920 US census.
IPUMS 1920 persons: This dataset includes all individuals from the 1920 US census.
IPUMS 1920 Lookup: This dataset includes variable names, variable labels, variable values, and corresponding variable value labels for the IPUMS 1920 datasets.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The data sets in this repository allow users to link people among the U.S. decennial censuses, using the "histid" identifier. The census data sets users will need are indexed by Ancestry.com and are hosted by IPUMS at https://usa.ipums.org/usa-action/samples. Users will need to download the full-count census for each year and be sure to select the "histid" variable that is available under the Person/Historical Technical drop-down menu.As of 7/12/21, links are available between the 1900-1910, 1910-1920, and 1900-1920 censuses.A detailed account of how these links are created and a description of the data and its characteristics are available in the following article:Price, J., Buckles, K., Van Leeuwen, J., & Riley, I. (2021). Combining family history and machine learning to link historical records: The Census Tree data set. Explorations in Economic History, 80, 101391.https://www.sciencedirect.com/science/article/pii/S0014498321000024
Facebook
TwitterThe layer was derived and compiled from the U.S. Census Bureau’s 2013 – 2017 American Community Survey (ACS) 5-Year Estimates in order to assist 2020 Census planning purposes.
Source: U.S. Census Bureau, Table B04006 PEOPLE REPORTING ANCESTRY, 2013 – 2017 ACS 5-Year Estimates
Effective Date: December 2018
Last Update: December 2019
Update Cycle: ACS 5-Year Estimates update annually each December. Vintage used for 2020 Census planning purposes by Broward County.
Facebook
TwitterThe layer was derived and compiled from the U.S. Census Bureau’s 2013 – 2017 American Community Survey (ACS) 5-Year Estimates in order to assist 2020 Census planning purposes.
Source: U.S. Census Bureau, Table B04006 PEOPLE REPORTING ANCESTRY, 2013 – 2017 ACS 5-Year Estimates
Effective Date: December 2018
Last Update: December 2019
Update Cycle: ACS 5-Year Estimates update annually each December. Vintage used for 2020 Census planning purposes by Broward County.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Key Table Information.Table Title.People Reporting Ancestry.Table ID.ACSDT1Y2024.C04006.Survey/Program.American Community Survey.Year.2024.Dataset.ACS 1-Year Estimates Detailed Tables.Source.U.S. Census Bureau, 2024 American Community Survey, 1-Year Estimates.Dataset Universe.The dataset universe of the American Community Survey (ACS) is the U.S. resident population and housing. For more information about ACS residence rules, see the ACS Design and Methodology Report. Note that each table describes the specific universe of interest for that set of estimates..Methodology.Unit(s) of Observation.American Community Survey (ACS) data are collected from individuals living in housing units and group quarters, and about housing units whether occupied or vacant. For more information about ACS sampling and data collection, see the ACS Design and Methodology Report..Geography Coverage.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year.Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Sampling.The ACS consists of two separate samples: housing unit addresses and group quarters facilities. Independent housing unit address samples are selected for each county or county-equivalent in the U.S. and Puerto Rico, with sampling rates depending on a measure of size for the area. For more information on sampling in the ACS, see the Accuracy of the Data document..Confidentiality.The Census Bureau has modified or suppressed some estimates in ACS data products to protect respondents' confidentiality. Title 13 United States Code, Section 9, prohibits the Census Bureau from publishing results in which an individual's data can be identified. For more information on confidentiality protection in the ACS, see the Accuracy of the Data document..Technical Documentation/Methodology.Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables.Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..Weights.ACS estimates are obtained from a raking ratio estimation procedure that results in the assignment of two sets of weights: a weight to each sample person record and a weight to each sample housing unit record. Estimates of person characteristics are based on the person weight. Estimates of family, household, and housing unit characteristics are based on the housing unit weight. For any given geographic area, a characteristic total is estimated by summing the weights assigned to the persons, households, families or housing units possessing the characteristic in the geographic area. For more information on weighting and estimation in the ACS, see the Accuracy of the Data document.Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of hou...
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Key Table Information.Table Title.People Reporting Multiple Ancestry.Table ID.ACSDT1Y2024.B04005.Survey/Program.American Community Survey.Year.2024.Dataset.ACS 1-Year Estimates Detailed Tables.Source.U.S. Census Bureau, 2024 American Community Survey, 1-Year Estimates.Dataset Universe.The dataset universe of the American Community Survey (ACS) is the U.S. resident population and housing. For more information about ACS residence rules, see the ACS Design and Methodology Report. Note that each table describes the specific universe of interest for that set of estimates..Methodology.Unit(s) of Observation.American Community Survey (ACS) data are collected from individuals living in housing units and group quarters, and about housing units whether occupied or vacant. For more information about ACS sampling and data collection, see the ACS Design and Methodology Report..Geography Coverage.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year.Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Sampling.The ACS consists of two separate samples: housing unit addresses and group quarters facilities. Independent housing unit address samples are selected for each county or county-equivalent in the U.S. and Puerto Rico, with sampling rates depending on a measure of size for the area. For more information on sampling in the ACS, see the Accuracy of the Data document..Confidentiality.The Census Bureau has modified or suppressed some estimates in ACS data products to protect respondents' confidentiality. Title 13 United States Code, Section 9, prohibits the Census Bureau from publishing results in which an individual's data can be identified. For more information on confidentiality protection in the ACS, see the Accuracy of the Data document..Technical Documentation/Methodology.Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables.Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..Weights.ACS estimates are obtained from a raking ratio estimation procedure that results in the assignment of two sets of weights: a weight to each sample person record and a weight to each sample housing unit record. Estimates of person characteristics are based on the person weight. Estimates of family, household, and housing unit characteristics are based on the housing unit weight. For any given geographic area, a characteristic total is estimated by summing the weights assigned to the persons, households, families or housing units possessing the characteristic in the geographic area. For more information on weighting and estimation in the ACS, see the Accuracy of the Data document.Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimat...
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units and the group quarters population for states and counties..Since the 5-year data do not benefit from data quality filtering, comparisons are only made for populations of 5,000 or more..Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2019-2023 American Community Survey 5-Year Estimates.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year..Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..Ancestry listed in this table refers to the total number of people who responded with a particular ancestry; for example, the estimate given for German represents the number of people who listed German as either their first or second ancestry. This table lists only the largest ancestry groups; see the Detailed Tables for more categories. Race and Hispanic origin groups are not included in this table because data for those groups come from the Race and Hispanic origin questions rather than the ancestry question (see Demographic Table)..Data for year of entry of the native population reflect the year of entry into the U.S. by people who were born in Puerto Rico or U.S. Island Areas or born outside the U.S. to a U.S. citizen parent and who subsequently moved to the U.S..Methodological changes to citizenship edits may have affected citizenship data for those born in American Samoa. Users should be aware of these changes when using 2018 data or multi-year data containing data from 2018. For more information, see: American Samoa Citizenship User Note..The category "with a broadband Internet subscription" refers to those who said "Yes" to at least one of the following types of Internet subscriptions: Broadband such as cable, fiber optic, or DSL; a cellular data plan; satellite; a fixed wireless subscription; or other non-dial up subscription types..An Internet "subscription" refers to a type of service that someone pays for to access the Internet such as a cellular data plan, broadband such as cable, fiber optic or DSL, or other type of service. This will normally refer to a service that someone is billed for directly for Internet alone or sometimes as part of a bundle.."With a computer" includes those who said "Yes" to at least one of the following types of computers: Desktop or laptop; smartphone; tablet or other portable wireless computer; or some other type of computer..Caution should be used when comparing data for computer and Internet use before and after 2016. Changes in 2016 to the questions involving the wording as well as the response options resulted in changed response patterns in the data. Most noticeable are increases in overall computer ownership or use, the total of Internet subscriptions, satellite subscriptions, and cellular data plans for a smartphone or other mobile device. For more detailed information a...
Facebook
TwitterThe layer was derived and compiled from the U.S. Census Bureau’s 2013 – 2017 American Community Survey (ACS) 5-Year Estimates in order to assist 2020 Census planning purposes.
Source: U.S. Census Bureau, Table B04006 PEOPLE REPORTING ANCESTRY, 2013 – 2017 ACS 5-Year Estimates
Effective Date: December 2018
Last Update: December 2019
Update Cycle: ACS 5-Year Estimates update annually each December. Vintage used for 2020 Census planning purposes by Broward County.
Facebook
TwitterRace is a social and historical construct, and the racial categories counted by the census change over time so the process of constructing stable racial categories for these 50 years out of census data required complex and imperfect decisions. Here we have used historical research on early 20th century southern California to construct historic racial categories from the IPUMS full count data, which allows us to track groups that were not formally classified as racial groups in some census decades like Mexican, but which were important racial categories in southern California. Detailed explanation of how we constructed these categories and the rationale we used for the decisions we made can be found here. Layers are symbolized to show the percentage of each of the following groups from 1900-1940:AmericanIndian Not-Hispanic, AmericanIndian Hispanic, Black non-Hispanic, Black-Hispanic, Chinese, Korean, Filipino and Japanese, Mexican, Hispanic Not-Mexican, white non-Hispanic. The IPUMS Census data is messy and includes some errors and undercounts, making it hard to map some smaller populations, like Asian Indians (in census called Hindu in 1920) and creating a possible undercount of Native American populations. The race data mapped here also includes categories that may not have been socially meaningful at the time like Black-Hispanic, which generally would represent people from Mexico who the census enumerator classified as Black because of their dark skin, but who were likely simply part of Mexican communities at the time. We have included maps of the Hispanic not-Mexican category which shows very small numbers of non-Mexican Hispanic population, and American Indian Hispanic, which often captures people who would have been listed as Indian in the census, probably because of skin color, but had ancestry from Mexico (or another Hispanic country). This category may include some indigenous Californians who married into or assimilated into Mexican American communities in the early 20th century. If you are interested in mapping some of the other racial or ethnic groups in the early 20th century, you can explore and map the full range of variables we have created in the People's History of the IE IE_ED1900-1940 Race Hispanic Marriage and Age Feature layer.Suggested Citation: Tilton, Jennifer. People's History Race Ethnicity Dot Density Map 1900-1940. A People's History of the Inland Empire Census Project 1900-1940 using IPUMS Ancestry Full Count Data. Program in Race and Ethnic Studies University of Redlands, Center for Spatial Studies University of Redlands, UCR Public History. 2023. 2025Feature Layer CitationTilton, Jennifer, Tessa VanRy & Lisa Benvenuti. Race and Demographic Data 1900-1940. A People's History of the Inland Empire Census Project 1900-1940 using IPUMS Ancestry Full Count Data. Program in Race and Ethnic Studies University of Redlands, Center for Spatial Studies University of Redlands, UCR Public History. 2023. Additional contributing authors: Mackenzie Nelson, Will Blach & Andy Garcia Funding provided by: People’s History of the IE: Storyscapes of Race, Place, and Queer Space in Southern California with funding from NEH-SSRC Grant 2022-2023 & California State Parks grant to Relevancy & History. Source for Census Data 1900- 1940 Ruggles, Steven, Catherine A. Fitch, Ronald Goeken, J. David Hacker, Matt A. Nelson, Evan Roberts, Megan Schouweiler, and Matthew Sobek. IPUMS Ancestry Full Count Data: Version 3.0 [dataset]. Minneapolis, MN: IPUMS, 2021. Primary Sources for Enumeration District Linework 1900-1940 Steve Morse provided the full list of transcribed EDs for all 5 decades "United States Enumeration District Maps for the Twelfth through the Sixteenth US Censuses, 1900-1940." Images. FamilySearch. https://FamilySearch.org: 9 February 2023. Citing NARA microfilm publication A3378. Washington, D.C.: National Archives and Records Administration, 2003. BLM PLSS Map Additional Historical Sources consulted include: San Bernardino City Annexation GIS Map Redlands City Charter Proposed with Ward boundaries (Not passed) 1902. Courtesy of Redlands City Clerk. Redlands Election Code Precincts 1908, City Ordinances of the City of Redlands, p. 19-22. Courtesy of Redlands City Clerk Riverside City Charter 1907 (for 1910 linework) courtesy of Riverside City Clerk. 1900-1940 Raw Census files for specific EDs, to confirm boundaries when needed, accessed through Family Search. If you have additional questions or comments, please contact jennifer_tilton@redlands.edu.
Facebook
TwitterThe Integrated Public Use Microdata Series (IPUMS) Complete Count Data include more than 650 million individual-level and 7.5 million household-level records. The microdata are the result of collaboration between IPUMS and the nation’s two largest genealogical organizations—Ancestry.com and FamilySearch—and provides the largest and richest source of individual level and household data.
All manuscripts (and other items you'd like to publish) must be submitted to
phsdatacore@stanford.edu for approval prior to journal submission.
We will check your cell sizes and citations.
For more information about how to cite PHS and PHS datasets, please visit:
https:/phsdocs.developerhub.io/need-help/citing-phs-data-core
Historic data are scarce and often only exists in aggregate tables. The key advantage of historic US census data is the availability of individual and household level characteristics that researchers can tabulate in ways that benefits their specific research questions. The data contain demographic variables, economic variables, migration variables and family variables. Within households, it is possible to create relational data as all relations between household members are known. For example, having data on the mother and her children in a household enables researchers to calculate the mother’s age at birth. Another advantage of the Complete Count data is the possibility to follow individuals over time using a historical identifier.
In sum: the historic US census data are a unique source for research on social and economic change and can provide population health researchers with information about social and economic determinants.Historic data are scarce and often only exists in aggregate tables. The key advantage of historic US census data is the availability of individual and household level characteristics that researchers can tabulate in ways that benefits their specific research questions. The data contain demographic variables, economic variables, migration variables and family variables. Within households, it is possible to create relational data as all relations between household members are known. For example, having data on the mother and her children in a household enables researchers to calculate the mother’s age at birth. Another advantage of the Complete Count data is the possibility to follow individuals over time using a historical identifier. In sum: the historic US census data are a unique source for research on social and economic change and can provide population health researchers with information about social and economic determinants.
The historic US 1910 census data was collected in April 1910. Enumerators collected data traveling to households and counting the residents who regularly slept at the household. Individuals lacking permanent housing were counted as residents of the place where they were when the data was collected. Household members absent on the day of data collected were either listed to the household with the help of other household members or were scheduled for the last census subdivision.
This dataset was created on 2020-01-10 23:47:27.924 by merging multiple datasets together. The source datasets for this version were:
IPUMS 1910 households: The Integrated Public Use Microdata Series (IPUMS) Complete Count Data are historic individual and household census records and are a unique source for research on social and economic change.
IPUMS 1910 persons: This dataset includes all individuals from the 1910 US census.
Facebook
TwitterThe layer was derived and compiled from the U.S. Census Bureau’s 2013 – 2017 American Community Survey (ACS) 5-Year Estimates in order to assist 2020 Census planning purposes.
Source: U.S. Census Bureau, Table B04006 PEOPLE REPORTING ANCESTRY, 2013 – 2017 ACS 5-Year Estimates
Effective Date: December 2018
Last Update: December 2019
Update Cycle: ACS 5-Year Estimates update annually each December. Vintage used for 2020 Census planning purposes by Broward County.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Data and Documentation section...Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, it is the Census Bureau''s Population Estimates Program that produces and disseminates the official estimates of the population for the nation, states, counties, cities and towns and estimates of housing units for states and counties..Explanation of Symbols:An ''**'' entry in the margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate..An ''-'' entry in the estimate column indicates that either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution..An ''-'' following a median estimate means the median falls in the lowest interval of an open-ended distribution..An ''+'' following a median estimate means the median falls in the upper interval of an open-ended distribution..An ''***'' entry in the margin of error column indicates that the median falls in the lowest interval or upper interval of an open-ended distribution. A statistical test is not appropriate..An ''*****'' entry in the margin of error column indicates that the estimate is controlled. A statistical test for sampling variability is not appropriate. .An ''N'' entry in the estimate and margin of error columns indicates that data for this geographic area cannot be displayed because the number of sample cases is too small..An ''(X)'' means that the estimate is not applicable or not available..Estimates of urban and rural population, housing units, and characteristics reflect boundaries of urban areas defined based on Census 2010 data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..While the 2009-2013 American Community Survey (ACS) data generally reflect the February 2013 Office of Management and Budget (OMB) definitions of metropolitan and micropolitan statistical areas; in certain instances the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB definitions due to differences in the effective dates of the geographic entities..The American Community Survey (ACS) implemented a variety of new race and ethnicity coding changes in 2010 to be consistent with the 2010 decennial census coding rules. When comparing ancestry estimates from 2009 or earlier to those from 2010 or beyond, please use caution. For more information on these changes, please see "Coding Changes to the American Community Survey Between 2009 and 2010 and Their Potential Effect on the Estimates of Ancestry Groups" on the Ethnicity and Ancestry Branch website at http://www.census.gov/population/www/ancestry/..Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables..Source: U.S. Census Bureau, 2009-2013 5-Year American Community Survey
Facebook
Twitterhttps://www.icpsr.umich.edu/web/ICPSR/studies/3805/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/3805/terms
Initially taken in 1838 to demonstrate the stability and significance of the African American community and to forestall the abrogation of African American voting rights, the Quaker and Abolitionist census of African Americans was continued in 1847 and 1856 and present an invaluable view of the mid-nineteenth century African American population of Philadelphia. Although these censuses list only household heads, providing aggregate information for other household members, and exclude the substantial number of African Americans living in white households, they provide data not found in the federal population schedules. When combined with the information on African Americans taken from the four federal censuses, they offer researchers a richly detailed view of Philadelphia's African American community spanning some forty years. The three censuses are not of equal inclusiveness or quality, however. The 1838 and 1847 enumerations cover only the "old" City of Philadelphia (river-to-river and from Vine to South Streets) and the immediate surrounding districts (Spring Garden, Northern Liberties, Southwark, Moyamensing, Kensington--1838, West Philadelphia--1847); the 1856 survey includes African Americans living throughout the newly enlarged city which, as today, conforms to the boundaries of Philadelphia County. In spite of this deficiency in areal coverage, the earlier censuses are superior historical documents. The 1838 and 1847 censuses contain data on a wide range of social and demographic variables describing the household indicating address, household size, occupation, whether members were born in Pennsylvania, status-at-birth, debts, taxes, number of children attending school, names of beneficial societies and churches (1838), property brought to Philadelphia from other states (1838), sex composition (1847), age structure (1847), literacy (1847), size of rooms and number of people per room (1847), and miscellaneous remarks (1847). While the 1856 census includes the household address and reports literacy, occupation, status-at-birth, and occasional passing remarks about individual households and their occupants, it excludes the other informational categories. Moreover, unlike the other two surveys, it lists the occupations of only higher status African Americans, excluding unskilled and semiskilled designations, and records the status-at-birth of adults only. Indeed, it even fails to provide data permitting the calculation of the size and age and sex structure of households. Variables for each household head and his household include (differ slightly by census year): name, sex, status-at-birth, occupation, wages, real and personal property, literacy, education, religion, membership in beneficial societies and temperance societies, taxes, rents, dwelling size, address, slave or free birth.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units for states and counties..Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2018-2022 American Community Survey 5-Year Estimates.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..Ancestry listed in this table refers to the total number of people who responded with a particular ancestry; for example, the estimate given for German represents the number of people who listed German as either their first or second ancestry. This table lists only the largest ancestry groups; see the Detailed Tables for more categories. Race and Hispanic origin groups are not included in this table because data for those groups come from the Race and Hispanic origin questions rather than the ancestry question (see Demographic Table)..Data for year of entry of the native population reflect the year of entry into the U.S. by people who were born in Puerto Rico or U.S. Island Areas or born outside the U.S. to a U.S. citizen parent and who subsequently moved to the U.S..Methodological changes to citizenship edits may have affected citizenship data for those born in American Samoa. Users should be aware of these changes when using 2018 data or multi-year data containing data from 2018. For more information, see: American Samoa Citizenship User Note..The Census Bureau introduced a new set of disability questions in the 2008 ACS questionnaire. Accordingly, comparisons of disability data from 2008 or later with data from prior years are not recommended. For more information on these questions and their evaluation in the 2006 ACS Content Test, see the Evaluation Report Covering Disability..The category "with a broadband Internet subscription" refers to those who said "Yes" to at least one of the following types of Internet subscriptions: Broadband such as cable, fiber optic, or DSL; a cellular data plan; satellite; a fixed wireless subscription; or other non-dial up subscription types..An Internet "subscription" refers to a type of service that someone pays for to access the Internet such as a cellular data plan, broadband such as cable, fiber optic or DSL, or other type of service. This will normally refer to a service that someone is billed for directly for Internet alone or sometimes as part of a bundle..With a computer includes those who said "Yes" to at least one of the following types of computers: Desktop or laptop; smartphone; tablet or other portable wireless computer; or some other type of computer..The "children of the householder" and "own children of the householder" concepts are combined in these estimates. For more information, please see the following User Note..The 2018-2022 American Community Survey (ACS) data generally reflect the March 2020 Office of Management and Budget (OMB) delineations of metropolitan and micropolitan statistical areas. In certain instances, the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB delineation lists due to differences in the effective dates of the geographic entities..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample obse...
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, it is the Census Bureau's Population Estimates Program that produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units for states and counties..Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the .Technical Documentation.. section......Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the .Methodology.. section..Source: U.S. Census Bureau, 2018 American Community Survey 1-Year Estimates.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see .ACS Technical Documentation..). The effect of nonsampling error is not represented in these tables..Ancestry listed in this table refers to the total number of people who responded with a particular ancestry; for example, the estimate given for Russian represents the number of people who listed Russian as either their first or second ancestry. This table lists only the largest ancestry groups; see the Detailed Tables for more categories. Race and Hispanic origin groups are not included in this table because official data for those groups come from the Race and Hispanic origin questions rather than the ancestry question (see Demographic Table)..Data for year of entry of the native population reflect the year of entry into the U.S. by people who were born in Puerto Rico, U.S. Island Areas or born outside the U.S. to a U.S. citizen parent and who subsequently moved to the U.S..Methodological changes to citizenship edits may have affected citizenship data for those born in American Samoa. Users should be aware of these changes when using 2018 data or multi-year data containing data from 2018. For more information, see: .American Samoa Citizenship User Note....The Census Bureau introduced a new set of disability questions in the 2008 ACS questionnaire. Accordingly, comparisons of disability data from 2008 or later with data from prior years are not recommended. For more information on these questions and their evaluation in the 2006 ACS Content Test, see the .Evaluation Report Covering Disability....Data about computer and Internet use were collected by asking respondents to select "Yes" or "No" to each type of computer and each type of Internet subscription. Therefore, respondents were able to select more than one type of computer and more than one type of Internet subscription..The category "with a broadband Internet subscription" refers to those who said "Yes" to at least one of the following types of Internet subscriptions: Broadband such as cable, fiber optic, or DSL; a cellular data plan; satellite; or a fixed wireless subscription..An Internet "subscription" refers to a type of service that someone pays for to access the Internet such as a cellular data plan, broadband such as cable, fiber optic or DSL, or other type of service. This will normally refer to a service that someone is billed for directly for Internet alone or sometimes as part of a bundle.."With a computer" includes those who said "Yes" to at least one of the following types of computers: Desktop or laptop; smartphone; tablet or other portable wireless computer; or some other type of computer..Caution should be used when comparing data for computer and Internet use before and after 2016. Changes in 2016 to the questions involving the wording as well as the response options resulted in changed response patterns in the data. Most noticeable are increases in overall computer ownership or use, the total of Internet subscriptions, satellite subscriptions, and cellular data plans for a smartphone or other mobile device. For more detailed information about these changes, see the 2016 American Community Survey Content Test Report for Computer and Internet Use located at .https://www.census.gov/programs-surveys/acs/methodology/content-test.htm.. or the user note regarding changes in the 2016 questions located at .https://www.census.gov/programs-surveys/acs/technical-documentation/user-notes.html....While the 2018 American Community Survey (ACS) data generally reflect the July 2015 Office of Management and Budge...
Facebook
Twitterhttps://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de457436https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de457436
Abstract (en): Summary File 4 (SF 4) from the United States 2000 Census contains the sample data, which is the information compiled from the questions asked of a sample of all people and housing units. Population items include basic population totals: urban and rural, households and families, marital status, grandparents as caregivers, language and ability to speak English, ancestry, place of birth, citizenship status, year of entry, migration, place of work, journey to work (commuting), school enrollment and educational attainment, veteran status, disability, employment status, industry, occupation, class of worker, income, and poverty status. Housing items include basic housing totals: urban and rural, number of rooms, number of bedrooms, year moved into unit, household size and occupants per room, units in structure, year structure built, heating fuel, telephone service, plumbing and kitchen facilities, vehicles available, value of home, monthly rent, and shelter costs. In Summary File 4, the sample data are presented in 213 population tables (matrices) and 110 housing tables, identified with "PCT" and "HCT" respectively. Each table is iterated for 336 population groups: the total population, 132 race groups, 78 American Indian and Alaska Native tribe categories (reflecting 39 individual tribes), 39 Hispanic or Latino groups, and 86 ancestry groups. The presentation of SF4 tables for any of the 336 population groups is subject to a population threshold. That is, if there are fewer than 100 people (100-percent count) in a specific population group in a specific geographic area, and there are fewer than 50 unweighted cases, their population and housing characteristics data are not available for that geographic area in SF4. For the ancestry iterations, only the 50 unweighted cases test can be performed. See Appendix H: Characteristic Iterations, for a complete list of characteristic iterations. ICPSR data undergo a confidentiality review and are altered when necessary to limit the risk of disclosure. ICPSR also routinely creates ready-to-go data files along with setups in the major statistical software formats as well as standard codebooks to accompany the data. In addition to these procedures, ICPSR performed the following processing steps for this data collection: Created variable labels and/or value labels.. All persons in housing units in the District of Columbia in 2000. 2013-05-25 Multiple Census data file segments were repackaged for distribution into a single zip archive per dataset. No changes were made to the data or documentation.2006-01-12 All files were removed from dataset 342 and flagged as study-level files, so that they will accompany all downloads.2006-01-12 All files were removed from dataset 341 and flagged as study-level files, so that they will accompany all downloads.2006-01-12 All files were removed from dataset 340 and flagged as study-level files, so that they will accompany all downloads.2006-01-12 All files were removed from dataset 339 and flagged as study-level files, so that they will accompany all downloads.2006-01-12 All files were removed from dataset 338 and flagged as study-level files, so that they will accompany all downloads. Because of the number of files per state in Summary File 4, ICPSR has given each state its own ICPSR study number in the range ICPSR 13512-13563. The study number for the national file is 13570. Data for each state are being released as they become available.The data are provided in 38 segments (files) per iteration. These segments are PCT1-PCT4, PCT5-PCT16, PCT17-PCT34, PCT35-PCT37, PCT38-PCT45, PCT46-PCT49, PCT50-PCT61, PCT62-PCT67, PCT68-PCT71, PCT72-PCT76, PCT77-PCT78, PCT79-PCT81, PCT82-PCT84, PCT85-PCT86 (partial), PCT86 (partial), PCT87-PCT103, PCT104-PCT120, PCT121-PCT131, PCT132-PCT137, PCT138-PCT143, PCT144, PCT145-PCT150, PCT151-PCT156, PCT157-PCT162, PCT163-PCT208, PCT209-PCT213, HCT1-HCT9, HCT10-HCT18, HCT19-HCT22, HCT23-HCT25, HCT26-HCT29, HCT30-HCT39, HCT40-HCT55, HCT56-HCT61, HCT62-HCT70, HCT71-HCT81, HCT82-HCT86, and HCT87-HCT110. The iterations are Parts 1-336, the Geographic Header File is Part 337. The Geographic Header File is in fixed-format ASCII and the table files are in comma-delimited ASCII format. A merged iteration will have 7,963 variables.For Parts 251-336, the part names contain numbers within parentheses that refer to the Ancestry Code List (page G1 of the codebook).
Facebook
Twitterhttps://www.icpsr.umich.edu/web/ICPSR/studies/7568/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/7568/terms
This data collection contains individual-level and family-level information collected from the 1870 and 1880 manuscript schedules of the United States Population Census for seven Southern cities: Charleston, South Carolina, Richmond, Virginia, Atlanta, Georgia, Savannah, Georgia, Mobile, Alabama, Norfolk, Virginia, and New Orleans, Louisiana. Approximately 5,000 individuals and 1,500 families are represented for each of the two census years studied. Part 1 contains data for 1870, and Part 2 contains data for 1880. The data gathered for sampled individuals include age, sex, race, marital status, presence of health defect, school attendance, ability to read, ability to write, occupational classification (female and male), nationality, and real and personal wealth (for 1870 only). Both datasets include a variable that uniquely identifies each family in the sample to facilitate the aggregation of the data for the creation of family-level data for each member, e.g., sex, race, age, marital status, school attendance, member status in the family, occupation, health, unemployment, city of residence, nationality and parents' nationality, and real and personal wealth.
Facebook
TwitterThe layer was derived and compiled from the U.S. Census Bureau’s 2013 – 2017 American Community Survey (ACS) 5-Year Estimates in order to assist 2020 Census planning purposes.
Source: U.S. Census Bureau, Table B04006 PEOPLE REPORTING ANCESTRY, 2013 – 2017 ACS 5-Year Estimates
Effective Date: December 2018
Last Update: December 2019
Update Cycle: ACS 5-Year Estimates update annually each December. Vintage used for 2020 Census planning purposes by Broward County.
Facebook
TwitterThis dataset includes all individuals from the 1870 US census.
All manuscripts (and other items you'd like to publish) must be submitted to
phsdatacore@stanford.edu for approval prior to journal submission.
We will check your cell sizes and citations.
For more information about how to cite PHS and PHS datasets, please visit:
https:/phsdocs.developerhub.io/need-help/citing-phs-data-core
This dataset was developed through a collaboration between the Minnesota Population Center and the Church of Jesus Christ of Latter-Day Saints. The data contain demographic variables, economic variables, migration variables and race variables. Unlike more recent census datasets, pre-1900 census datasets only contain individual level characteristics and no household or family characteristics, but household and family identifiers do exist.
The official enumeration day of the 1870 census was 1 June 1870. The main goal of an early census like the 1870 U.S. census was to allow Congress to determine the collection of taxes and the appropriation of seats in the House of Representatives. Each district was assigned a U.S. Marshall who organized other marshals to administer the census. These enumerators visited households and recorder names of every person, along with their age, sex, color, profession, occupation, value of real estate, place of birth, parental foreign birth, marriage, literacy, and whether deaf, dumb, blind, insane or “idiotic”.
Sources: Szucs, L.D. and Hargreaves Luebking, S. (1997). Research in Census Records, The Source: A Guidebook of American Genealogy. Ancestry Incorporated, Salt Lake City, UT Dollarhide, W.(2000). The Census Book: A Genealogist’s Guide to Federal Census Facts, Schedules and Indexes. Heritage Quest, Bountiful, UT